On some formulas of Manuscript Book 1 of Srinivasa Ramanujan: new possible mathematical connections with various parameters of Particle Physics and Cosmology part II.

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further formulas of Manuscript Book 1 of Srinivasa Ramanujan and described new possible mathematical connections with various parameters of Particle Physics and Cosmology (Cosmological Constant, some parameters of Dark Energy)

[^0]

More science quotes at Today in Science History todayinsci.com
https://todayinsci.com/R/Ramanujan Srinivasa/RamanujanSrinivasa-Quotations.htm

Summary

In this research thesis, we have analyzed the possible and new connections between different formulas of Manuscript Book 1 of Srinivasa Ramanujan and some parameters concerning Particle Physics and Cosmology. In the course of the discussion we describe and highlight the connections between some developments of Ramanujan equations and particles type solutions such as the mass of the Higgs boson, and the masses of other baryons and mesons, principally $f_{0}(\mathbf{1 7 1 0})$ scalar meson candidate "glueball". Moreover, solutions of Ramanujan equations, connected with the mass of the π meson 139.57 have been described and highlighted. Furthermore, we have obtained also the values of some black hole entropies, the value of the Cosmological Constant and some parameters of Dark Energy.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

From:

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN

Page 16

$$
\tan ^{\wedge}-1\left(1 /(1+\operatorname{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+2 \operatorname{sqrt2})^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+3 \mathrm{sqrt} 2)^{\wedge} 2\right)+\ldots
$$

Input interpretation:
$\tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\cdots$

Result:

$$
\sum_{n=0}^{\infty} \tan ^{-1}\left(\frac{1}{(\sqrt{2} n+\sqrt{2}+1)^{2}}\right) \approx \sum_{n=0}^{\infty} \tan ^{-1}\left(\frac{1}{(1.41421 n+2.41421)^{2}}\right)
$$

Approximated sum:

$\sum_{n=1}^{\infty} \tan ^{-1}\left(\frac{1}{(1+\sqrt{2} n)^{2}}\right) \approx 0.390214$
$0.390214 \approx \frac{\pi}{8}=0.392699081698$

If we take

$$
\begin{aligned}
& \tan ^{\wedge}-1\left(1 /(1+\mathrm{sqrt} 2)^{\wedge} 2\right)^{2}+\tan ^{\wedge}-1\left(1 /(1+2 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+3 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}- \\
& 1\left(1 /(1+4 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+5 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+6 \mathrm{sqrt} 2)^{\wedge} 2\right)^{\wedge}+\tan ^{\wedge}- \\
& 1\left(1 /(1+12 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+24 \mathrm{sqrt} 2)^{\wedge} 2\right)
\end{aligned}
$$

we obtain:

Input:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)
\end{aligned}
$$

Exact Result:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+ \\
& \quad \tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)
\end{aligned}
$$

(result in radians)

Decimal approximation:

$0.327349706812720645444438112798192882967536628173104216641 \ldots$
(result in radians)
$0.327349706 \ldots$

Alternate forms:

$\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)$

$$
\begin{aligned}
& \cot ^{-1}\left((1+\sqrt{2})^{2}\right)+\cot ^{-1}\left((1+2 \sqrt{2})^{2}\right)+ \\
& \cot ^{-1}\left((1+3 \sqrt{2})^{2}\right)+\cot ^{-1}\left((1+4 \sqrt{2})^{2}\right)+\cot ^{-1}\left((1+5 \sqrt{2})^{2}\right)+ \\
& \cot ^{-1}\left((1+6 \sqrt{2})^{2}\right)+\cot ^{-1}\left((1+12 \sqrt{2})^{2}\right)+\cot ^{-1}\left((1+24 \sqrt{2})^{2}\right)
\end{aligned}
$$

$\tan ^{-1}\left(\frac{1153-48 \sqrt{2}}{1324801}\right)+\tan ^{-1}\left(\frac{289-24 \sqrt{2}}{82369}\right)+$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{73-12 \sqrt{2}}{5041}\right)+\tan ^{-1}\left(\frac{51-10 \sqrt{2}}{2401}\right)+\tan ^{-1}\left(\frac{1}{961}(33-8 \sqrt{2})\right)+ \\
& \tan ^{-1}\left(\frac{1}{289}(19-6 \sqrt{2})\right)+\tan ^{-1}\left(\frac{1}{49}(9-4 \sqrt{2})\right)+\tan ^{-1}(3-2 \sqrt{2})
\end{aligned}
$$

$\cot ^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)= \\
& \operatorname{sc}^{-1}\left(\left.\frac{1}{(1+\sqrt{2})^{2}} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{1}{(1+2 \sqrt{2})^{2}} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{1}{(1+3 \sqrt{2})^{2}} \right\rvert\, 0\right)+ \\
& \operatorname{sc}^{-1}\left(\left.\frac{1}{(1+4 \sqrt{2})^{2}} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{1}{(1+5 \sqrt{2})^{2}} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{1}{(1+6 \sqrt{2})^{2}} \right\rvert\, 0\right)+ \\
& \operatorname{sc}^{-1}\left(\left.\frac{1}{(1+12 \sqrt{2})^{2}} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{1}{(1+24 \sqrt{2})^{2}} \right\rvert\, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)= \\
& \tan ^{-1}\left(1, \frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+2 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+3 \sqrt{2})^{2}}\right)+ \\
& \quad \tan ^{-1}\left(1, \frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+5 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+6 \sqrt{2})^{2}}\right)+ \\
& \quad \tan ^{-1}\left(1, \frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+24 \sqrt{2})^{2}}\right) \\
& \tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+ \\
& \tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)= \\
& i \tanh ^{-1}\left(-\frac{i}{(1+\sqrt{2})^{2}}\right)+i \tanh ^{-1}\left(-\frac{i}{(1+2 \sqrt{2})^{2}}\right)+i \tanh ^{-1}\left(-\frac{i}{(1+3 \sqrt{2})^{2}}\right)+ \\
& i \tanh ^{-1}\left(-\frac{i}{(1+4 \sqrt{2})^{2}}\right)+i \tanh ^{-1}\left(-\frac{i}{(1+5 \sqrt{2})^{2}}\right)+i \tanh ^{-1}\left(-\frac{i}{(1+6 \sqrt{2})^{2}}\right)+ \\
& i \tanh ^{-1}\left(-\frac{i}{(1+12 \sqrt{2})^{2}}\right)+i \tanh ^{-1}\left(-\frac{i}{(1+24 \sqrt{2})^{2}}\right)
\end{aligned}
$$

From the previous expression, we obtain:
$1 /\left(\left(\left(\tan ^{\wedge}-1\left(1 /(1+\mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+2 \operatorname{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+3 \mathrm{sqrt} 2)^{\wedge} 2\right)+\ldots\right)\right)\right)$

Input interpretation:

1
$\tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\cdots$

Results:

1
$\sum_{n=0}^{\infty} \tan ^{-1}\left(\frac{1}{(\sqrt{2} n+\sqrt{2}+1)^{2}}\right)$
$1 /\left(\operatorname{sum}_{-}(\mathrm{n}=0)^{\wedge} \infty \tan ^{\wedge}(-1)\left(1 /(\operatorname{sqrt}(2) \mathrm{n}+\operatorname{sqrt}(2)+1)^{\wedge} 2\right)\right)$

Input interpretation:

$\sum_{n=0}^{\infty} \tan ^{-1}\left(\frac{1}{(\sqrt{2} n+\sqrt{2}+1)^{2}}\right)$

Result:

2.54648
2.54648
$\left(\left(\left(1 /\left(\operatorname{sum} _(\mathrm{n}=0)^{\wedge} \infty \tan ^{\wedge}(-1)\left(1 /(\operatorname{sqrt}(2) \mathrm{n}+\operatorname{sqrt}(2)+1)^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 5+29+\mathrm{Pi}$
Where 29 is a Lucas number

Input interpretation:

$\left(\frac{1}{\sum_{n=0}^{\infty} \tan ^{-1}\left(\frac{1}{(\sqrt{2} n+\sqrt{2}+1)^{2}}\right)}\right)^{5}+29+\pi$
$\tan ^{-1}(x)$ is the inverse tangent function

Result:

139.22
139.22 result practically equal to the rest mass of Pion meson 139.57 MeV

And:
$\left(\left(\left(1 /\left(\operatorname{sum}_{-}(\mathrm{n}=0)^{\wedge} \infty \tan ^{\wedge}(-1)\left(1 /(\operatorname{sqrt}(2) \mathrm{n}+\operatorname{sqrt}(2)+1)^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 5+18$
Where 18 is a Lucas number

Input interpretation:

Result:

125.078
125.078 result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

From the following expression:

$$
\begin{aligned}
& \tan ^{\wedge}-1\left(1 /(1+\operatorname{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+2 \operatorname{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+3 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}- \\
& 1\left(1 /(1+4 \operatorname{sqrt} 2)^{\wedge} 2\right)^{\wedge}+\tan ^{\wedge}-1\left(1 /(1+5 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+6 \mathrm{sqrt} 2)^{\wedge} 2\right)^{\wedge}+\tan ^{\wedge}- \\
& 1\left(1 /(1+12 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+24 \mathrm{sqrt} 2)^{\wedge} 2\right)
\end{aligned}
$$

we obtain:
$\left[1 /\left(\left(\left(\tan ^{\wedge}-1\left(1 /(1+\text { sqrt } 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+2 \operatorname{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+3 \operatorname{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-\right.\right.\right.\right.$ $1\left(1 /(1+4 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+5 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+6 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-$ $\left.\left.\left.\left.1\left(1 /(1+12 \mathrm{sqrt} 2)^{\wedge} 2\right)+\tan ^{\wedge}-1\left(1 /(1+24 \mathrm{sqrt} 2)^{\wedge} 2\right)\right)\right)\right)\right]^{\wedge} 5$

Input:

$$
\begin{aligned}
& \left(1 /\left(\tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+\right.\right. \\
& \tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+ \\
& \left.\left.\tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)\right)\right)^{5}
\end{aligned}
$$

Exact Result:

$1 /$

$$
\begin{aligned}
& \left(\tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\right. \\
& \quad \tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+ \\
& \quad \tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)
\end{aligned}
$$

(result in radians)

Decimal approximation:

266.0358831303531310292452360902628407164242284220609033941...

(result in radians)

266.03588313....

Alternate forms:

$\frac{1}{\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}$
$1 /\left(\cot ^{-1}\left((1+\sqrt{2})^{2}\right)+\cot ^{-1}\left((1+2 \sqrt{2})^{2}\right)+\right.$

$$
\cot ^{-1}\left((1+3 \sqrt{2})^{2}\right)+\cot ^{-1}\left((1+4 \sqrt{2})^{2}\right)+\cot ^{-1}\left((1+5 \sqrt{2})^{2}\right)+
$$

$$
\left.\cot ^{-1}\left((1+6 \sqrt{2})^{2}\right)+\cot ^{-1}\left((1+12 \sqrt{2})^{2}\right)+\cot ^{-1}\left((1+24 \sqrt{2})^{2}\right)\right)^{5}
$$

$1 /\left(\tan ^{-1}\left(\frac{1153-48 \sqrt{2}}{1324801}\right)+\tan ^{-1}\left(\frac{289-24 \sqrt{2}}{82369}\right)+\right.$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{73-12 \sqrt{2}}{5041}\right)+\tan ^{-1}\left(\frac{51-10 \sqrt{2}}{2401}\right)+\tan ^{-1}\left(\frac{1}{961}(33-8 \sqrt{2})\right)+ \\
& \left.\tan ^{-1}\left(\frac{1}{289}(19-6 \sqrt{2})\right)+\tan ^{-1}\left(\frac{1}{49}(9-4 \sqrt{2})\right)+\tan ^{-1}(3-2 \sqrt{2})\right)^{5}
\end{aligned}
$$

$\cot ^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$
\begin{aligned}
& \left(1 /\left(\tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\right.\right. \\
& \tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+ \\
& \left.\left.\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)\right)\right)^{5}= \\
& \left(1 /\left(\operatorname{sc}^{-1}\left(\left.\frac{1}{(1+\sqrt{2})^{2}} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{1}{(1+2 \sqrt{2})^{2}} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{1}{(1+3 \sqrt{2})^{2}} \right\rvert\, 0\right)+\right.\right. \\
& \operatorname{sc}^{-1}\left(\left.\frac{1}{(1+4 \sqrt{2})^{2}} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{1}{(1+5 \sqrt{2})^{2}} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{1}{(1+6 \sqrt{2})^{2}} \right\rvert\, 0\right)+ \\
& \left.\left.\operatorname{sc}^{-1}\left(\left.\frac{1}{(1+12 \sqrt{2})^{2}} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{1}{(1+24 \sqrt{2})^{2}} \right\rvert\, 0\right)\right)\right)^{5} \\
& \left(1 /\left(\tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\right.\right. \\
& \tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+ \\
& \left.\left.\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)\right)\right)^{5}= \\
& \left(1 /\left(\tan ^{-1}\left(1, \frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+2 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+3 \sqrt{2})^{2}}\right)+\right.\right. \\
& \tan ^{-1}\left(1, \frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+5 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+6 \sqrt{2})^{2}}\right)+ \\
& \left.\left.\tan ^{-1}\left(1, \frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(1, \frac{1}{(1+24 \sqrt{2})^{2}}\right)\right)\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1 /\left(\tan ^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+2 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+3 \sqrt{2})^{2}}\right)+\right.\right. \\
& \tan ^{-1}\left(\frac{1}{(1+4 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+5 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+6 \sqrt{2})^{2}}\right)+ \\
& \left.\left.\tan ^{-1}\left(\frac{1}{(1+12 \sqrt{2})^{2}}\right)+\tan ^{-1}\left(\frac{1}{(1+24 \sqrt{2})^{2}}\right)\right)\right)^{5}=
\end{aligned}
$$

$$
\left(1 /\left(\cot ^{-1}\left(\frac{1}{\frac{1}{(1+\sqrt{2})^{2}}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{(1+2 \sqrt{2})^{2}}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{(1+3 \sqrt{2})^{2}}}\right)+\right.\right.
$$

$$
\cot ^{-1}\left(\frac{1}{\frac{1}{(1+4 \sqrt{2})^{2}}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{(1+5 \sqrt{2})^{2}}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{(1+6 \sqrt{2})^{2}}}\right)+
$$

$$
\left.\left.\cot ^{-1}\left(\frac{1}{\frac{1}{(1+12 \sqrt{2})^{2}}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{(1+24 \sqrt{2})^{2}}}\right)\right)\right)^{5}
$$

From the following alternate form

> 1
> $\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}$

We obtain:
$1 / 2\left(\left(1 / \tan ^{\wedge}(-1)((-216845894344+190969859251\right.\right.$
$\left.\left.\operatorname{sqrt}(2)) / 156747794826)^{\wedge} 5\right)\right)+5+$ golden ratio
Where 5 is a Fibonacci number

Input:

$\frac{1}{2} \times \frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}+5+\phi$
$\tan ^{-1}(x)$ is the inverse tangent function
ϕ is the golden ratio

Exact Result:

$\phi+5+\frac{1}{2 \tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}$
(result in radians)

Decimal approximation:

139.6359755539264603628272048794970584759324233908362145591...
(result in radians)
$139.635975 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$\frac{1}{2}(11+\sqrt{5})+\frac{1}{2 \tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}$
$5+\frac{1}{2}(1+\sqrt{5})+\frac{1}{2 \tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}$

$$
\phi+5+\frac{16}{\left(\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)-\tan ^{-1}\left(\frac{216845894344-190969859251 \sqrt{2}}{156747794826}\right)\right)^{5}}
$$

Alternative representations:

```
\(\frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2}+5+\phi=\)
\[
5+\phi+\frac{1}{2 \operatorname{sc}^{-1}\left(\left.\frac{-216845894344+190969859251 \sqrt{2}}{156747794826} \right\rvert\, 0\right)^{5}}
\]
```


1
$\frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2}+5+\phi=$
$5+\phi+\frac{1}{2 \cot ^{-1}\left(\frac{1}{\frac{-216845894344+199869859251 \sqrt{2}}{156747794826}}\right)^{5}}$

