On some formulas of Manuscript Book 1 of Srinivasa Ramanujan: new possible mathematical connections with various parameters of Particle Physics and Cosmology part II.

Michele Nardelli¹, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further formulas of Manuscript Book 1 of Srinivasa Ramanujan and described new possible mathematical connections with various parameters of Particle Physics and Cosmology (Cosmological Constant, some parameters of Dark Energy)

¹ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" - Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

I have not trodden through a conventional university course, but I am striking out a new path for myself. I have made a special investigation of divergent series in general and the results I get are termed by the local mathematicians as 'startling.' Srinivasa Ramanujan

More science quotes at Today in Science History todayinsci.com

https://todayinsci.com/R/Ramanujan_Srinivasa/RamanujanSrinivasa-Quotations.htm

Summary

In this research thesis, we have analyzed the possible and new connections between different formulas of Manuscript Book 1 of Srinivasa Ramanujan and some parameters concerning Particle Physics and Cosmology. In the course of the discussion we describe and highlight the connections between some developments of Ramanujan equations and particles type solutions such as the mass of the Higgs boson, and the masses of other baryons and mesons, principally $f_0(1710)$ scalar meson candidate "glueball". Moreover, solutions of Ramanujan equations, connected with the mass of the π meson 139.57 have been described and highlighted. Furthermore, we have obtained also the values of some black hole entropies, the value of the Cosmological Constant and some parameters of Dark Energy.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

From:

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN

Page 16

 $\tan^{-1}(1/(1+\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+2\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+3\operatorname{sqrt2})^{2})+\dots$

Input interpretation:

$$\tan^{-1}\left(\frac{1}{\left(1+\sqrt{2}\right)^{2}}\right) + \tan^{-1}\left(\frac{1}{\left(1+2\sqrt{2}\right)^{2}}\right) + \tan^{-1}\left(\frac{1}{\left(1+3\sqrt{2}\right)^{2}}\right) + \cdots$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result:

$$\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(\sqrt{2} \ n + \sqrt{2} \ + 1\right)^2} \right) \approx \sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(1.41421 \ n + 2.41421\right)^2} \right)$$

Approximated sum:

$$\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{1}{\left(1 + \sqrt{2} \ n \right)^2} \right) \approx 0.390214$$

 $0.390214 \approx \frac{\pi}{8} = 0.392699081698$

If we take

$$\begin{split} & \tanh^{-1}(1/(1+\operatorname{sqrt2})^2) + \tan^{-1}(1/(1+2\operatorname{sqrt2})^2) + \tan^{-1}(1/(1+3\operatorname{sqrt2})^2) + \tan^{-1}(1/(1+4\operatorname{sqrt2})^2) + \tan^{-1}(1/(1+5\operatorname{sqrt2})^2) + \tan^{-1}(1/(1+6\operatorname{sqrt2})^2) + \tan^{-1}(1/(1+2\operatorname{sqrt2})^2) + \tan^{-1}(1/(1+2\operatorname{sqrt2})^2) \end{split}$$

we obtain:

Input:

$$\tan^{-1} \left(\frac{1}{(1+\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) +$$

$$\tan^{-1} \left(\frac{1}{(1+3\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+5\sqrt{2})^2} \right) +$$

$$\tan^{-1} \left(\frac{1}{(1+6\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+24\sqrt{2})^2} \right)$$

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\tan^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+2\sqrt{2})^{2}}\right) + \\
\tan^{-1}\left(\frac{1}{(1+3\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+4\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+5\sqrt{2})^{2}}\right) + \\
\tan^{-1}\left(\frac{1}{(1+6\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+12\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+24\sqrt{2})^{2}}\right) + \\$$

(result in radians)

Decimal approximation:

0.327349706812720645444438112798192882967536628173104216641...

(result in radians)

0.327349706...