Series representations:

$$
\begin{aligned}
& \frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2}+5+\phi= \\
& 5+\phi+\frac{1}{2\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} 156747794826^{-1-2 k}(-216845894344+190969859251 \sqrt{2})^{1+2 k}}{1+2 k}\right)^{5}} \\
& \frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2}+5+\phi= \\
& 5+\phi-(16 i) /\left(\log (2)-\log \left(i\left(-i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)\right)-\right. \\
& \left.\sum_{k=1}^{\infty} \frac{\left(\frac{i}{2}\right)^{k}\left(-i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{k}}{k}\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\tan ^{-1}\left(\frac{-216845894344+190960859251 \sqrt{2}}{156747794826}\right)^{5} 2}+5+\phi= \\
& 5+\phi-(16 i) /\left(-\log (2)+\log \left(-i\left(i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)\right)+\right. \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^{k}\left(i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{k}}{k}\right)^{5}
\end{aligned}
$$

Continued fraction representations:

```
            1
\(\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2\)
\(\left(\begin{array}{l}47312642310909092068219567484966973846403 \\ \left.\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{(-216845894344+190969859251 \sqrt{2})^{2} k^{2}}{24569871182813792370276}}{1+2 k}\right)^{5}\right) /\end{array}\right.\)
    \((-216845894344+190969859251 \sqrt{2})^{5}=5+\phi+\)
(47312642310909092068219567484966973846403528990332452688
        \(\left(1+(-216845894344+190969859251 \sqrt{2})^{2} /\right.\)
    (24569871182813792370276
        \(\left(3+(-216845894344+190969859251 \sqrt{2})^{2} /\right.\)
    (6142467795703448092569
        \(\left(5+(-216845894344+190969859251 \sqrt{2})^{2} /\right.\)
        (2729985686979310263364 (7+
        \((4(-216845894344+190969859251\)
        \(\left.\sqrt{2})^{2}\right) /(6142467795703448092569\)
        \((9+\ldots))))\) )) \(\left.)^{5}\right) /\)
    \((-216845894344+190969859251 \sqrt{2})^{5}\)
```

$\frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2}+5+\phi=5+\phi+$
(47312642310909092068219567484966973846403528990332452688

$(-216845894344+190969859251 \sqrt{2})^{5}=5+\phi+$ $(47312642310909092068219567484966973846403528990332452688$ $\left(1+(216845894344-190969859251 \sqrt{2})^{2} /\right.$
(24569871182813792370276

$$
\begin{gathered}
\left(3+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
(6142467795703448092569
\end{gathered}
$$

$$
\left(5+(216845894344-190969859251 \sqrt{2})^{2} /\right.
$$

(2729985686979310263364

$$
\begin{aligned}
& (7+(4(216845894344-190969859251 \\
& \left.\sqrt{2})^{2}\right) /(6142467795703448092569 \\
& \left.(9+\ldots))))))))^{5}\right) /
\end{aligned}
$$

$$
(-216845894344+190969859251 \sqrt{2})^{5}
$$

$\frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2}+5+\phi=5+\phi+$

$$
-2
$$

(
47312642310909092068219567484966973846403528990332452688

$$
(-216845894344+190969859251 \sqrt{2})^{5}=5+\phi+
$$

(47312642310909092068219567484966973846403528990332452688

$$
\begin{gathered}
\left(1+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
(24569871182813792370276
\end{gathered}
$$

$$
\left(3-\frac{(216845894344-190969859251 \sqrt{2})^{2}}{24569871182813792370276}+\right.
$$

$$
(216845894344-190969859251 \sqrt{2})^{2} /
$$

$$
(2729985686979310263364
$$

$$
\left(5-\frac{(216845894344-190969859251 \sqrt{2})^{2}}{8189957060937930790092}+\right.
$$

$$
(25(216845894344-190969859251
$$

$$
\left.\sqrt{2})^{2}\right) /(24569871182813792370276
$$

$$
7-(5(216845894344-190969859251
$$

$$
\left.(\sqrt{2})^{2}\right) / 24569871182813792370276+
$$

$$
(216845894344-190969859251
$$

$$
\sqrt{2})^{2} /(501425942506403925924(9-
$$

$$
\underline{(216845894344-190969859251 \sqrt{2})^{2}}
$$

$$
3509981597544827481468
$$

$+$

$(-216845894344+190969859251 \sqrt{2})^{5}$

$1 / 2\left(\left(1 / \tan ^{\wedge}(-1)((-216845894344+190969859251 \operatorname{sqrt}(2)) / 156747794826)^{\wedge} 5\right)\right)-11+\mathrm{Pi}$

Where 11 is a Lucas number

Input:

$\frac{1}{2} \times \frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}-11+\pi$

Exact Result:

$-11+\pi+\frac{1}{2 \tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}$
(result in radians)

Decimal approximation:

125.1595342187663587530852614284109232424092836104055575180...
(result in radians)
125.159534... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$$
\begin{aligned}
& -11+\pi+\frac{16}{\left(\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)-\tan ^{-1}\left(\frac{216845894344-190969859251 \sqrt{2}}{156747794826}\right)\right)^{5}} \\
& -11+\pi-(16 i) /\left(\log \left(1-\frac{i(190969859251 \sqrt{2}-216845894344)}{156747794826}\right)-\right. \\
& \left.\log \left(1+\frac{i(190969859251 \sqrt{2}-216845894344)}{156747794826}\right)\right)^{5} \\
& \left(1-22 \tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}+\right. \\
& \left.\quad 2 \pi \tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}\right) / \\
& \left(2 \tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}\right)
\end{aligned}
$$

Alternative representations:

Series representations:

$$
\begin{aligned}
& \frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2}-11+\pi= \\
& -11+\pi+\frac{1}{2\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} 156747794826^{-1-2 k}(-216845894344+190969859251 \sqrt{2})^{1+2 k}}{1+2 k}\right)^{5}} \\
& \frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2}-11+\pi= \\
& -11+\pi-(16 i) /\left(\log (2)-\log \left(i\left(-i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)\right)-\right. \\
& \left.\sum_{k=1}^{\infty} \frac{\left(\frac{i}{2}\right)^{k}\left(-i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{k}}{k}\right)^{5}
\end{aligned}
$$

$\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2$
$-11+\pi-(16 i) /\left(-\log (2)+\log \left(-i\left(i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)\right)+\right.$
$\left.\sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^{k}\left(i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{k}}{k}\right)^{5}$

```

Continued fraction representations:
```

$\frac{1}{\tan ^{-1}\left(\frac{-216845894344+190960859251 \sqrt{2}}{156747794826}\right)^{5} 2}-11+\pi=-11+\pi+$
473126423109090920682195674849669738464035
$\left.\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{(-216845894344+190969859251 \sqrt{2})^{2} k^{2}}{24569871182813792370276}}{1+2 k}\right)^{5}\right) /$
$(-216845894344+190969859251 \sqrt{2})^{5}=-11+\pi+$
(47312 642310909092068219567484966973846403528990332452688
$\left(1+(-216845894344+190969859251 \sqrt{2})^{2} /\right.$
(24569871 182813792370276
$\left(3+(-216845894344+190969859251 \sqrt{2})^{2} /\right.$
(6142467795703448 092569
$\left(5+(-216845894344+190969859251 \sqrt{2})^{2} /\right.$
(2729985 686979310263364 (7 +
(4 (-216845894344 + 190969859251
$\left.\sqrt{2})^{2}\right) /(6142467795703448092569$
$\left.(9+\ldots))))))^{5}\right) /$
$(-216845894344+190969859251 \sqrt{2})^{5}$

```
\(\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2\)
(
(
47312642310909092068219567484966973846403528990332452688

\((-216845894344+190969859251 \sqrt{2})^{5}=-11+\pi+\) (47312 642310909092068219567484966973846403528990332452688 \(\left(1+(216845894344-190969859251 \sqrt{2})^{2} /\right.\)
(24569871182 813792370276
\[
\begin{gathered}
\left(3+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
(6142467795703448092569
\end{gathered}
\]
\[
\left(5+(216845894344-190969859251 \sqrt{2})^{2} /\right.
\]
(2729985 686979310263364
\[
\begin{aligned}
& (7+(4(216845894344-190969859251 \\
& \left.\sqrt{2})^{2}\right) /(6142467795703448092569 \\
& \left.(9+\ldots))))))))^{5}\right) /
\end{aligned}
\]
\[
(-216845894344+190969859251 \sqrt{2})^{5}
\]
\(\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5} 2\)
(
47312642310909092068219567484966973846403528990332452688
\[
\left.\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{(216845894344-190969859251 \sqrt{2})^{2}(1-2 k)^{2}}{24569871182813702370276}}{1+2 k-\frac{(216845894344-190969859251 \sqrt{2})^{2}(-1+2 k)}{24569871182813792370276}}\right)^{5}\right) /
\]
\((-216845894344+190969859251 \sqrt{2})^{5}=-11+\pi+\)
(47312642310909092068219567484966973846403528990332452688
\[
\begin{gathered}
\left(1+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
(24569871182813792370276
\end{gathered}
\]
\[
\begin{gathered}
\left(3-\frac{(216845894344-190969859251 \sqrt{2})^{2}}{24569871182813792370276}+\right. \\
(216845894344-190969859251 \sqrt{2})^{2} / \\
\quad(2729985686979310263364
\end{gathered}
\]
\[
\left(5-\frac{(216845894344-190969859251 \sqrt{2})^{2}}{8189957060937930790092}+\right.
\]
\[
(25(216845894344-190969859251
\]
\[
\left.\sqrt{2})^{2}\right) /(24569871182813792370276
\]
\[
(7-(5(216845894344-190969859251
\]
\[
\left.(\sqrt{2})^{2}\right) / 24569871182813792370276+
\]
\[
(216845894344-190969859251
\]
\[
\sqrt{2})^{2} /(501425942506403925924(9-
\]
\[
\underline{(216845894344-190969859251 \sqrt{2})^{2}}
\]
\[
3509981597544827481468
\]
\(+\)

\((-216845894344+190969859251 \sqrt{2})^{5}\)
\(2 \mathrm{Pi}^{*}\left(\left(1 / \tan ^{\wedge}(-1)((-216845894344+190969859251\right.\right.\)
\(\left.\left.\operatorname{sqrt}(2)) / 156747794826)^{\wedge} 5\right)\right)+47+11-1 /\) golden ratio

Where 47 and 11 are Lucas numbers
Input:
\(2 \pi \times \frac{1}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}+47+11-\frac{1}{\phi}\)
\(\tan ^{-1}(x)\) is the inverse tangent function
\(\phi\) is the golden ratio

\section*{Exact Result:}
\(-\frac{1}{\phi}+58+\frac{2 \pi}{\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}\)
(result in radians)

\section*{Decimal approximation:}
\(1728.934718078430510743282317395182371646810220521659841850 \ldots\)
(result in radians)
1728.934718....

This result is very near to the mass of candidate glueball \(\mathrm{f}_{0}(1710)\) meson. Furthermore, 1728 occurs in the algebraic formula for the j -invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

\section*{Alternate forms:}
\(58-\frac{2}{1+\sqrt{5}}+\frac{2 \pi}{\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}\)
\(\frac{1}{2}(117-\sqrt{5})+\frac{2 \pi}{\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}\)
\(\frac{2(28+29 \sqrt{5})}{1+\sqrt{5}}+\frac{2 \pi}{\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)^{5}}\)

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{2 \pi}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}+47+11-\frac{1}{\phi}= \\
& \left.58-\frac{1}{\phi}+\left.\frac{2 \pi}{\operatorname{sc}^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right.}\right|^{2}\right)^{5} \\
& \frac{2 \pi}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}+47+11-\frac{1}{\phi}= \\
& 58-\frac{1}{\phi}+\frac{2 \pi}{\tan ^{-1}\left(1, \frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}} \\
& \frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}{2 \pi}+47+11-\frac{1}{\phi}= \\
& 58-\frac{1}{\phi}+\frac{2 \pi}{\operatorname{lam}^{5}}= \\
& \left.\cot ^{-1\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right.}\right)^{5}
\end{aligned}
\]

\section*{Series representations:}

\[
\begin{gathered}
58-\frac{1}{\phi}-(64 i \pi) /\left(\log (2)-\log \left(i\left(-i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)\right)-\right. \\
\left.\sum_{k=1}^{\infty} \frac{\left(\frac{i}{2}\right)^{k}\left(-i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{k}}{k}\right)^{5}
\end{gathered}
\]
\[
\begin{aligned}
& \frac{2 \pi}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}+47+11-\frac{1}{\phi}= \\
& 58-\frac{1}{\phi}-(64 i \pi) /\left(-\log (2)+\log \left(-i\left(i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)\right)+\right. \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^{k}\left(i+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{k}}{k}\right)^{5}
\end{aligned}
\]

\section*{Continued fraction representations:}
\(\frac{2 \pi}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}+47+11-\frac{1}{\phi}=58-\frac{1}{\phi}+\) 189250569243636368272878269939867895385614115961329810752
\[
\pi\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\left.\left.\frac{(-216845894344+190969859251 \sqrt{2})^{2} k^{2}}{24569871182813792370276}\right)^{5}\right) / / 1+2 k}{1+}\right.
\]
\[
(-216845894344+190969859251 \sqrt{2})^{5}=58-\frac{1}{\phi}+
\]
(189250569243636368272878269939867895385614115961329810752
\[
\begin{gathered}
\pi\left(1+(-216845894344+190969859251 \sqrt{2})^{2} /\right. \\
(24569871182813792370276 \\
\left(3+(-216845894344+190969859251 \sqrt{2})^{2} /\right. \\
(6142467795703448092569 \\
\left(5+(-216845894344+190969859251 \sqrt{2})^{2} /\right. \\
(2729985686979310263364(7+ \\
(4(-216845894344+190969859251 \\
\left.\sqrt{2})^{2}\right) /(6142467795703448092569 \\
\left.(9+\ldots))))))))^{5}\right) / \\
(-216845894344+190969859251 \sqrt{2})^{5}
\end{gathered}
\]
\(\frac{2 \pi}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}+47+11-\frac{1}{\phi}=58-\frac{1}{\phi}+\) (
189250569243636368272878269939867895385614115961329810752
\[
\begin{gathered}
\left.\pi\left(1+{\underset{k}{\mathrm{~K}}}_{\mathrm{K}}^{\infty} \frac{\frac{(216845894344-190969859251 \sqrt{2})^{2} k^{2}}{24569871182813792370276}}{1+2 k}\right)^{5}\right) / \\
(-216845894344+190969859251 \sqrt{2})^{5}=58-\frac{1}{\phi}+
\end{gathered}
\]
(189250569243636368272878269939867895 385614115961329810752
\[
\begin{gathered}
\pi\left(1+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
(24569871182813792370276 \\
\left(3+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
(6142467795703448092569 \\
\left(5+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
(2729985686979310263364 \\
(7+(4(216845894344-190969859251 \\
\left.\sqrt{2})^{2}\right) /(6142467795703448092569 \\
\left.(9+\ldots))))))))^{5}\right) / \\
(-216845894344+190969859251 \sqrt{2})^{5}
\end{gathered}
\]
\[
\frac{2 \pi}{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)^{5}}+47+11-\frac{1}{\phi}=58-\frac{1}{\phi}+
\]
(
189250569243636368272878269939867895385614115961329810752
\[
\begin{gathered}
\left.\pi\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{(216845894344-190969859251 \sqrt{2})^{2}(1-2 k)^{2}}{24569871182813792370276}}{1+2 k-\frac{(216845894344-190969859251 \sqrt{2})^{2}(-1+2 k)}{24569871182813792370276}}\right)^{5}\right) / \\
(-216845894344+190969859251 \sqrt{2})^{5}=58-\frac{1}{\phi}+
\end{gathered}
\]

189250569243636368272878269939867895385614115961329810752
\[
\begin{gathered}
\pi\left(1+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
\left(\begin{array}{r}
24569871182813792370276 \\
\left(3-\frac{(216845894344-190969859251 \sqrt{2})^{2}}{24569871182813792370276}+\right. \\
(216845894344-190969859251 \sqrt{2})^{2} / \\
(2729985686979310263364
\end{array}+\right.
\end{gathered}
\]
\[
\left(5-\frac{(216845894344-190969859251 \sqrt{2})^{2}}{8189957060937930790092}+\right.
\]
\[
(25(216845894344-190969859251
\]
\[
\left.\sqrt{2})^{2}\right) /(24569871182813792370276
\]
\[
7-(5(216845894344-190969859251
\]
\[
\left.(\sqrt{2})^{2}\right) / 24569871182813792370276+
\]
\[
(216845894344-190969859251
\]
\[
\sqrt{2})^{2} /(501425942506403925924(9-
\]
\[
(216845894344-190969859251 \sqrt{2})^{2}
\]
\[
3509981597544827481468
\]
\[
+
\]

\((-216845894344+190969859251 \sqrt{2})^{5}\)

From the previous expression, by the alternate form
\[
\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)
\]

We obtain:
\(1 / 10^{\wedge} 52((((\tan \wedge(-1)((-216845894344+190969859251 \operatorname{sqrt}(2)) / 156747794826)+\) \(1 /\) golden ratio \(\left.\left.\left.\left.+(18-2) / 10^{\wedge} 2+2 / 10^{\wedge} 4\right)\right)\right)\right)\)

Where 18 and 2 are Lucas numbers
Input:
\(\frac{1}{10^{52}}\left(\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}\right)\)
\(\tan ^{-1}(x)\) is the inverse tangent function \(\phi\) is the golden ratio

\section*{Exact Result:}
\[
\frac{1}{\phi}+\frac{801}{5000}+\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)
\]

10000000000000000000000000000000000000000000000000000
(result in radians)

\section*{Decimal approximation:}
\(1.1055836955626154936490249471638310006878458079788670 \ldots \times 10^{-52}\)
(result in radians)
\(1.105583695 \ldots * 10^{-52}\) result practically equal to the value of Cosmological Constant \(1.1056 * 10^{-52} \mathrm{~m}^{-2}\)

\section*{Alternate forms:}
\(\phi\left(801+5000 \tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)\right)+5000\)
\(50000000000000000000000000000000000000000000000000000000 \phi\)
\(\frac{\frac{2500 \sqrt{5}-1699}{5000}+\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)}{10000000000000000000000000000000000000000000000000000}\)
\(\frac{\frac{801}{5000}+\frac{2}{1+\sqrt{5}}+\tan ^{-1}\left(\frac{190969859251 \sqrt{2}-216845894344}{156747794826}\right)}{1000000000000000000000000000000000000000000000000000}\)

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}= \\
& \operatorname{SC}^{-1}\left(\left.\frac{-216845894344+190969859251 \sqrt{2}}{156747794826} \right\rvert\, 0\right)+\frac{1}{\phi}+\frac{16}{10^{2}}+\frac{2}{10^{4}} \\
& 10^{52} \\
& \frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}= \\
& i \tanh ^{-1}\left(-\frac{i(-216845894344+190969859251 \sqrt{2})}{156747794826}\right)+\frac{1}{\phi}+\frac{16}{10^{2}}+\frac{2}{10^{4}} \\
& 10^{52}
\end{aligned}
\]

\section*{Series representations:}


\(\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} 156747794826^{-1-2 k}(-216845894344+190969859251 \sqrt{2})^{1+2 k}}{1+2 k}}{10}\)

10000000000000000000000000000000000000000000000000000
\[
\frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}=
\]
\[
\begin{gathered}
50000000000000000000000000000000000000000000000000000000 \\
\frac{1}{10000000000000000000000000000000000000000000000000000 \phi}+ \\
+
\end{gathered}
\]
\[
\left(\sum_{k=0}^{\infty} \frac{1}{1+2 k}\left(-\frac{1}{5}\right)^{k}(-216845894344+190969859251 \sqrt{2})^{1+2 k}(78373897413\right.
\]
\[
\left.\left(1+\sqrt{1+\frac{(-216845894344+190969859251 \sqrt{2})^{2}}{30712338978517240462845}}\right)\right)^{-1-2 k}
\]
\[
\left.F_{1+2 k}\right)
\]

10000000000000000000000000000000000000000000000000000
\[
\begin{aligned}
& \frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}= \\
& \left(\frac{801}{5000}+\frac{1}{\phi}+\frac{1}{313495589652}(-216845894344+190969859251 \sqrt{2})\right. \\
& \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{1}{\Gamma\left(\frac{3}{2}-s\right)} 24569871182813792370276^{s} \\
& \left.\quad(-216845894344+190969859251 \sqrt{2})^{-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)\right) /
\end{aligned}
\]

10000000000000000000000000000000000000000000000000000

\section*{Integral representations:}
```

$\frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}=$
$\left(\frac{801}{5000}+\frac{1}{\phi}+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right.$
$\int_{0}^{1} \frac{1}{1+\frac{(-216845894344+190969859251 \sqrt{2})^{2} t^{2}}{24569871182813792370276}} d t /$

```

10000000000000000000000000000000000000000000000000000
\[
\begin{gathered}
\frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}= \\
\left(\frac{801}{5000}+\frac{1}{\phi}-\frac{i(-216845894344+190969859251 \sqrt{2})}{626991179304 \pi}\right. \\
\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{\Gamma\left(\frac{3}{2}-s\right)} 24569871182813792370276^{s} \\
(-216845894344+190969859251 \sqrt{2})^{-2 s} \\
\left.\Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) d s\right) /
\end{gathered}
\]

10000000000000000000000000000000000000000000000000000 for \(0<\gamma<\frac{1}{2}\)
\(\frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}=\)
\[
\begin{gathered}
\left(\frac{801}{5000}+\frac{1}{\phi}-\frac{i(-216845894344+190969859251 \sqrt{2})}{626991179304 \pi^{3 / 2}}\right. \\
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(1+\frac{(-216845894344+190969859251 \sqrt{2})^{2}}{24569871182813792370276}\right)^{-s} \\
\left.\Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s\right) /
\end{gathered}
\]

10000000000000000000000000000000000000000000000000000 for \(0<\gamma<\frac{1}{2}\)

\section*{Continued fraction representations:}

\[
\begin{aligned}
& \frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}= \\
& \left.\frac{801}{5000}+\frac{1}{\phi}+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826\left(\sum_{k=1}^{1+K_{2}} \frac{(216845894344-190969859251 \sqrt{2})^{2} k^{2}}{24560871182813702370276}\right.} 1+2\right) \\
& \frac{10000000000000000000000000000000000000000000000000000}{\left(\frac{801}{5000}+\frac{1}{\phi}+(-216845894344+190969859251 \sqrt{2}) /\right.}= \\
& \left(1 5 6 7 4 7 7 9 4 8 2 6 \left(1+(216845894344-190969859251 \sqrt{2})^{2} /\right.\right. \\
& (24569871182813792370276 \\
& \left(3+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
& (6142467795703448092569 \\
& \left(5+(216845894344-190969859251 \sqrt{2})^{2} /\right. \\
& (2729985686979310263364 \\
& (7+(4(216845894344-190969859251 \\
& \left.\sqrt{2})^{2}\right) /(6142467795703448092569 \\
& (9+\ldots))))))))) /
\end{aligned}
\]

10000000000000000000000000000000000000000000000000000
\[
\begin{aligned}
& \frac{\tan ^{-1}\left(\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}\right)+\frac{1}{\phi}+\frac{18-2}{10^{2}}+\frac{2}{10^{4}}}{10^{52}}= \\
& \left(\frac{801}{5000}+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}+\right. \\
& \frac{1}{\phi}-(-216845894344+190969859251 \sqrt{2})^{3} / \\
& 3851273127064946263818986668991976 \\
& \left.\left(3+\mathrm{K}_{k=1}^{\infty} \frac{\frac{(-216845894344+190969859251 \sqrt{2})^{2}\left(1+(-1)^{1+k}+k\right)^{2}}{24569871182813792370276}}{3+2 k}\right)\right) / \\
& 10000000000000000000000000000000000000000000000000000= \\
& \left(\frac{801}{5000}+\frac{-216845894344+190969859251 \sqrt{2}}{156747794826}+\right. \\
& \frac{1}{\phi}-(-216845894344+190969859251 \sqrt{2})^{3} / \\
& \text { (3851273127064946263818986668991976 } \\
& \left(3+(-216845894344+190969859251 \sqrt{2})^{2} /\right. \\
& \text { (2729985686979310 } 263364 \\
& \left(5+(-216845894344+190969859251 \sqrt{2})^{2} /\right. \\
& \text { (6142467795703448092569 } \\
& (7+(25(-216845894344+ \\
& \left.190969859251 \sqrt{2})^{2}\right) / \\
& \text { (24569871182813792 } 370276 \text { (9 + } \\
& \text { (4) }-216845894344+190969859251 \\
& \left.\sqrt{2})^{2}\right) /(6142467795703448092569 \\
& (11+\ldots,)))))) \text { ) }) \text { )/ }
\end{aligned}
\]

10000000000000000000000000000000000000000000000000000

With regard \(\mathrm{Pi} / 8\), we obtain:
Pi/8

\section*{Input:}
\(\frac{\pi}{8}\)

\section*{Decimal approximation:}
0.392699081698724154807830422909937860524646174921888227621
\(0.392699081 \ldots\).

\section*{Property:}
\(\frac{\pi}{8}\) is a transcendental number

Alternative representations:
\(\frac{\pi}{8}=\frac{180^{\circ}}{8}\)
\(\frac{\pi}{8}=-\frac{1}{8} i \log (-1)\)
\(\frac{\pi}{8}=\frac{1}{8} \cos ^{-1}(-1)\)

Series representations:
\(\frac{\pi}{8}=\frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\)
\(\frac{\pi}{8}=\sum_{k=0}^{\infty}-\frac{(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{2(1+2 k)}\)
\(\frac{\pi}{8}=\frac{1}{8} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\)

\section*{Integral representations:}
\(\frac{\pi}{8}=\frac{1}{2} \int_{0}^{1} \sqrt{1-t^{2}} d t\)
\(\frac{\pi}{8}=\frac{1}{4} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\)
\(\frac{\pi}{8}=\frac{1}{4} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\)

Page 310 Manuscript 1
\[
\left.=5 \phi^{2}(x) \phi^{2}\left(x^{\prime \prime}\right)-20 x f^{2}(x) f^{2}\left(x^{\prime \prime}\right)+32 x^{2} f^{2}\left(-x^{2}\right) f^{2}+x^{2}\right)
\]
\[
-20 x^{3} \psi^{2}(-x) \psi^{2}\left(-x^{\prime \prime}\right)
\]
\[
=\phi^{2}(x) \phi^{2}\left(x^{\prime \prime}\right)\left[5 \cdot \frac{1+\sqrt{d A}+\sqrt{(1-\alpha)(1-A)}}{2}-\frac{1}{2}\left(\xi^{1}-\sqrt[4]{\alpha \beta}-\sqrt[4]{(1-\alpha \cdot)}\right\}^{20}\right]
\]
\[
3+4\left(\frac{x^{2}}{1-x^{2}}+\frac{2 x^{5}}{1-x^{4}}+\infty\right)-4\left(\frac{19 x^{28}}{1-x^{32}}+\frac{38 x^{76}}{1-x^{78}}+2 x\right)
\]
\[
=\phi^{2}(x) \phi^{2}\left(x^{19}\right)\left[3 \cdot \frac{1+\sqrt{\alpha \beta}+\sqrt{Q \alpha x+\beta)}}{2}+\frac{1}{2}(1-\sqrt[5]{\alpha \beta}-\sqrt[4]{Q-\alpha)(1-\lambda)}]\right.
\]
\[
11+12\left(\frac{x^{2}}{1-x^{2}}+\frac{2 x^{5}}{1-x^{4}}+x\right)-12\left(\frac{23 x^{46}}{1-x^{36}}+\frac{46 x^{72}}{1-x^{36}}+85\right)
\]
\[
=\phi^{2}(x) \phi^{2}\left(x^{2}\right)\left\{\begin{array}{l}
11 \cdot \frac{1+\sqrt{\alpha \beta}+\sqrt{(-\alpha)(1-\mu)}}{2} \\
-16 \sqrt[3]{2} \cdot \sqrt[12]{\alpha \beta(1-\alpha)(1-\beta)} \cdot \frac{1+\sqrt[4]{\alpha /}+\sqrt[4]{(4-\alpha)(1-\alpha)}}{2}
\end{array}\right.
\]
\[
-10 \sqrt[3]{4} \cdot \sqrt[6]{4 \beta(1-\alpha)(1-\lambda)}\}
\]
\(11+12\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-12\left(\left(\left(\left(23^{*} 2^{\wedge} 46\right) /\left(1-2^{\wedge} 46\right)+\left(46^{*} 2^{\wedge} 92\right) /(1-\right.\right.\right.\) \(\left.\left.2^{\wedge} 92\right)\right)\) ))

\section*{Input:}
\(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\)

\section*{Exact result:}

263235569953644556439442644011

\section*{Decimal approximation:}
797.4000000000039221959013959202392769638452537006676432338
797.4...

\section*{Alternate form:}

263235569953644556439442644011
330117343809434739973099793

\section*{Mixed fraction:}
\(797 \frac{132046937525068680882108990}{330117343809434739973099793}\)
Continued fraction:

\(2\left(\left(11+12\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-12\left(\left(\left(\left(23^{*} 2^{\wedge} 46\right) /\left(1-2^{\wedge} 46\right)+\left(46 * 2^{\wedge} 92\right) /(1-\right.\right.\right.\right.\right.\) \(\left.\left.\left.2^{\wedge} 92\right)\right)\right)\) )) \()+123+11\)

Where 123 and 11 are Lucas numbers

\section*{Input:}
\(2\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+123+11\)

\section*{Exact result:}

570706863977753368035280660284
330117343809434739973099793

\section*{Decimal approximation:}
1728.800000000007844391802791840478553927690507401335286467...
1728.8...

This result is very near to the mass of candidate glueball \(\mathrm{f}_{0}(1710)\) meson. Furthermore, 1728 occurs in the algebraic formula for the \(j\)-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

\section*{Alternate form:}

570706863977753368035280660284
330117343809434739973099793

\section*{Mixed fraction:}
\(1728 \frac{264093875050137361764217980}{330117343809434739973099793}\)

\section*{Continued fraction:}

\(\left((11+12)\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-12\left(\left(\left(23^{*} 2^{\wedge} 46\right) /\left(1-2^{\wedge} 46\right)+\left(46^{*} 2^{\wedge} 92\right) /(1-\right.\right.\) \(\left.\left.\left.2^{\wedge} 92\right)\right)\right)\) )) \()-18+\) Pi

Where 18 is a Lucas number

\section*{Input:}
\(\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi\)

\section*{Result:}

257293457765074731119926847737

\section*{Decimal approximation:}
782.5415926535937154343640393035187798480424231000427490548
\(782.541592 \ldots\) result practically equal to the rest mass of Omega meson 782.65

\section*{Property:}
\(\frac{257293457765074731119926847737}{330117343809434739973099793}+\pi\) is a transcendental number

\section*{Alternate forms:}
\(257293457765074731119926847737+330117343809434739973099793 \pi\) 330117343809434739973099793
\(257293457765074731119926847737+330117343809434739973099793 \pi\) 330117343809434739973099793

\section*{Continued fraction:}


\section*{Alternative representations:}
\[
\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi=
\]
\[
-7+180^{\circ}+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)
\]
\[
\begin{aligned}
& \left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi= \\
& -7-i \log (-1)+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right) \\
& \left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi= \\
& -7+\cos ^{-1}(-1)+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi= \\
& \frac{257293457765074731119926847737}{330117343809434739973099793}+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi= \\
& \frac{257293457765074731119926847737}{330117343809434739973099793}+ \\
& \sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k} \\
& \left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi= \\
& \frac{257293457765074731119926847737}{330117343809434739973099793}+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\end{aligned}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& \left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi= \\
& \frac{257293457765074731119926847737}{330117343809434739973099793}+4 \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi= \\
& \frac{257293457765074731119926847737}{330117343809434739973099793}+2 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
\end{aligned}
\]
\[
\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-18+\pi=
\]
\[
\frac{257293457765074731119926847737}{330117343809434739973099793}+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\]
\(1 / 6\left(\left(11+12\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-12\left(\left(\left(\left(23^{*} 2^{\wedge} 46\right) /(1-\right.\right.\right.\right.\right.\) \(\left.\left.\left.\left.\left.\left.2^{\wedge} 46\right)+\left(46^{*} 2^{\wedge} 92\right) /\left(1-2^{\wedge} 92\right)\right)\right)\right)\right)\right)+2 \mathrm{Pi}+1 /\) golden ratio

\section*{Input:}
\(\frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}\)

\section*{Result:}
\(\frac{1}{\phi}+\frac{263235569953644556439442644011}{1980704062856608439838598758}+2 \pi\)

\section*{Decimal approximation:}
139.8012192959301350244467729209645233800888569286672483763 .
\(139.80121929 \ldots\) result practically equal to the rest mass of Pion meson 139.57 MeV

\section*{Property:}
\(\frac{263235569953644556439442644011}{1980704062856608439838598758}+\frac{1}{\phi}+2 \pi\) is a transcendental number

\section*{Alternate forms:}
(262245217922216252219523344632 + \(990352031428304219919299379 \sqrt{5}+\) \(3961408125713216879677197516 \pi\) )/ 1980704062856608439838598758
\[
\begin{aligned}
& (263235569953644556439442644011 \phi+ \\
& 3961408125713216879677197516 \pi \phi+ \\
& 1980704062856608439838598758) / \\
& (1980704062856608439838598758 \phi) \\
& \frac{263235569953644556439442644011}{1980704062856608439838598758}+\frac{2}{1+\sqrt{5}}+2 \pi
\end{aligned}
\]

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}= \\
& 2 \pi+-\frac{1}{2 \cos \left(216^{\circ}\right)}+\frac{1}{6}\left(11+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)
\end{aligned}
\]
\[
\frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}=
\]
\[
360^{\circ}+-\frac{1}{2 \cos \left(216^{\circ}\right)}+\frac{1}{6}\left(11+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)
\]
\[
\begin{aligned}
& \frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}= \\
& 2 \pi+\frac{1}{2 \cos \left(\frac{\pi}{5}\right)}+\frac{1}{6}\left(11+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{gathered}
\frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}= \\
\frac{263235569953644556439442644011}{1980704062856608439838598758}+\frac{1}{\phi}+8 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
\end{gathered}
\]
\[
\begin{aligned}
& \frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}= \\
& \frac{263235569953644556439442644011}{1980704062856608439838598758}+ \\
& \frac{1}{\phi}+\sum_{k=0}^{\infty}-\frac{8(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}
\end{aligned}
\]
\[
\frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}=
\]
\[
\frac{263235569953644556439442644011}{1980704062856608439838598758}+
\]
\[
\frac{1}{\phi}+2 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\]

\section*{Integral representations:}
\[
\begin{aligned}
& \frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}= \\
& \frac{263235569953644556439442644011}{1980704062856608439838598758}+\frac{1}{\phi}+8 \int_{0}^{1} \sqrt[1]{1-t^{2}} d t
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}= \\
& \frac{263235569953644556439442644011}{1980704062856608439838598758}+\frac{1}{\phi}+4 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
\end{aligned}
\]
\[
\frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi+\frac{1}{\phi}=
\]
\[
\frac{263235569953644556439442644011}{1980704062856608439838598758}+\frac{1}{\phi}+4 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\]
\(1 / 6\left(\left(11+12\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-12\left(\left(\left(\left(23^{*} 2^{\wedge} 46\right) /(1-\right.\right.\right.\right.\right.\) \(\left.\left.\left.\left.\left.\left.2^{\wedge} 46\right)+\left(46^{*} 2^{\wedge} 92\right) /\left(1-2^{\wedge} 92\right)\right)\right)\right)\right)\right)-7-1 /\) golden ratio
where 7 is a Lucas number

\section*{Input:}
\(\frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-7-\frac{1}{\phi}\)

\section*{Result:}
\[
\frac{249370641513648297360572452705}{1980704062856608439838598758}-\frac{1}{\phi}
\]

\section*{Decimal approximation:}
125.2819660112507588511123124856742413762538997703055110101...
\(125.281966 \ldots\) result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18 GeV

\section*{Alternate forms:}

\section*{\(249370641513648297360572452705 \phi-1980704062856608439838598758\)}
\(1980704062856608439838598758 \phi\)

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-7-\frac{1}{\phi}= \\
& -7+\frac{1}{6}\left(11+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-\frac{1}{2 \sin \left(54^{\circ}\right)}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-7-\frac{1}{\phi}= \\
& -7--\frac{1}{2 \cos \left(216^{\circ}\right)}+\frac{1}{6}\left(11+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)
\end{aligned}
\]
\[
\frac{1}{6}\left(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-7-\frac{1}{\phi}=
\]
\[
-7+\frac{1}{6}\left(11+12\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)--\frac{1}{2 \sin \left(666^{\circ}\right)}
\]
\(1 / 10^{\wedge} 52\left(\left(\left(\left(1+1 /\left(\left(11+12\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-12\left(\left(\left(\left(23^{*} 2^{\wedge} 46\right) /(1-\right.\right.\right.\right.\right.\right.\right.\right.\right.\) \(\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 46\right)+\left(46^{*} 2^{\wedge} 92\right) /\left(1-2^{\wedge} 92\right)\right)\right)\right)\right)\right)+(76+29) / 10^{\wedge} 3-7 / 10^{\wedge} 4\right)\right)\right)\right)\)
where 7, 29 and 76 are Lucas numbers

\section*{Input:}
\[
\frac{1}{10^{52}}\left(1+\frac{1}{11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{462^{92}}{1-2^{92}}\right)}+\frac{76+29}{10^{3}}-\frac{7}{10^{4}}\right)
\]

\section*{Exact result:}

\section*{Decimal approximation:}
\(1.1055540757461750628057051019715804684585174184916532 \ldots \times 10^{-52}\)
\(1.105554075 \ldots * 10^{-52}\) result practically equal to the value of Cosmological Constant \(1.1056 * 10^{-52} \mathrm{~m}^{-2}\)

\section*{Alternate form:}
```