Alternate forms:

$$\begin{aligned} \tan^{-1} \bigg(\frac{190\,969\,859\,251\,\sqrt{2} - 216\,845\,894\,344}{156\,747\,794\,826} \bigg) \\ \cot^{-1} \bigg(\bigg(1 + \sqrt{2}\,\bigg)^2 \bigg) + \cot^{-1} \bigg(\bigg(1 + 2\,\sqrt{2}\,\bigg)^2 \bigg) + \\ \cot^{-1} \bigg(\bigg(1 + 3\,\sqrt{2}\,\bigg)^2 \bigg) + \cot^{-1} \bigg(\bigg(1 + 4\,\sqrt{2}\,\bigg)^2 \bigg) + \cot^{-1} \bigg(\bigg(1 + 5\,\sqrt{2}\,\bigg)^2 \bigg) + \\ \cot^{-1} \bigg(\bigg(1 + 6\,\sqrt{2}\,\bigg)^2 \bigg) + \cot^{-1} \bigg(\bigg(1 + 12\,\sqrt{2}\,\bigg)^2 \bigg) + \cot^{-1} \bigg(\bigg(1 + 24\,\sqrt{2}\,\bigg)^2 \bigg) \\ \tan^{-1} \bigg(\frac{1153 - 48\,\sqrt{2}}{1324\,801} \bigg) + \tan^{-1} \bigg(\frac{289 - 24\,\sqrt{2}}{82\,369} \bigg) + \\ \tan^{-1} \bigg(\frac{73 - 12\,\sqrt{2}}{5041} \bigg) + \tan^{-1} \bigg(\frac{51 - 10\,\sqrt{2}}{2401} \bigg) + \tan^{-1} \bigg(\frac{1}{961}\, \bigg(33 - 8\,\sqrt{2}\,\bigg) \bigg) + \\ \tan^{-1} \bigg(\frac{1}{289}\, \bigg(19 - 6\,\sqrt{2}\,\bigg) \bigg) + \tan^{-1} \bigg(\frac{1}{49}\, \bigg(9 - 4\,\sqrt{2}\,\bigg) \bigg) + \tan^{-1} \bigg(3 - 2\,\sqrt{2}\,\bigg) \end{aligned}$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$\begin{split} \tan^{-1} & \left(\frac{1}{(1+\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1+3\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+5\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1+6\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+24\sqrt{2})^2} \right) = \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+3\sqrt{2})^2} \right) + \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+4\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+5\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+6\sqrt{2})^2} \right) + \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+24\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) + \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) + \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) + \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) + \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \operatorname{sc}^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) \\ & \operatorname{sc}^{-1} \left(\frac{1}{(1+12\sqrt{2})^2$$

From the previous expression, we obtain:

$$1/(((\tan^{-1}(1/(1+\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+2\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+3\operatorname{sqrt2})^{2})+\ldots)))$$

Input interpretation:

$$\frac{1}{\tan^{-1}\left(\frac{1}{\left(1+\sqrt{2}\right)^{2}}\right) + \tan^{-1}\left(\frac{1}{\left(1+2\sqrt{2}\right)^{2}}\right) + \tan^{-1}\left(\frac{1}{\left(1+3\sqrt{2}\right)^{2}}\right) + \cdots}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Results:

$$\frac{\frac{1}{\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(\sqrt{2} \ n+\sqrt{2} \ +1\right)^2}\right)}}$$

 $1/(sum_(n=0)^{\infty} tan^{(-1)}(1/(sqrt(2) n + sqrt(2) + 1)^{2}))$

Input interpretation:

$$\frac{1}{\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(\sqrt{2} \ n + \sqrt{2} \ + 1 \right)^2} \right)}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result:

2.54648 2.54648

 $(((1/(sum_n=0)^{\infty} \tan^{(-1)}(1/(sqrt(2) n + sqrt(2) + 1)^{2}))))^{5+29} + Pi$

Where 29 is a Lucas number

Input interpretation:

$$\left(\frac{1}{\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(\sqrt{2} \ n + \sqrt{2} \ + 1\right)^2}\right)}\right)^5 + 29 + \pi$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result:

139.22139.22 result practically equal to the rest mass of Pion meson 139.57 MeV

And:

$$(((1/(sum_n=0)^{\infty} tan^{-1})(1/(sqrt(2) n + sqrt(2) + 1)^{2}))))^{5+18}$$

Where 18 is a Lucas number

Input interpretation:

$$\left(\frac{1}{\sum_{n=0}^{\infty} \tan^{-1}\left(\frac{1}{(\sqrt{2} \ n + \sqrt{2} \ + 1)^2}\right)}\right)^3 + 18$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result:

125.078

125.078 result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

From the following expression:

```
 \begin{array}{l} tan^{-1}(1/(1+sqrt2)^{2})+tan^{-1}(1/(1+2sqrt2)^{2})+tan^{-1}(1/(1+3sqrt2)^{2})+tan^{-1}(1/(1+4sqrt2)^{2})+tan^{-1}(1/(1+5sqrt2)^{2})+tan^{-1}(1/(1+6sqrt2)^{2})+tan^{-1}(1/(1+24sqrt2)^{2}) \\ 1(1/(1+12sqrt2)^{2})+tan^{-1}(1/(1+24sqrt2)^{2}) \end{array}
```

we obtain:

$$[1/(((\tan^{-1}(1/(1+\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+2\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+3\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+4\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+5\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+6\operatorname{sqrt2})^{2})+\tan^{-1}(1/(1+2\operatorname{sqrt2})^{2}))))]^{5}$$

Input:

$$\left(\frac{1}{\left(\tan^{-1} \left(\frac{1}{\left(1 + \sqrt{2} \right)^2} \right) + \tan^{-1} \left(\frac{1}{\left(1 + 2\sqrt{2} \right)^2} \right) + }{\tan^{-1} \left(\frac{1}{\left(1 + 3\sqrt{2} \right)^2} \right) + \tan^{-1} \left(\frac{1}{\left(1 + 4\sqrt{2} \right)^2} \right) + \tan^{-1} \left(\frac{1}{\left(1 + 5\sqrt{2} \right)^2} \right) + }{\tan^{-1} \left(\frac{1}{\left(1 + 6\sqrt{2} \right)^2} \right) + \tan^{-1} \left(\frac{1}{\left(1 + 24\sqrt{2} \right)^2} \right) \right) \right)^5$$

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\frac{1}{\left(\tan^{-1}\left(\frac{1}{\left(1+\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+2\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+3\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+4\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+5\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+6\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+2\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+2\sqrt{2}\right)^{2}}\right)$$

(result in radians)

Decimal approximation:

266.0358831303531310292452360902628407164242284220609033941...

(result in radians)

266.03588313....

Alternate forms:

 $\frac{1}{\tan^{-1}\left(\frac{190\,969\,859251\,\sqrt{2}\,-216845\,894344}{156\,747\,794\,826}\right)^5}$