2910211572436191184160496115743473/
263235569953644556439442644011000000000000000000000000000000:
000000000000000000000000000

```

Or:
\(1 / 10^{\wedge} 52\left(\left(\left(\left(\left(11+12\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-12\left(\left(\left(\left(23^{*} 2^{\wedge} 46\right) /(1-\right.\right.\right.\right.\right.\right.\right.\right.\) \(\left.\left.\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 46\right)+\left(46^{*} 2^{\wedge} 92\right) /\left(1-2^{\wedge} 92\right)\right)\right)\right)\right)\right)^{\wedge} 1 /(76-11)-26 / 10^{\wedge} 4\right)\right)\right)\)

\section*{Input:}
\[
\frac{1}{10^{52}}\left(\sqrt[76-11]{11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)}-\frac{26}{10^{4}}\right)
\]

\section*{Result:}
\[
\sqrt[65]{\frac{263235560953644556439442644011}{330117343809434739973090973}}-\frac{13}{5000}
\]

10000000000000000000000000000000000000000000000000000

\section*{Decimal approximation:}
\(1.1056587600373385535582711646108932935595666539265738 \ldots \times 10^{-52}\)
\(1.10565876 \ldots * 10^{-52}\) result practically equal to the value of Cosmological Constant \(1.1056 * 10^{-52} \mathrm{~m}^{-2}\)

\section*{Alternate forms:}
(5000 \(330117343809434739973099793^{64 / 65}\)
 4291525469522651619650297309 )/
16505867190471736998654989650000000000000000000000000000000 : 000000000000000000000000


\section*{Input:}
\(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\)

\section*{Exact result:}

1093742054024961387511299
5037190915060954894609

\section*{Decimal approximation:}
217.1333333336098197226753210725341023125581586079271315974...
217.13333....

\section*{Alternate form:}

1093742054024961387511299
5037190915060954894609

\section*{Mixed fraction:}
\(217 \frac{671625456734175381146}{5037190915060954894609}\)

\section*{Continued fraction:}

\(3+4\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-4\left(\left(\left(\left(19^{*} 2^{\wedge} 38\right) /\left(1-2^{\wedge} 38\right)+\left(38^{*} 2^{\wedge} 76\right) /\left(1-2^{\wedge} 76\right)\right)\right)\right)\)
- 76 - golden ratio

Where 76 is a Lucas number

\section*{Input:}
\[
3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-76-\phi
\]

\section*{Result:}
\(\frac{710915544480328815521015}{5037190915060954894609}-\phi\)

\section*{Decimal approximation:}
139.5152993448599248744707342381684641948378494281213687353
\(139.515299 . .\). result practically equal to the rest mass of Pion meson 139.57 MeV

\section*{Alternate forms:}
\(\frac{1416793898045596676147421-5037190915060954894609 \sqrt{5}}{10074381830121909789218}\)
\(710915544480328815521015-5037190915060954894609 \phi\)
5037190915060954894609
\[
\frac{1416793898045596676147421}{10074381830121909789218}-\frac{\sqrt{5}}{2}
\]

\section*{Alternative representations:}
\[
\begin{aligned}
& 3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-76-\phi= \\
& -73+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-2 \sin \left(54^{\circ}\right)
\end{aligned}
\]
\[
3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-76-\phi=
\]
\[
-73+2 \cos \left(216^{\circ}\right)+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)
\]
\[
\begin{aligned}
& 3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-76-\phi= \\
& -73+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)+2 \sin \left(666^{\circ}\right)
\end{aligned}
\]
\(3+4\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-4\left(\left(\left(\left(19 * 2^{\wedge} 38\right) /\left(1-2^{\wedge} 38\right)+\left(38^{*} 2^{\wedge} 76\right) /\left(1-2^{\wedge} 76\right)\right)\right)\right)\) - 89 - golden ratio \({ }^{\wedge} 2\)

\section*{Input:}
\(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-89-\phi^{2}\)

\section*{Result:}
\(\frac{645432062584536401891098}{5037190915060954894609}-\phi^{2}\)

\section*{Decimal approximation:}
125.5152993448599248744707342381684641948378494281213687353...
\(125.515299 \ldots\) result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18 GeV

\section*{Alternate forms:}

\section*{\(1275752552423889939098369-5037190915060954894609 \sqrt{5}\) 10074381830121909789218}
\(\frac{1275752552423889939098369}{10074381830121909789218}-\frac{\sqrt{5}}{2}\)
\(645432062584536401891098-5037190915060954894609 \phi^{2}\)
5037190915060954894609

\section*{Alternative representations:}
\[
\begin{aligned}
& 3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-89-\phi^{2}= \\
& -86+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-\left(2 \sin \left(54^{\circ}\right)\right)^{2}
\end{aligned}
\]
\[
\begin{aligned}
& 3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-89-\phi^{2}= \\
& -86-\left(-2 \cos \left(216^{\circ}\right)\right)^{2}+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)
\end{aligned}
\]
\[
\begin{aligned}
3 & +4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-89-\phi^{2}= \\
& -86+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)-\left(-2 \sin \left(666^{\circ}\right)\right)^{2}
\end{aligned}
\]
\(8^{*}\left(\left(\left(3+4\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-4\left(\left(\left(\left(19^{*} 2^{\wedge} 38\right) /\left(1-2^{\wedge} 38\right)+\left(38^{*} 2^{\wedge} 76\right) /(1-\right.\right.\right.\right.\right.\right.\) \(\left.\left.2^{\wedge} 76\right)\right)\) )) )) )- 8

Where 8 is a Fibonacci number

\section*{Input:}
\(8\left(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right)-8\)

\section*{Exact result:}

8709638904879203460933520
```

 5037190915060954894609
    ```

\section*{Decimal approximation:}
1729.066666668878557781402568580272818500465268863417052779...
1729.066...

This result is very near to the mass of candidate glueball \(\mathrm{f}_{0}(1710)\) meson. Furthermore, 1728 occurs in the algebraic formula for the \(j\)-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

\section*{Alternate form:}
\(\frac{8709638904879203460933520}{5037190915060954894609}\)
\(2^{*}\left(\left(\left(3+4\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-4\left(\left(\left(\left(19^{*} 2^{\wedge} 38\right) /\left(1-2^{\wedge} 38\right)+\left(38^{*} 2^{\wedge} 76\right) /(1-\right.\right.\right.\right.\right.\right.\) \(\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 76\right)\right)\right)\right)\right)\right)\right)+47+\) golden ratio

Where 47 is a Lucas number

\section*{Input: \\ \(2\left(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right)+47+\phi\)}

\section*{Result:}
\[
\phi+\frac{2424232081057787655069221}{5037190915060954894609}
\]

\section*{Decimal approximation:}
\(482.8847006559695342935552289794338427428366263956600260571 \ldots\)
482.8847006... result very near to Holographic Ricci dark energy model, where
\[
\chi_{\mathrm{RDE}}^{2}=483.130 .
\]

\section*{Alternate forms:}
\(4853501353030636265033051+5037190915060954894609 \sqrt{5}\) 10074381830121909789218
\(5037190915060954894609 \phi+2424232081057787655069221\)
5037190915060954894609
\[
\frac{4853501353030636265033051}{10074381830121909789218}+\frac{\sqrt{5}}{2}
\]

\section*{Alternative representations:}
\[
\begin{aligned}
& 2\left(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right)+47+\phi= \\
& 47+2\left(3+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right)+2 \sin \left(54^{\circ}\right) \\
& 2\left(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right)+47+\phi= \\
& 47-2 \cos \left(216^{\circ}\right)+2\left(3+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right) \\
& 2\left(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right)+47+\phi= \\
& 47+2\left(3+4\left(-\frac{4}{3}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right)-2 \sin \left(666^{\circ}\right)
\end{aligned}
\]

We observe also that from the sum of the two results, adding 5 that is a Fibonacci number, we obtain:
\[
\begin{aligned}
& 11+12\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-12\left(\left(\left(\left(23^{*} 2^{\wedge} 46\right) /\left(1-2^{\wedge} 46\right)+\left(46^{*} 2^{\wedge} 92\right) /(1-\right.\right.\right. \\
& \left.\left.\left.\left.2^{\wedge} 92\right)\right)\right)\right)+\left(\left(\left(3+4\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)-4\left(\left(\left(\left(19^{*} 2^{\wedge} 38\right) /(1-\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.2^{\wedge} 38\right)+\left(38^{*} 2^{\wedge} 76\right) /\left(1-2^{\wedge} 76\right)\right)\right)\right)\right)\right)\right)+5
\end{aligned}
\]

\section*{Input:}
\(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)+\)
\[
\left(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{19 \times 2^{38}}{1-2^{38}}+\frac{38 \times 2^{76}}{1-2^{76}}\right)\right)+5
\]

\section*{Exact result:}

1695345363604491043436883743614143568419476425677491
1662864085140938431378392734842904212377354715937

\section*{Decimal approximation:}
1019.533333333613741918576716992773379276403412308594774831...
1019.5333 ... result practically equal to the rest mass of Phi meson 1019.445

\section*{Alternate form:}

1695345363604491043436883743614143568419476425677491
1662864085140938431378392734842904212377354715937

\section*{Mixed fraction:}
\(1019 \frac{886860845874781862301546809224176006951970137688}{1662864085140938431378392734842904212377354715937}\)

\section*{Continued fraction:}


Page 311

\[
\begin{aligned}
& 1+1 / 2\left(\frac{x^{2}}{1-x^{2}}+\frac{2 x^{6}}{1-x^{2}}+k c^{2}\right)-12\left(\frac{15 v^{2}}{1-x^{10}}+1-x^{6}+2<c\right)
\end{aligned}
\]
\[
\begin{aligned}
& 5+4\left(\frac{x^{2}}{1-x^{2}}+\frac{2 x^{6}}{1-24}+k\right)-4\left(\frac{31 x^{62}}{1-x^{62}}+\frac{62 x^{126}}{1-x^{174}}+k\right) \\
& =\phi^{2}(x) \phi 4(x+1)\{s=1+\sqrt{\alpha A} \pm \sqrt{(\alpha)(-a)}-6 \sqrt[8]{\alpha \beta(1-\alpha)(1-\mu)}(1+\sqrt[8]{\alpha+\sqrt{2}(\alpha x)} \\
& -4 \sqrt[6]{\alpha \beta(1-\alpha)(1-\beta)} \sqrt{1+\sqrt{2} \alpha+\sqrt{(1-\alpha)(1-n)}}(1+\sqrt[5]{\alpha}+\sqrt[4]{1+\alpha}) \\
& 1+6\left(\frac{x^{2}}{1 x^{2}}+\frac{2 x^{6}}{x^{6} x^{6}}+\infty\right)-6\left(\frac{1 x^{10}}{1 x^{10}}+\frac{10 x^{20}}{1 x^{20}}+4\right) \\
& =\phi^{2}(x) \phi^{2}\left(x^{5}\right) \sqrt{\frac{1+\sqrt{d s}+\sqrt{1 \alpha \cdot 1 \Delta}}{2}}\left\{\begin{array}{l}
1+\sqrt{d \rho}+\sqrt{2} \\
2
\end{array}\right. \\
& \left.=\phi^{2}(x) \phi^{2}(x) \int 1+\sqrt{\alpha \pi}+\sqrt{(x-x)} \sqrt{1}-\bar{a}\right) \\
& =\phi^{2}(x) \phi^{2}(\hat{x}) \sqrt{\frac{1+\alpha+\frac{1-x-A)}{2}}{2}-\frac{3}{\sqrt[3]{4}} \frac{\sqrt[3]{\alpha \beta(1-\alpha)(1-\alpha)}}{x(-x)}}
\end{aligned}
\]

Now, we have that:
\(11+12\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)\right)-12\left(\left(\left(15^{*} 2^{\wedge} 10\right) /\left(1-2^{\wedge} 10\right)\right)+\left(30^{*} 2^{\wedge} 20\right) /(1-\right.\) \(\left.2^{\wedge} 20\right)\) )

Input:
\(11+12\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-12\left(\frac{15 \times 2^{10}}{1-2^{10}}+\frac{30 \times 2^{20}}{1-2^{20}}\right)\)

\section*{Exact result:}
\(\frac{35621931}{69905}\)

\section*{Decimal approximation:}
509.5762964022602102853873113511193762964022602102853873113...
509.5762964...

\section*{Mixed fraction:}
\(509 \frac{40286}{69905}\)

Continued fraction:

\(5+4\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)\right)-4\left(\left(\left(31 * 2^{\wedge} 62\right) /\left(1-2^{\wedge} 62\right)\right)+\left(62^{*} 2^{\wedge} 124\right) /(1-\right.\) \(\left.2^{\wedge} 124\right)\) )

\section*{Input:}
\(5+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-4\left(\frac{31 \times 2^{62}}{1-2^{62}}+\frac{62 \times 2^{124}}{1-2^{124}}\right)\)

\section*{Exact result:}

514866125727319947395068128497011253285
1417843195503910264430727530965700881

\section*{Decimal approximation:}
363.1333333333333333602215472109738433142095187351435258965...
363.1333...

\section*{Alternate form:}

514866125727319947395068128497011253285
1417843195503910264430727530965700881

\section*{Mixed fraction:}
\(363 \frac{189045759400521406714034756461833482}{1417843195503910264430727530965700881}\)

\section*{Continued fraction:}

\(1+6\left(\left(\left(2^{\wedge} 2 /\left(1-2^{\wedge} 2\right)\right)+\left(\left(2^{*} 2^{\wedge} 4\right) /\left(1-2^{\wedge} 4\right)\right)\right)\right)-6\left(\left(\left(5^{*} 2^{\wedge} 10\right) /\left(1-2^{\wedge} 10\right)\right)+\left(10^{*} 2^{\wedge} 20\right) /\left(1-2^{\wedge} 20\right)\right)\)

\section*{Input:}
\(1+6\left(\frac{2^{2}}{1-2^{2}}+\frac{2 \times 2^{4}}{1-2^{4}}\right)-6\left(\frac{5 \times 2^{10}}{1-2^{10}}+\frac{10 \times 2^{20}}{1-2^{20}}\right)\)

\section*{Exact result:}
\(\frac{981877}{13981}\)

\section*{Decimal approximation:}
70.22938273371003504756455189185322938273371003504756455189
70.2293827...

\section*{Mixed fraction:}
\(70 \frac{3207}{13981}\)

Continued fraction:


We observe that, from the sum of the three results:
\(35621931 / 69905+514866125727319947395068128497011253285 / 14178431955039\) 10264430727530965700881+981877/13981

We obtain:
\((35621931 / 69905)+(514866125727319947395068128497011253285 / 141784319550\) \(3910264430727530965700881)+(981877 / 13981)-4\)

Where 4 is a Lucas number

\section*{Input:}
\[
\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}-4
\]

\section*{Exact result:}

93062309800060263697797495157845549949832101 99114328581700847035030008052157320086305

\section*{Decimal approximation:}
938.9390124693035786931734104539464489933454889804764777597...
\(938.93901246 \ldots\) result practically equal to the rest mass of neutron mass in MeV

2*((((35621931/69905)+(514866125727319947395068128497011253285/14178431 \(95503910264430727530965700881)+(981877 / 13981))))\)-123-29-Pi-golden ratio

Where 123 and 29 are Lucas numbers

> Input:
> \(2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{141784319550391026443072753095700881}+\frac{981877}{13981}\right)-\) \(123-29-\pi-\phi\)

\section*{Result:}
\(-\phi+\frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305}-\pi\)

\section*{Decimal approximation:}
1729.118398296267469299679590690247756984773499381772086836...
1729.118398...

This result is very near to the mass of candidate glueball \(\mathrm{f}_{0}(1710)\) meson. Furthermore, 1728 occurs in the algebraic formula for the \(j\)-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

\section*{Property:}
\(\frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305}-\phi-\pi\)
is a transcendental number

\section*{Alternate forms:}
(343605198240129509998066308304308734294386259\(99114328581700847035030008052157320086305 \sqrt{5}\) \(198228657163401694070060016104314640172610 \pi\) )/ 198228657163401694070060016104314640172610
(-99 \(114328581700847035030008052157320086305 \phi+\) 171852156284355605422550669156180445807236282 99114328581700847035030008052157320086305 л)/
99114328581700847035030008052157320086305
\[
\frac{343605198240129509998066308304308734294386259}{198228657163401694070060016104314640172610}-\frac{\sqrt{5}}{2}-\pi
\]

\section*{Alternative representations:}
\[
\begin{aligned}
& 2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& \quad 123-29-\pi-\phi=-152-\pi+2 \cos \left(216^{\circ}\right)+ \\
& \quad 2\left(\frac{981877}{13981}+\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)
\end{aligned}
\]
\[
2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)-
\]
\[
123-29-\pi-\phi=-152-180^{\circ}+2 \cos \left(216^{\circ}\right)+
\]
\[
2\left(\frac{981877}{13981}+\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)
\]
\[
2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)-
\]
\[
123-29-\pi-\phi=-152-\pi-2 \cos \left(\frac{\pi}{5}\right)+
\]
\[
2\left(\frac{981877}{13981}+\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)
\]

\section*{Series representations:}
\[
\begin{aligned}
& 2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& 123-29-\pi-\phi= \\
& \frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305}-\phi-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& 2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& 123-29-\pi-\phi= \\
& \frac{17852156284355605422550669156180445807236282}{9911432858170084735030008052157320086305}- \\
& \phi+\sum_{k=0}^{\infty} \frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}
\end{aligned}
\]
\[
\begin{aligned}
& 2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& 123-29-\pi-\phi= \\
& \frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305}- \\
& \quad \phi-\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\end{aligned}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& 2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& 123-29-\pi-\phi= \\
& \frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305}- \\
& \phi-4 \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& 2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& 123-29-\pi-\phi= \\
& \frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305}- \\
& \phi-2 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
\end{aligned}
\]
\[
2\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)-
\]
\[
123-29-\pi-\phi=
\]

171852156284355605422550669156180445807236282
\(99114328581700847035030008052157320086305-\phi-2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\)

1/7((()35621931/69905)+(514866125727319947395068128497011253285/14178431 \(95503910264430727530965700881)+(981877 / 13981))))+5\)

\section*{Input:}
\(\frac{1}{7}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)+5\)

\section*{Exact result:}

96927768614746596732163665471879685433197996
```

 693800300071905929245210056365101240604135
    ```

\section*{Decimal approximation:}
139.7055732099005112418819157791352069990493555686394968228.
\(139.705573 \ldots\) result practically equal to the rest mass of Pion meson 139.57 MeV

\section*{Mixed fraction:}
\(139 \frac{489526904751672567079467637130612989223231}{693800300071905929245210056365101240604135}\)

Continued fraction:


1/7((()35621931/69905)+(514866125727319947395068128497011253285/14178431 \(95503910264430727530965700881)+(981877 / 13981))))-11+\) golden ratio

Where 11 is a Lucas number

\section*{Input:}
\[
\begin{aligned}
& \frac{1}{7}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& 11+\phi
\end{aligned}
\]

\section*{Result:}

85826963813596101864240304570038065583531836
\(\phi+\frac{693800300071905929245210056365101240604135}{}\)

\section*{Decimal approximation:}
\(125.3236071986504060900865026135008451167696647484452596849 \ldots\)
125.323607... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18 GeV

\section*{Alternate forms:}
\(172347727927264109657725819196441232407667807+\)
\(693800300071905929245210056365101240604135 \sqrt{5}) /\)
1387600600143811858490420112730202481208270
(693800 \(300071905929245210056365101240604135 \phi+\) 85826963813596101864240304570038065583531 836)/ 693800300071905929245210056365101240604135
\(\frac{172347727927264109657725819196441232407667807}{1387600600143811858490420112730202481208270}+\frac{\sqrt{5}}{2}\)

\section*{Alternative representations:}
\(\frac{1}{7}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)-\)
\(11+\phi=-11+\frac{1}{7}\left(\frac{981877}{13981}+\frac{35621931}{69905}+\right.\) \(\left.\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)+2 \sin \left(54^{\circ}\right)\)
\(\frac{1}{7}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)-\)
\(11+\phi=-11-2 \cos \left(216^{\circ}\right)+\frac{1}{7}\left(\frac{981877}{13981}+\frac{35621931}{69905}+\right.\) \(\left.\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)\)
\(\frac{1}{7}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)-\)
\(11+\phi=-11+\frac{1}{7}\left(\frac{981877}{13981}+\frac{35621931}{69905}+\right.\) \(\left.\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)-2 \sin \left(666^{\circ}\right)\)

1/2((((35621931/69905)+(514866125727319947395068128497011253285/14178431 \(95503910264430727530965700881)+(981877 / 13981))))-7-1 /\) golden ratio

Where 7 is a Lucas number
```

Input:
$\frac{1}{2}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)-$
$7-\frac{1}{\phi}$

```

\section*{Result:}
\(\frac{92071166514243255227447195077323976748969051}{198228657163401694070060016104314640172610}-\frac{1}{\phi}\)

\section*{Decimal approximation:}
463.8514722459018944983821183926075863789524353104324760177...
463.8514722459... result very near to Holographic Dark Energy model, where
\[
\chi_{\mathrm{HDE}}^{2}=465.912 .
\]

\section*{Alternate forms:}
(92170280842824956 074482225085376134069055356 \(99114328581700847035030008052157320086305 \sqrt{5}) /\) 198228657163401694070060016104314640172610
-((19822865716340169407006001610431464017261092071166514243255227447195077323976748969051 ф)/ (198228657163401694070060016104314640172610 ф))
(92071166514243255 \(227447195077323976748969051 \phi-\)
198228657163401694070060016104314640172610 )/ (198228657163401694070060016104314640172610 ф)

\section*{Alternative representations:}
\[
\begin{aligned}
& \frac{1}{2}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& 7-\frac{1}{\phi}=-7+\frac{1}{2}\left(\frac{981877}{13981}+\frac{35621931}{69905}+\right. \\
& \left.\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)-\frac{1}{2 \sin \left(54^{\circ}\right)}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{2}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)- \\
& 7-\frac{1}{\phi}=-7+\frac{1}{2}\left(\frac{981877}{13981}+\frac{35621931}{69905}+\right. \\
& \left.\quad \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)--\frac{1}{2 \cos \left(216^{\circ}\right)}
\end{aligned}
\]
\[
\frac{1}{2}\left(\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}\right)-
\]
\[
7-\frac{1}{\phi}=-7+\frac{1}{2}\left(\frac{981877}{13981}+\frac{35621931}{69905}+\right.
\]
\[
\left.\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)--\frac{1}{2 \sin \left(666^{\circ}\right)}
\]

And:
1/10^52((((1+1/((()35621931/69905)+(5148661257273199473950681284970112532
\(85 / 1417843195503910264430727530965700881)+(981877 / 13981))))+(7+3) / 10 \wedge 2+(\) 47-2)/10^4))))

Where 2, 3, 7 and 47 are Lucas numbers

\section*{Input:}
\[
\begin{aligned}
& \frac{1}{10^{52}} \\
& \left(1+\frac{1}{\frac{35621931}{69905}+\frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}+\frac{981877}{13981}}+\frac{7+3}{10^{2}}+\frac{47-2}{10^{4}}\right)
\end{aligned}
\]

\section*{Exact result:}

206648645212844432886906251970933996559634312089 / 1869175342287741341718752303801083584603546420000000000000 : 000000000000000000000000000000000000000000

\section*{Decimal approximation:}
\(1.1055605139746856682141664262726504850514268403606160 \ldots \times 10^{-52}\)
\(1.1055605 \ldots * 10^{-52}\) result practically equal to the value of Cosmological Constant \(1.1056 * 10^{-52} \mathrm{~m}^{-2}\)

\section*{Alternate form:}

206648645212844432886906251970933996559634312089 / 1869175342287741341718752303801083584603546420000000000000 : 000000000000000000000000000000000000000000

\section*{Continued fraction:}
\(9045185562975861517070790391337765558947244523684128+\frac{1}{3}\)

Page 324

integrate \(\left[\ln \left(1+x^{\wedge} 2\right) \cos 2 x\right] d x-P i / 2 * e^{\wedge}(-2)\)

\section*{Input:}
\(\int \log \left(1+x^{2}\right) \cos (2 x) d x-\frac{\frac{\pi}{2}}{e^{2}}\)

\section*{Exact result:}
\[
\begin{aligned}
& -\frac{\pi}{2 e^{2}}+ \\
& \frac{1}{4 e^{2}}\left(-i\left(e^{4}-1\right) \mathrm{Ci}(2 i-2 x)+i\left(e^{4}-1\right) \mathrm{Ci}(2 x+2 i)+e^{4} \operatorname{Si}(2 i-2 x)+\operatorname{Si}(2 i-2 x)-\right. \\
& \left.\quad e^{4} \operatorname{Si}(2 x+2 i)-\operatorname{Si}(2 x+2 i)+2 e^{2} \log \left(x^{2}+1\right) \sin (2 x)\right)
\end{aligned}
\]

\section*{Plots:}



\section*{Series expansion of the integral at \(\mathrm{x}=0\) :}
\(-\frac{\pi}{2 e^{2}}+\frac{x^{3}}{3}-\frac{x^{5}}{2}+\frac{2 x^{7}}{7}+O\left(x^{9}\right)\)
(Taylor series)

\section*{Series expansion of the integral at \(\mathbf{x}=-\mathbf{i}\) :}
\[
\begin{aligned}
& \frac{1}{4 e^{2}} i\left(-e^{4} \operatorname{Ci}(4 i)+\operatorname{Ci}(4 i)+e^{4} \operatorname{Shi}(4)+\operatorname{Shi}(4)-\right. \\
& \left.\quad\left(e^{4}-1\right) \log (1-i x)+\left(e^{4}-1\right) \log (x+i)+2 i \pi+e^{4} \gamma-\gamma\right)+ \\
& \frac{\left(1+e^{4}\right)(x+i)(-1+\log (2-2 i x))}{2 e^{2}}+\frac{i(x+i)^{2}\left(4\left(e^{4}-1\right) \log (2-2 i x)-e^{4}+3\right)}{8 e^{2}}+ \\
& \frac{(x+i)^{3}\left(-48\left(1+e^{4}\right) \log (2-2 i x)-5 e^{4}+43\right)}{144 e^{2}}+O\left((x+i)^{4}\right) \\
& \text { (generalized Puiseux series) }
\end{aligned}
\]

\section*{Series expansion of the integral at \(x=i\) :}
\(\frac{1}{2 e^{2}}\)
\[
\begin{gathered}
\left(\left(-\frac{1}{2} i\left(-e^{4} \log (i x+1)+\log (2 i x+2)+e^{4} \log (x-i)-\log (2(x-i))+e^{4} \operatorname{Shi}(4)+\operatorname{Shi}(4)-\right.\right.\right. \\
\left.e^{4} \mathrm{Ci}(4 i)+\mathrm{Ci}(4 i)+i e^{4} \pi-3 i \pi+e^{4} \gamma-\gamma\right)+\left(1+e^{4}\right) \\
(\log (2 i x+2)-1)(x-i)-\frac{1}{4} i\left(4\left(-1+e^{4}\right) \log (2 i x+2)-e^{4}+3\right)(x-i)^{2}+ \\
\left.\frac{1}{72}\left(-48\left(1+e^{4}\right) \log (2 i x+2)-5 e^{4}+43\right)(x-i)^{3}+O\left((x-i)^{4}\right)\right)+ \\
\left.\pi\left\lceil\frac{\arg (x-i)}{2 \pi}\right\rceil+e^{4} \pi\left\lceil-\frac{\arg (x-i)}{2 \pi}\right]\right)
\end{gathered}
\]

\section*{Series expansion of the integral at \(x=\infty\) :}
\(\sin (2 x)\left(\log (x)+\frac{1}{2 x^{2}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+\)
\[
\left(-\frac{i\left(-8 i \pi-2 \log (2)+2 e^{4} \log (2)+\log (4)-e^{4} \log (4)\right)}{8 e^{2}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\sinh (2-2 i x)\left(\frac{i}{16 e^{2} x^{2}}+\frac{1}{8 e^{2} x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\sinh (2-2 i x)\left(\frac{i e^{2}}{16 x^{2}}+\frac{e^{2}}{8 x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\sinh (2-2 i x)\left(\frac{1}{8 e^{2} x}-\frac{i}{8 e^{2} x^{2}}-\frac{3}{16 e^{2} x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\sinh (2-2 i x)\left(-\frac{e^{2}}{8 x}+\frac{i e^{2}}{8 x^{2}}+\frac{3 e^{2}}{16 x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\sinh (2+2 i x)\left(-\frac{i}{16 e^{2} x^{2}}+\frac{1}{8 e^{2} x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\sinh (2+2 i x)\left(-\frac{i e^{2}}{16 x^{2}}+\frac{e^{2}}{8 x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\sinh (2+2 i x)\left(\frac{1}{8 e^{2} x}+\frac{i}{8 e^{2} x^{2}}-\frac{3}{16 e^{2} x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\sinh (2+2 i x)\left(-\frac{e^{2}}{8 x}-\frac{i e^{2}}{8 x^{2}}+\frac{3 e^{2}}{16 x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\cosh (2+2 i x)\left(-\frac{i}{16 e^{2} x^{2}}+\frac{1}{8 e^{2} x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\cosh (2-2 i x)\left(\frac{i}{16 e^{2} x^{2}}+\frac{1}{8 e^{2} x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\cosh (2-2 i x)\left(-\frac{i e^{2}}{16 x^{2}}-\frac{e^{2}}{8 x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+\cosh (2+2 i x)\left(\frac{i e^{2}}{16 x^{2}}-\frac{e^{2}}{8 x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\cosh (2-2 i x)\left(\frac{1}{8 e^{2} x}-\frac{i}{8 e^{2} x^{2}}-\frac{3}{16 e^{2} x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\cosh (2+2 i x)\left(\frac{1}{8 e^{2} x}+\frac{i}{8 e^{2} x^{2}}-\frac{3}{16 e^{2} x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\cosh (2-2 i x)\left(\frac{e^{2}}{8 x}-\frac{i e^{2}}{8 x^{2}}-\frac{3 e^{2}}{16 x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)+
\]
\[
\cosh (2+2 i x)\left(\frac{e^{2}}{8 x}+\frac{i e^{2}}{8 x^{2}}-\frac{3 e^{2}}{16 x^{3}}+O\left(\left(\frac{1}{x}\right)^{4}\right)\right)
\]

\section*{Indefinite integral:}
\[
\begin{aligned}
& \int \log \left(1+x^{2}\right) \cos (2 x) d x-\frac{\pi}{2 e^{2}}=-\frac{\pi}{2 e^{2}}+ \\
& \qquad \begin{array}{l}
\text { constant }+\frac{1}{4 e^{2}}\left(-i\left(e^{4}-1\right) \mathrm{Ci}(2 i-2 x)+i\left(e^{4}-1\right) \mathrm{Ci}(2 x+2 i)+e^{4} \operatorname{Si}(2 i-2 x)+\right. \\
\left.\left.\operatorname{Si}(2 i-2 x)-e^{4} \operatorname{Si}(2 x+2 i)-\operatorname{Si}(2 x+2 i)+2 e^{2} \log \left(x^{2}+1\right) \sin (2 x)\right)\right)
\end{array}
\end{aligned}
\]

From
\[
\begin{aligned}
& -\frac{\pi}{2 e^{2}}+ \\
& \frac{1}{4 e^{2}}\left(-i\left(e^{4}-1\right) \mathrm{Ci}(2 i-2 x)+i\left(e^{4}-1\right) \mathrm{Ci}(2 x+2 i)+e^{4} \operatorname{Si}(2 i-2 x)+\operatorname{Si}(2 i-2 x)-\right. \\
& \left.\quad e^{4} \operatorname{Si}(2 x+2 i)-\operatorname{Si}(2 x+2 i)+2 e^{2} \log \left(x^{2}+1\right) \sin (2 x)\right)
\end{aligned}
\]

For \(\mathrm{x}=2\), we obtain:
\[
-\pi /\left(2 e^{\wedge} 2\right)+\left(-i\left(e^{\wedge} 4-1\right) \operatorname{Ci}(2 i-4)+i\left(e^{\wedge} 4-1\right) \operatorname{Ci}(4+2 i)+e^{\wedge} 4 \operatorname{Si}(2 i-4)+\operatorname{Si}(2 i-\right.
\]
\[
\text { 4) } \left.-e^{\wedge} 4 \operatorname{Si}(4+2 i)-\operatorname{Si}(4+2 i)+2 e^{\wedge} 2 \log (4+1) \sin (4)\right) /\left(4 e^{\wedge} 2\right)
\]

\section*{Input:}
\[
\begin{gathered}
-\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left(e^{4}-1\right) \mathrm{Ci}(2 i-4)+i\left(e^{4}-1\right) \mathrm{Ci}(4+2 i)+e^{4} \mathrm{Si}(2 i-4)+\right. \\
\left.\mathrm{Si}(2 i-4)-e^{4} \mathrm{Si}(4+2 i)-\mathrm{Si}(4+2 i)+2 e^{2} \log (4+1) \sin (4)\right)
\end{gathered}
\]

\section*{Exact result:}
\[
\begin{gathered}
-\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left(e^{4}-1\right) \mathrm{Ci}(-4+2 i)+i\left(e^{4}-1\right) \mathrm{Ci}(4+2 i)+\mathrm{Si}(-4+2 i)+\right. \\
\left.e^{4} \mathrm{Si}(-4+2 i)-\mathrm{Si}(4+2 i)-e^{4} \mathrm{Si}(4+2 i)+2 e^{2} \log (5) \sin (4)\right)
\end{gathered}
\]

\section*{Decimal approximation:}
-1.18321332402796601454275392981085658958037709205874608141...
-1.18321332...

\section*{Alternate forms:}
\[
\begin{aligned}
& \frac{1}{4 e^{2}}\left(e^{4}(-i \mathrm{Ci}(-4+2 i)+i \mathrm{Ci}(4+2 i)+\mathrm{Si}(-4+2 i)-\mathrm{Si}(4+2 i))+\right. \\
& \left.i \mathrm{Ci}(-4+2 i)-i \mathrm{Ci}(4+2 i)+\mathrm{Si}(-4+2 i)-\mathrm{Si}(4+2 i)-2 \pi+e^{2} \log (25) \sin (4)\right) \\
& \frac{1}{4 e^{2}}\left(i \mathrm{Ci}(-4+2 i)-i e^{4} \mathrm{Ci}(-4+2 i)-i \mathrm{Ci}(4+2 i)+i e^{4} \mathrm{Ci}(4+2 i)+\mathrm{Si}(-4+2 i)+\right. \\
& \left.e^{4} \mathrm{Si}(-4+2 i)-\mathrm{Si}(4+2 i)-e^{4} \mathrm{Si}(4+2 i)-2 \pi+2 e^{2} \log (5) \sin (4)\right) \\
& \frac{\frac{1}{4} i \mathrm{Ci}(-4+2 i)-\frac{1}{4} i \mathrm{Ci}(4+2 i)+\frac{1}{4} \mathrm{Si}(-4+2 i)-\frac{\mathrm{Si}(4+2 i)}{4}-\frac{\pi}{2}}{e^{2}}+ \\
& e^{2}\left(-\frac{1}{4} i \mathrm{Ci}(-4+2 i)+\frac{1}{4} i \mathrm{Ci}(4+2 i)+\frac{1}{4} \operatorname{Si}(-4+2 i)-\frac{\operatorname{Si}(4+2 i)}{4}\right)+\frac{1}{2} \log (5) \sin (4)
\end{aligned}
\]

\section*{Expanded form:}
\[
\begin{aligned}
& \frac{i \operatorname{Ci}(-4+2 i)}{4 e^{2}}-\frac{1}{4} i e^{2} \mathrm{Ci}(-4+2 i)-\frac{i \operatorname{Ci}(4+2 i)}{4 e^{2}}+\frac{1}{4} i e^{2} \mathrm{Ci}(4+2 i)+\frac{\operatorname{Si}(-4+2 i)}{4 e^{2}}+ \\
& \frac{1}{4} e^{2} \operatorname{Si}(-4+2 i)-\frac{\operatorname{Si}(4+2 i)}{4 e^{2}}-\frac{1}{4} e^{2} \operatorname{Si}(4+2 i)-\frac{\pi}{2 e^{2}}+\frac{1}{2} \log (5) \sin (4)
\end{aligned}
\]

\section*{Alternative representations:}
\[
\begin{gathered}
-\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left(\left(e^{4}-1\right) \operatorname{Ci}(2 i-4)\right)+i\left(e^{4}-1\right) \operatorname{Ci}(4+2 i)+e^{4} \operatorname{Si}(2 i-4)+\right. \\
-\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left((\operatorname{Chi}(i(-4+2 i))+\log (-4+2 i)-\log (i(-4+2 i)))\left(-1+e^{4}\right)\right)+\right. \\
i(\operatorname{Chi}(i(4+2 i))+\log (4+2 i)-\log (i(4+2 i)))\left(-1+e^{4}\right)+ \\
\\
\frac{2 \log (a) \log _{a}(5) e^{2}\left(-e^{-4 i}+e^{4 i}\right)}{2 i}-i \operatorname{Shi}(i(-4+2 i))- \\
\left.i\left(e^{4} \operatorname{Shi}(i(-4+2 i))\right)+i \operatorname{Shi}(i(4+2 i))+i e^{4} \operatorname{Shi}(i(4+2 i))\right)
\end{gathered}
\]
\[
\begin{gathered}
-\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left(\left(e^{4}-1\right) \operatorname{Ci}(2 i-4)\right)+i\left(e^{4}-1\right) \mathrm{Ci}(4+2 i)+e^{4} \operatorname{Si}(2 i-4)+\right. \\
\left.\operatorname{Si}(2 i-4)-e^{4} \operatorname{Si}(4+2 i)-\operatorname{Si}(4+2 i)+2 e^{2} \log (4+1) \sin (4)\right)=-\frac{\pi}{2 e^{2}}+ \\
\frac{1}{4 e^{2}}\left(-i\left(\left(\log (-4+2 i)+\frac{1}{2}(-\Gamma(0,-i(-4+2 i))-\Gamma(0, i(-4+2 i))-\log (-i(-4+2 i))-\right.\right.\right. \\
\left.\log (i(-4+2 i)))\left(-1+e^{4}\right)\right)+i(\log (4+2 i)+ \\
\left.\frac{1}{2}(-\Gamma(0,-i(4+2 i))-\Gamma(0, i(4+2 i))-\log (-i(4+2 i))-\log (i(4+2 i)))\right) \\
\left(-1+e^{4}\right)+\frac{2 \log (a) \log _{a}(5) e^{2}\left(-e^{-4 i}+e^{4 i}\right)}{2 i}-i \operatorname{Shi}(i(-4+2 i))- \\
i\left(e^{4} \operatorname{Shi}(i(-4+2 i))+i \operatorname{Shi}(i(4+2 i))+i e^{4} \operatorname{Shi}(i(4+2 i))\right) \\
-\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left(\left(e^{4}-1\right) \operatorname{Ci}(2 i-4)\right)+i\left(e^{4}-1\right) \operatorname{Ci}(4+2 i)+e^{4} \operatorname{Si}(2 i-4)+\right. \\
\left.\operatorname{Si}(2 i-4)-e^{4} \operatorname{Si}(4+2 i)-\operatorname{Si}(4+2 i)+2 e^{2} \log (4+1) \sin (4)\right)=-\frac{\pi}{2 e^{2}}+ \\
\frac{1}{4 e^{2}} \frac{1}{2} i(\Gamma(0,-i(-4+2 i))-\Gamma(0, i(-4+2 i))+\log (-i(-4+2 i))-\log (i(-4+2 i)))- \\
\frac{1}{2} i(\Gamma(0,-i(4+2 i))-\Gamma(0, i(4+2 i))+\log (-i(4+2 i))-\log (i(4+2 i)))+ \\
2 \cos \left(-4+\frac{\pi}{2}\right) \log (a) \log (5) e^{2}- \\
i\left(\left(\log (-4+2 i)+\frac{1}{2}(-\Gamma(0,-i(-4+2 i))-\Gamma(0, i(-4+2 i))-\right.\right. \\
\left.\log (-i(-4+2 i))-\log (i(-4+2 i))))\left(-1+e^{4}\right)\right)+ \\
i\left(\log (4+2 i)+\frac{1}{2}(-\Gamma(0,-i(4+2 i))-\Gamma(0, i(4+2 i))-\log (-i(4+2 i))-\right. \\
\log (i(4+2 i))))\left(-1+e^{4}\right)+\frac{1}{2} i
\end{gathered}
\]

\section*{Series representations:}
\[
\begin{gathered}
-\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left(\left(e^{4}-1\right) \operatorname{Ci}(2 i-4)\right)+i\left(e^{4}-1\right) \mathrm{Ci}(4+2 i)+e^{4} \operatorname{Si}(2 i-4)+\right. \\
\left.\operatorname{Si}(2 i-4)-e^{4} \operatorname{Si}(4+2 i)-\operatorname{Si}(4+2 i)+2 e^{2} \log (4+1) \sin (4)\right)=\frac{1}{4 e^{2}} \\
-2 \pi+i \log (-4+2 i)-i e^{4} \log (-4+2 i)-i \log (4+2 i)+i e^{4} \log (4+2 i)+ \\
4 e^{2} \sum_{k=1}^{\infty}-\frac{i(-1)^{k} 2^{-3+2 k}\left((-2+i)^{2 k}-(2+i)^{2 k}\right)\left(-1+e^{4}\right)}{e^{2} k(2 k)!}+ \\
4 e^{2} \sum_{k=0}^{\infty}\left(( - 1 ) ^ { k } 2 ^ { - 1 + 2 k } \left((-2+i)^{1+2 k}-(2+i)^{1+2 k}+\right.\right. \\
\left.\left.\left((-2+i)^{1+2 k}-(2+i)^{1+2 k}\right) e^{4}+4^{1+k} e^{2}(1+2 k) \log (4)\right)\right) / \\
-\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left(\left(e^{4}-1\right) \operatorname{Ci}(2 i-4)\right)+i\left(e^{4}-1\right) \mathrm{Ci}(4+2 i)+e^{4} \operatorname{Si}(2 i-4)+\right. \\
\left.\operatorname{Si}(2 i-4)-e^{4} \operatorname{Si}(4+2 i)-\operatorname{Si}(4+2 i)+2 e^{2} \log (4+1) \sin (4)\right)=\frac{1}{4 e^{2}} \\
\left(-2 \pi+i \log (-4+2 i)-i e^{4} \log (-4+2 i)-i \log (4+2 i)+i e^{4} \log (4+2 i)+\right. \\
\left(\sum_{1} \sum_{1} \sum_{2}=0 \frac{(-1)^{k_{1}+k_{2}} 4^{1-k_{1}+2 k_{2}}}{\left(1+2 k_{2}\right)!k_{1}}\right) \\
4 e^{2} \sum_{k=1}^{\infty}-\frac{i(-1)^{k} 2^{-3+2 k}\left((-2+i)^{2 k}-(2+i)^{2 k}\right)\left(-1+e^{4}\right)}{e^{2} k(2 k)!}+ \\
4 e^{2} \sum_{k=0}^{\infty}\left(\frac{(-2+i)^{1+2 k}(-1)^{k} 2^{-1+2 k}}{e^{2}(1+2 k)^{2}(2 k)!}+\frac{(-1)^{1+k} 2^{-1+2 k}(2+i)^{1+2 k}}{e^{2}(1+2 k)^{2}(2 k)!}+\right. \\
\frac{(-2+i)^{1+2 k}(-1)^{k} 2^{-1+2 k} e^{2}}{(1+2 k)^{2}(2 k)!}+\frac{(-1)^{1+k} 2^{-1+2 k}(2+i)^{1+2 k} e^{2}}{(1+2 k)^{2}(2 k)!}+ \\
\left.\left.\frac{(-1)^{k} 2^{1+4 k} \log (4)}{(1+2 k)!}\right)-2 e^{2} \sum_{k_{1}=1 k_{2}=0}^{\sum^{\infty}} \frac{(-1)^{k_{1}+k_{2}} 4^{1-k_{1}+2 k_{2}}}{\left(1+2 k_{2}\right)!k_{1}}\right)
\end{gathered}
\]
\[
\begin{aligned}
& -\frac{\pi}{2 e^{2}}+\frac{1}{4 e^{2}}\left(-i\left(\left(e^{4}-1\right) \mathrm{Ci}(2 i-4)\right)+i\left(e^{4}-1\right) \mathrm{Ci}(4+2 i)+e^{4} \operatorname{Si}(2 i-4)+\right. \\
& \left.\operatorname{Si}(2 i-4)-e^{4} \operatorname{Si}(4+2 i)-\mathrm{Si}(4+2 i)+2 e^{2} \log (4+1) \sin (4)\right)=\frac{1}{4 e^{2}} \\
& \left(-2 \pi+i \log (-4+2 i)-i e^{4} \log (-4+2 i)-i \log (4+2 i)+i e^{4} \log (4+2 i)+\right. \\
& 4 e^{2} \sum_{k=1}^{\infty}-\frac{i(-1)^{k} 2^{-3+2 k}\left((-2+i)^{2 k}-(2+i)^{2 k}\right)\left(-1+e^{4}\right)}{e^{2} k(2 k)!}+ \\
& 4 e^{2} \sum_{k=0}^{\infty}\left(\frac{(-2+i)^{1+2 k}(-1)^{k} 2^{-1+2 k}}{e^{2}(1+2 k)^{2}(2 k)!}+\frac{(-1)^{1+k} 2^{-1+2 k}(2+i)^{1+2 k}}{e^{2}(1+2 k)^{2}(2 k)!}+\right. \\
& \frac{(-2+i)^{1+2 k}(-1)^{k} 2^{-1+2 k} e^{2}}{(1+2 k)^{2}(2 k)!}+\frac{(-1)^{1+k} 2^{-1+2 k}(2+i)^{1+2 k} e^{2}}{(1+2 k)^{2}(2 k)!}+ \\
& \left.\left.\quad \frac{(-1)^{k}\left(4-\frac{\pi}{2}\right)^{2 k} \log (4)}{2(2 k)!}\right)-2 e^{2} \sum_{k_{1}=1 k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 4^{-k_{1}}\left(4-\frac{\pi}{2}\right)^{2 k_{2}}}{\left(2 k_{2}\right)!k_{1}}\right) \\
& \ln (1+4)-3 \ln (1+4 / 9)+5 \ln (1+4 / 25)
\end{aligned}
\]

\section*{Input:}
\(\log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)\)
\(\log (x)\) is the natural logarithm

\section*{Exact result:}
\(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\)

\section*{Decimal approximation:}
\(1.248363597649514704720535259613067685211291893852936258545 \ldots\)
1.2483635...

\section*{Property:}
\(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\) is a transcendental number

\section*{Alternate forms:}
\(5 \log \left(\frac{29}{25}\right)+\log \left(\frac{3645}{2197}\right)\)
\(6 \log (3)-9 \log (5)-3 \log (13)+5 \log (29)\)
\(-9 \log (5)-3 \log (13)+5 \log (29)+\log (729)\)

\section*{Alternative representations:}
\(\log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)=\)
\(\log (a) \log _{a}(5)-3 \log (a) \log _{a}\left(1+\frac{4}{9}\right)+5 \log (a) \log _{a}\left(1+\frac{4}{25}\right)\)
\(\log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)=\log _{e}(5)-3 \log _{e}\left(1+\frac{4}{9}\right)+5 \log _{e}\left(1+\frac{4}{25}\right)\)
\(\log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)=-\mathrm{Li}_{1}(-4)+3 \mathrm{Li}_{1}\left(-\frac{4}{9}\right)-5 \mathrm{Li}_{1}\left(-\frac{4}{25}\right)\)

\section*{Series representations:}
\(\log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)=6 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\)
\[
3 \log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{(-1)^{1+k}\left(5\left(\frac{29}{25}-z_{0}\right)^{k}-3\left(\frac{13}{9}-z_{0}\right)^{k}+\left(5-z_{0}\right)^{k}\right) z_{0}^{k}}{k}
\]
\[
\begin{aligned}
& \log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)= \\
& 10 i \pi\left[\frac{\arg \left(\frac{29}{25}-x\right)}{2 \pi} \left\lvert\,-6 i \pi\left[\frac{\arg \left(\frac{13}{9}-x\right)}{2 \pi}\right]+2 i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right]+3 \log (x)+\right.\right. \\
& \sum_{k=1}^{\infty} \frac{(-1)^{1+k}\left(5\left(\frac{29}{25}-x\right)^{k}-3\left(\frac{13}{9}-x\right)^{k}+(5-x)^{k}\right) x^{-k}}{k} \text { for } x<0
\end{aligned}
\]
\(\log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)=\)
\[
\begin{aligned}
& 5\left\lfloor\left.\frac{\arg \left(\frac{29}{25}-z_{0}\right)}{2 \pi}\left|\log \left(\frac{1}{z_{0}}\right)-3\right| \frac{\arg \left(\frac{13}{9}-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(\frac{1}{z_{0}}\right)+\left\lfloor\frac{\arg \left(5-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\right. \\
& 3 \log \left(z_{0}\right)+5\left\lfloor\left.\frac{\arg \left(\frac{29}{25}-z_{0}\right)}{2 \pi}\left|\log \left(z_{0}\right)-3\right| \frac{\arg \left(\frac{13}{9}-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(z_{0}\right)+\right. \\
& \quad\left\lfloor\frac{\arg \left(5-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{(-1)^{1+k}\left(5\left(\frac{29}{25}-z_{0}\right)^{k}-3\left(\frac{13}{9}-z_{0}\right)^{k}+\left(5-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}
\end{aligned}
\]

\section*{Integral representations:}
\(\log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)=\int_{1}^{25} 5\left(\frac{1}{t}+5\left(\frac{3}{16-25 t}+\frac{1}{-24+25 t}\right)\right) d t\)
\(\log (1+4)-3 \log \left(1+\frac{4}{9}\right)+5 \log \left(1+\frac{4}{25}\right)=\)
\[
\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{i 2^{-1-2 s}\left(-1+3^{1+2 s}-5^{1+2 s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{\pi \Gamma(1-s)} d s \text { for }-1<\gamma<0
\]
\(4 / \operatorname{Pi}\left(\left(\left(\left(\left(\left(\left(1-\mathrm{e}^{\wedge}((-2 \mathrm{Pi}) / 2)\right) /(1)^{\wedge} 2\right)\right)-\left(\left(1-\mathrm{e}^{\wedge}((-6 \mathrm{Pi}) / 2)\right) /(3)^{\wedge} 2\right)\right)+\left(\left(1-\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\) \(\left.\left.\left.\left.10 \mathrm{Pi}) / 2)) /(5)^{\wedge} 2\right)\right)\right)\right)-2 * 2 \tan ^{\wedge}-1\left(\mathrm{e}^{\wedge}((-2 \mathrm{Pi}) / 2)\right)\)

\section*{Input:}
\(\frac{4}{\pi}\left(\left(\frac{1-e^{1 / 2(-2 \pi)}}{1^{2}}-\frac{1-e^{1 / 2(-6 \pi)}}{3^{2}}\right)+\frac{1-e^{1 / 2(-10 \pi)}}{5^{2}}\right)-(2 \times 2) \tan ^{-1}\left(e^{1 / 2(-2 \pi)}\right)\)

\section*{Exact Result:}
\(\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(e^{-3 \pi}-1\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\)
(result in radians)

\section*{Decimal approximation:}
0.954939611254082249939094312747766773216649377749888300192
(result in radians)
\(0.954939611254 \ldots\) result very near to the spectral index \(\mathrm{n}_{\mathrm{s}}\), to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
\]

\section*{Alternate forms:}
\[
\begin{aligned}
& -\frac{4\left(-209+9 e^{-5 \pi}-25 e^{-3 \pi}+225 e^{-\pi}+225 \pi \tan ^{-1}\left(e^{-\pi}\right)\right)}{225 \pi} \\
& \frac{836-4 e^{-5 \pi}\left(9-25 e^{2 \pi}+225 e^{4 \pi}\right)}{225 \pi}-4 \cot ^{-1}\left(e^{\pi}\right) \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(e^{-3 \pi}-1\right)\right)}{\pi}-4 \cot ^{-1}\left(e^{\pi}\right)
\end{aligned}
\]
\(\cot ^{-1}(x)\) is the inverse cotangent function

\section*{Continued fraction:}


Alternative representations:
\[
\begin{aligned}
& \frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \\
& -4 \operatorname{sc}^{-1}\left(e^{-\pi} \mid 0\right)+\frac{4\left(-\frac{1}{9}\left(1-e^{-3 \pi}\right)+\frac{1}{1}\left(1-e^{-\pi}\right)+\frac{1-e^{-5 \pi}}{5^{2}}\right)}{\pi}
\end{aligned}
\]
\[
\underline{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4} .
\]
\[
-4 \tan ^{-1}\left(1, e^{-\pi}\right)+\frac{4\left(-\frac{1}{9}\left(1-e^{-3 \pi}\right)+\frac{1}{1}\left(1-e^{-\pi}\right)+\frac{1-e^{-5 \pi}}{5^{2}}\right)}{\pi}
\]
\[
\begin{aligned}
& \frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \times 2= \\
& -4 \cot ^{-1}\left(\frac{1}{e^{-\pi}}\right)+\frac{4\left(-\frac{1}{9}\left(1-e^{-3 \pi}\right)+\frac{1}{1}\left(1-e^{-\pi}\right)+\frac{1-e^{-5 \pi}}{5^{2}}\right)}{\pi}
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right. \\
& \frac{836}{225 \pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}-4 \sum_{k=0}^{\infty} \frac{e^{(-1-(2-i) k) \pi}}{1+2 k}
\end{aligned}
\]
\[
\frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \times 2=
\]
\[
\frac{836}{225 \pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}-2 i \log (2)+2 i \log \left(i\left(-i+e^{-\pi}\right)\right)+2 i \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}+\frac{i e^{-\pi}}{2}\right)^{k}}{k}
\]
\[
\frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \times 2=\frac{836}{225 \pi}-\frac{4 e^{-5 \pi}}{25 \pi}+
\]
\[
\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}+2 i \log (2)-2 i \log \left(-i\left(i+e^{-\pi}\right)\right)-2 i \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2} i\left(i+e^{-\pi}\right)\right)^{k}}{k}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& \left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4 \\
& \frac{836}{225 \pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}-4 e^{-\pi} \int_{0}^{1} \frac{1}{1+e^{-2 \pi} t^{2}} d t \\
& \frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \times 2=\frac{836}{225 \pi}-\frac{4 e^{-5 \pi}}{25 \pi}+ \\
& \frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}+\frac{i e^{-\pi}}{\pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(1+e^{-2 \pi}\right)^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2} \\
& \frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \times 2=\frac{836}{225 \pi}-\frac{4 e^{-5 \pi}}{25 \pi}+ \\
& \frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}+\frac{i e^{-\pi}}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{2 \pi s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
\]

\section*{Continued fraction representations:}
\[
\begin{aligned}
& \left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi \pi / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4 \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi}-\frac{4 e^{-\pi}}{1+\mathrm{K}_{k=1}^{\infty} \frac{e^{-2 \pi} k^{2}}{1+2 k}}= \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi}-\frac{4 e^{-\pi}}{1+\frac{e^{-2 \pi}}{3+\frac{4 e^{-2 \pi}}{5+\frac{9 e^{-2 \pi}}{7+\frac{16 e^{-2 \pi}}{9+\ldots}}}}} \\
& \frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \times 2= \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3 \pi}}{3+\underset{k=1}{\infty} \frac{e^{-2 \pi}\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}\right)= \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3 \pi}}{\left.3+\frac{9 e^{-2 \pi}}{5+\frac{4 e^{-2 \pi}}{7+\frac{25 e^{-2 \pi}}{9+\frac{16 e^{-2 \pi}}{11+\ldots}}}}\right)}\right.
\end{aligned}
\]
\[
\begin{aligned}
& \underline{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(6 \pi \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4} \\
& -\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \times 2= \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi}-\frac{4 e^{-\pi}}{1+\mathrm{K}_{k=1}^{\infty} \frac{e^{-2 \pi}(-1+2 k)^{2}}{1+2 k-e^{-2 \pi}(-1+2 k)}}= \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi}- \\
& \frac{4 e^{-\pi}}{1+\frac{e^{-2 \pi}}{3-e^{-2 \pi}+\frac{9 e^{-2 \pi}}{5-3 e^{-2 \pi}+\frac{25 e^{-2 \pi}}{7-5 e^{-2 \pi}+\frac{49 e^{-2 \pi}}{9+\ldots-7 e^{-2 \pi}}}}}} \\
& \frac{\left(\left(\frac{1-e^{-(2 \pi) / 2}}{1^{2}}-\frac{1-e^{-(-(6 \pi) / 2}}{3^{2}}\right)+\frac{1-e^{-(10 \pi) / 2}}{5^{2}}\right) 4}{\pi}-\tan ^{-1}\left(e^{-(2 \pi) / 2}\right) 2 \times 2= \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi}-\frac{4 e^{-\pi}}{1+e^{-2 \pi}+\underset{k=1}{\infty} \frac{2 e^{-2 \pi}\left(1-2\left[\frac{1+k}{2}\right]\right)\left\lfloor\frac{1+k}{2}\right]}{\left(1+\frac{1}{2}\left(1+(-1)^{k}\right) e^{-2 \pi}\right)(1+2 k)}}= \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi e^{-\pi}}- \\
& 1+e^{-2 \pi}+-\frac{2 e^{-2 \pi}}{3-\frac{2 e^{-2 \pi}}{5\left(1+e^{-2 \pi}\right)-\frac{12 e^{-2 \pi}}{7-\frac{12 e^{-2 \pi}}{9\left(1+e^{-2 \pi}\right)+\ldots}}}}
\end{aligned}
\]

We obtain also:
\((((5 \log (29 / 25)-3 \log (13 / 9)+\log (5)))) x=\left(\left(\left(4\left(1-\mathrm{e}^{\wedge}(-\pi)+1 / 25\left(1-\mathrm{e}^{\wedge}(-5 \pi)\right)+1 / 9\right.\right.\right.\right.\) \(\left.\left.\left.\left.\left(-1+\mathrm{e}^{\wedge}(-3 \pi)\right)\right)\right) / \pi-4 \tan ^{\wedge}(-1)\left(\mathrm{e}^{\wedge}(-\pi)\right)\right)\right)\)

\section*{Input:}
\[
\begin{aligned}
& \left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) x= \\
& \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(-1+e^{-3 \pi}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)
\end{aligned}
\]
\(\log (x)\) is the natural logarithm \(\tan ^{-1}(x)\) is the inverse tangent function

Plot:


\section*{Alternate forms:}
\(x\left(5 \log \left(\frac{29}{25}\right)+\log \left(\frac{3645}{2197}\right)\right)=\frac{836-4 e^{-5 \pi}\left(9-25 e^{2 \pi}+225 e^{4 \pi}\right)}{225 \pi}-4 \cot ^{-1}\left(e^{\pi}\right)\)
\(x\left(5 \log \left(\frac{29}{25}\right)+\log \left(\frac{3645}{2197}\right)\right)=\frac{\frac{836}{225}-\frac{4 e^{-5 \pi}}{25}+\frac{4 e^{-3 \pi}}{9}-4 e^{-\pi}}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\)
\(x\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)=\)
\(\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(e^{-3 \pi}-1\right)\right)}{\pi}-4 \cot ^{-1}\left(e^{\pi}\right)\)
\(\cot ^{-1}(x)\) is the inverse cotangent function

\section*{Expanded form:}
\(x \log (5)-3 x \log \left(\frac{13}{9}\right)+5 x \log \left(\frac{29}{25}\right)=\frac{836}{225 \pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\)

\section*{Alternate forms assuming \(\mathbf{x}>\mathbf{0}\) :}
\(x(-9 \log (5)-3 \log (13)+5 \log (29)+\log (729))=\)
\[
\frac{\frac{836}{225}-\frac{4 e^{-5 \pi}}{25}+\frac{4 e^{-3 \pi}}{9}-4 e^{-\pi}}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)
\]
\(5 x(\log (29)-2 \log (5))-3 x(\log (13)-2 \log (3))+x \log (5)=\)
\[
\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5 \pi}\right)+\frac{1}{9}\left(e^{-3 \pi}-1\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)
\]

\section*{Solution:}
\(x \approx 0.76495\)
0.76495

Thence:
\((((5 \log (29 / 25)-3 \log (13 / 9)+\log (5)))) * 0.76495\)

\section*{Input:}
\(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) \times 0.76495\)

\section*{Result:}
0.954935734021996273375973446841016125802377734202803590974...
\(0.954935734 \ldots\) result very near to the spectral index \(\mathrm{n}_{\mathrm{s}}\), to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
\]

\section*{Alternative representations:}
\(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495=\)
\(0.76495\left(\log (a) \log _{a}(5)-3 \log (a) \log _{a}\left(\frac{13}{9}\right)+5 \log (a) \log _{a}\left(\frac{29}{25}\right)\right)\)
\(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495=0.76495\left(\log _{e}(5)-3 \log _{e}\left(\frac{13}{9}\right)+5 \log _{e}\left(\frac{29}{25}\right)\right)\)
\(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495=\)
\(0.76495\left(-\mathrm{Li}_{1}(-4)+3 \mathrm{Li}_{1}\left(1-\frac{13}{9}\right)-5 \mathrm{Li}_{1}\left(1-\frac{29}{25}\right)\right)\)

\section*{Series representations:}
\[
\begin{aligned}
& \left.\left.\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495=7.6495 i \pi \right\rvert\, \frac{\arg \left(\frac{29}{25}-x\right)}{2 \pi}\right]- \\
& 4.5897 i \pi\left[\frac{\arg \left(\frac{13}{9}-x\right)}{2 \pi} \left\lvert\,+1.5299 i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right]+2.29485 \log (x)+\right.\right. \\
& \quad \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3.82475\left(\frac{29}{25}-x\right)^{k}+2.29485\left(\frac{13}{9}-x\right)^{k}-0.76495(5-x)^{k}\right) x^{-k}}{k} \text { for } x< \\
& 0 \\
& \left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495= \\
& 3.82475\left[\frac{\arg \left(\frac{29}{25}-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(\frac{1}{z_{0}}\right)-2.29485\left[\left.\frac{\arg \left(\frac{13}{9}-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(\frac{1}{z_{0}}\right)+\right.\right.\right. \\
& \left.\left.0.76495\left[\frac{\arg \left(5-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+2.29485 \log \left(z_{0}\right)+3.82475 \right\rvert\, \frac{\arg \left(\frac{29}{25}-z_{0}\right)}{2 \pi}\right] \log \left(z_{0}\right)- \\
& 2.29485\left[\frac{\arg \left(\frac{13}{9}-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(z_{0}\right)+0.76495\left\lfloor\frac{\arg \left(5-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+\right.\right. \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3.82475\left(\frac{29}{25}-z_{0}\right)^{k}+2.29485\left(\frac{13}{9}-z_{0}\right)^{k}-0.76495\left(5-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}
\end{aligned}
\]
\[
\begin{aligned}
& \left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495= \\
& 7.6495 i \pi\left[\left.\frac{\pi-\arg \left(\frac{29}{25 z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}|-4.5897 i \pi| \frac{\pi-\arg \left(\frac{13}{9 z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,+\right. \\
& 1.5299 i \pi\left|\frac{\pi-\arg \left(\frac{5}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|+2.29485 \log \left(z_{0}\right)+ \\
& \quad \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3.82475\left(\frac{29}{25}-z_{0}\right)^{k}+2.29485\left(\frac{13}{9}-z_{0}\right)^{k}-0.76495\left(5-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}
\end{aligned}
\]

\section*{Integral representations:}
\(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495=\int_{1}^{29} \frac{2.34993-4.40611 t+2.29485 t^{2}}{0.6144 t-1.6 t^{2}+t^{3}} d t\)
\(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495=\)
\(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-s}\left(0.382475-1.14743 \times 9^{s}+1.91238 \times 25^{s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{i \pi \Gamma(1-s)} d s\) for
\(\left.\left(\left(((((5 \log (29 / 25)-3 \log (13 / 9)+\log (5)))))^{*} 0.76495\right)\right)\right)^{\wedge} 1 / 64\)
Input:
\(\sqrt[64]{\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) \times 0.76495}\)
\(\log (x)\) is the natural logarithm

\section*{Result:}
0.99927977...
\(0.99927977 \ldots\) result very near to the value of the following Rogers-Ramanujan continued fraction:
\(\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684\)
and to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}\)
\(2 * \log\) base \(0.99927977(((((5 \log (29 / 25)-3 \log (13 / 9)+\log (5)))) * 0.76495)))-\) \(\mathrm{Pi}+1 /\) golden ratio

\section*{Input interpretation:}
\(2 \log _{0.09927977}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) \times 0.76495\right)-\pi+\frac{1}{\phi}\)

\section*{Result:}
125.476...
125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18 GeV

\section*{Alternative representations:}
\[
\begin{gathered}
2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)-\pi+\frac{1}{\phi}= \\
-\pi+\frac{1}{\phi}+\frac{2 \log \left(0.76495\left(\log (5)-3 \log \left(\frac{13}{9}\right)+5 \log \left(\frac{29}{25}\right)\right)\right)}{\log (0.99928)}
\end{gathered}
\]
\(2 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)-\pi+\frac{1}{\phi}=\)
\(\quad-\pi+2 \log _{0.09928}\left(0.76495\left(\log (a) \log _{a}(5)-3 \log (a) \log _{a}\left(\frac{13}{9}\right)+5 \log (a) \log _{a}\left(\frac{29}{25}\right)\right)\right)+\frac{1}{\phi}\)
\(2 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)-\pi+\frac{1}{\phi}=\)
\[
-\pi+2 \log _{0.09928}\left(0.76495\left(\log _{e}(5)-3 \log _{e}\left(\frac{13}{9}\right)+5 \log _{e}\left(\frac{29}{25}\right)\right)\right)+\frac{1}{\phi}
\]

\section*{Series representations:}
\[
\begin{aligned}
& 2 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+3.82475 \log \left(\frac{29}{25}\right)-2.29485 \log \left(\frac{13}{9}\right)+0.76495 \log (5)\right)^{k}}{k}}{\log (0.99928)}
\end{aligned}
\]
\(2 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)-\pi+\frac{1}{\phi}=\)
\[
\frac{1}{\phi}-\pi-2775.89 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right)-
\]
\[
2 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right) \sum_{k=0}^{\infty}(-0.00072023)^{k} G(k)
\]
\[
\text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\]
\[
\begin{aligned}
& 2 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)-\pi+\frac{1}{\phi}= \\
& \quad \frac{1}{\phi}-\pi-2775.89 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right)- \\
& \quad 2 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right) \sum_{k=0}^{\infty}(-0.00072023)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]

\section*{Integral representations:}
\(2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)-\pi+\frac{1}{\phi}=\) \(\frac{1}{\phi}-\pi+2 \log _{0.09928}\left(0.76495 \int_{1}^{25} 5\left(\frac{1}{t}+5\left(\frac{3}{16-25 t}+\frac{1}{-24+25 t}\right)\right) d t\right)\)
\(2 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)-\pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi+2 \log _{0.99928}(\)
\[
\left.\frac{1}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-s}\left(0.382475-1.14743 \times 9^{s}+1.91238 \times 25^{s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)
\]
for \(-1<\gamma<0\)
\(2 * \log\) base \(0.99927977(((()(5 \log (29 / 25)-3 \log (13 / 9)+\) \(\log (5)))) * 0.76495)))+11+1 /\) golden ratio

\section*{Input interpretation:}
\(2 \log _{0.99927977}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) \times 0.76495\right)+11+\frac{1}{\phi}\)
\(\log (x)\) is the natural logarithm
\(\log _{b}(x)\) is the base- \(b\) logarithm

\section*{Result:}
139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

\section*{Alternative representations:}
\[
\begin{aligned}
& 2 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}+\frac{2 \log \left(0.76495\left(\log (5)-3 \log \left(\frac{13}{9}\right)+5 \log \left(\frac{29}{25}\right)\right)\right)}{\log (0.99928)}
\end{aligned}
\]
\(2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+11+\frac{1}{\phi}=\) \(11+2 \log _{0.99928}\left(0.76495\left(\log (a) \log _{a}(5)-3 \log (a) \log _{a}\left(\frac{13}{9}\right)+5 \log (a) \log _{a}\left(\frac{29}{25}\right)\right)\right)+\frac{1}{\phi}\)
\(2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+11+\frac{1}{\phi}=\) \(11+2 \log _{0.09928}\left(0.76495\left(\log _{e}(5)-3 \log _{e}\left(\frac{13}{9}\right)+5 \log _{e}\left(\frac{29}{25}\right)\right)\right)+\frac{1}{\phi}\)

\section*{Series representations:}
\(2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+11+\frac{1}{\phi}=\)
\(11+\frac{1}{\phi}-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+3.82475 \log \left(\frac{29}{25}\right)-2.29485 \log \left(\frac{13}{9}\right)+0.76495 \log (5)\right)^{k}}{k}}{\log (0.99928)}\)
\(2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+11+\frac{1}{\phi}=\)
\(11+\frac{1}{\phi}-2775.89 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right)-\)
\(2 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right) \sum_{k=0}^{\infty}(-0.00072023)^{k} G(k)\)
for \(\left(G(0)=0\right.\) and \(\left.\frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)\)
\(2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+11+\frac{1}{\phi}=\)
\[
\begin{aligned}
& 11+\frac{1}{\phi}-2775.89 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right)- \\
& 2 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right) \sum_{k=0}^{\infty}(-0.00072023)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]

\section*{Integral representations:}
\(2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+11+\frac{1}{\phi}=\)
\[
11+\frac{1}{\phi}+2 \log _{0.99928}\left(0.76495 \int_{1}^{25} 5\left(\frac{1}{t}+5\left(\frac{3}{16-25 t}+\frac{1}{-24+25 t}\right)\right) d t\right)
\]
\(2 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+11+\frac{1}{\phi}=11+\frac{1}{\phi}+2 \log _{0.09928}(\)
\[
\left.\frac{1}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-s}\left(0.382475-1.14743 \times 9^{s}+1.91238 \times 25^{s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)
\]
for \(-1<\gamma<0\)
\(27 * \log\) base \(0.99927977((((() 5 \log (29 / 25)-3 \log (13 / 9)+\) \(\log (5)))) * 0.76495)))+1 /\) golden ratio

\section*{Input interpretation:}
\(27 \log _{0.99927977}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) \times 0.76495\right)+\frac{1}{\phi}\)
\(\log (x)\) is the natural logarithm
\(\log _{b}(x)\) is the base- \(b\) logarithm

\section*{Result:}
1728.61...
1728.61...

This result is very near to the mass of candidate glueball \(\mathrm{f}_{0}(1710)\) meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

\section*{Alternative representations:}
\[
\begin{aligned}
& 27 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+\frac{1}{\phi}= \\
& \frac{1}{\phi}+\frac{27 \log \left(0.76495\left(\log (5)-3 \log \left(\frac{13}{9}\right)+5 \log \left(\frac{29}{25}\right)\right)\right)}{\log (0.99928)}
\end{aligned}
\]
\(27 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+\frac{1}{\phi}=\)
\(27 \log _{0.09928}\left(0.76495\left(\log (a) \log _{a}(5)-3 \log (a) \log _{a}\left(\frac{13}{9}\right)+5 \log (a) \log _{a}\left(\frac{29}{25}\right)\right)\right)+\frac{1}{\phi}\)
\(27 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+\frac{1}{\phi}=\)
\(27 \log _{0.09928}\left(0.76495\left(\log _{e}(5)-3 \log _{e}\left(\frac{13}{9}\right)+5 \log _{e}\left(\frac{29}{25}\right)\right)\right)+\frac{1}{\phi}\)

\section*{Series representations:}
\(27 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+\frac{1}{\phi}=\)
\[
\frac{1}{\phi}-\frac{27 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+3.82475 \log \left(\frac{29}{25}\right)-2.20485 \log \left(\frac{13}{9}\right)+0.76495 \log (5)\right)^{k}}{k}}{\log (0.99928)}
\]
\(27 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+\frac{1}{\phi}=\)
\[
\begin{aligned}
& \frac{1}{\phi}-37474.5 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right)- \\
& 27 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right) \sum_{k=0}^{\infty}(-0.00072023)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]
\(27 \log _{0.09928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+\frac{1}{\phi}=\)
\[
\begin{aligned}
& \frac{1}{\phi}-37474.5 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right)- \\
& 27 \log \left(0.76495\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right)\right) \sum_{k=0}^{\infty}(-0.00072023)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]

\section*{Integral representations:}
\(27 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+\frac{1}{\phi}=\)
\[
\frac{1}{\phi}+27 \log _{0.09928}\left(0.76495 \int_{1}^{25} 5\left(\frac{1}{t}+5\left(\frac{3}{16-25 t}+\frac{1}{-24+25 t}\right)\right) d t\right)
\]
\(27 \log _{0.99928}\left(\left(5 \log \left(\frac{29}{25}\right)-3 \log \left(\frac{13}{9}\right)+\log (5)\right) 0.76495\right)+\frac{1}{\phi}=\frac{1}{\phi}+27 \log _{0.09928}(\)
\[
\begin{aligned}
& \left.\frac{1}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-s}\left(0.382475-1.14743 \times 9^{s}+1.91238 \times 25^{s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right) \\
& \text { for }-1<\gamma<0
\end{aligned}
\]

\section*{Acknowledgments}

We would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

\section*{References}

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN```


[^0]:    ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