$$\frac{1}{\left(\cot^{-1}\left(\left(1+\sqrt{2}\right)^{2}\right)+\cot^{-1}\left(\left(1+2\sqrt{2}\right)^{2}\right)+\cot^{-1}\left(\left(1+\sqrt{2}\right)^{2}\right)+\cot^{-1}\left(\left(1+\sqrt{2}\right)^{2}\right)+\cot^{-1}\left(\left(1+\sqrt{2}\right)^{2}\right)+\cot^{-1}\left(\left(1+\sqrt{2}\right)^{2}\right)+\cot^{-1}\left(\left(1+\sqrt{2}\right)^{2}\right)\right)^{5}}{\cot^{-1}\left(\left(1+\sqrt{2}\right)^{2}\right)+\cot^{-1}\left(\left(1+\sqrt{2}\right)^{2}\right)+\tan^{-1}\left(\frac{289-24\sqrt{2}}{82369}\right)+\tan^{-1}\left(\frac{73-12\sqrt{2}}{5041}\right)+\tan^{-1}\left(\frac{51-10\sqrt{2}}{2401}\right)+\tan^{-1}\left(\frac{1}{961}\left(33-8\sqrt{2}\right)\right)+\tan^{-1}\left(\frac{1}{289}\left(19-6\sqrt{2}\right)\right)+\tan^{-1}\left(\frac{1}{49}\left(9-4\sqrt{2}\right)\right)+\tan^{-1}\left(3-2\sqrt{2}\right)\right)^{5}}$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$\begin{split} \left(1 \Big/ \Big(\tan^{-1} \Big(\frac{1}{(1+\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+3\sqrt{2})^2} \Big) + \\ & \tan^{-1} \Big(\frac{1}{(1+4\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+5\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+6\sqrt{2})^2} \Big) \right) \right)^5 \\ & = \\ \left(1 \Big/ \Big(\sec^{-1} \Big(\frac{1}{(1+\sqrt{2})^2} \Big| 0 \Big) + \sec^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big| 0 \Big) + \sec^{-1} \Big(\frac{1}{(1+3\sqrt{2})^2} \Big| 0 \Big) + \\ & \sec^{-1} \Big(\frac{1}{(1+4\sqrt{2})^2} \Big| 0 \Big) + \sec^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big| 0 \Big) + \sec^{-1} \Big(\frac{1}{(1+3\sqrt{2})^2} \Big| 0 \Big) + \\ & \sec^{-1} \Big(\frac{1}{(1+4\sqrt{2})^2} \Big| 0 \Big) + \sec^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big| 0 \Big) \Big) \right)^5 \\ \\ \left(1 \Big/ \Big(\tan^{-1} \Big(\frac{1}{(1+\sqrt{2})^2} \Big) \Big) + \tan^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) \Big) + \tan^{-1} \Big(\frac{1}{(1+3\sqrt{2})^2} \Big) + \\ & \tan^{-1} \Big(\frac{1}{(1+4\sqrt{2})^2} \Big) \Big) + \tan^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+3\sqrt{2})^2} \Big) + \\ & \tan^{-1} \Big(\frac{1}{(1+4\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) + \tan^{-1} \Big(1, \frac{1}{(1+3\sqrt{2})^2} \Big) \Big) + \\ & \tan^{-1} \Big(1, \frac{1}{(1+4\sqrt{2})^2} \Big) + \tan^{-1} \Big(1, \frac{1}{(1+2\sqrt{2})^2} \Big) + \tan^{-1} \Big(1, \frac{1}{(1+6\sqrt{2})^2} \Big) + \\ & \tan^{-1} \Big(1, \frac{1}{(1+4\sqrt{2})^2} \Big) + \tan^{-1} \Big(1, \frac{1}{(1+2\sqrt{2})^2} \Big) \Big) \Big) \Big)^5 \\ \\ \\ \left(1 \Big/ \Big(\tan^{-1} \Big(\frac{1}{(1+4\sqrt{2})^2} \Big) + \tan^{-1} \Big(1, \frac{1}{(1+2\sqrt{2})^2} \Big) + \tan^{-1} \Big(1, \frac{1}{(1+6\sqrt{2})^2} \Big) + \\ & \tan^{-1} \Big(1, \frac{1}{(1+4\sqrt{2})^2} \Big) + \tan^{-1} \Big(1, \frac{1}{(1+2\sqrt{2})^2} \Big) \Big) \Big) \Big)^5 \\ \\ \\ \left(1 \Big/ \Big(\tan^{-1} \Big(\frac{1}{(1+\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+3\sqrt{2})^2} \Big) \Big) \Big) \right)^5 \\ \\ \\ \left(1 \Big/ \Big(\tan^{-1} \Big(\frac{1}{(1+\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+6\sqrt{2})^2} \Big) + \\ & \tan^{-1} \Big(\frac{1}{(1+4\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) + \tan^{-1} \Big(\frac{1}{(1+6\sqrt{2})^2} \Big) + \\ \\ \\ \left(1 \Big/ \Big(\cot^{-1} \Big(\frac{1}{(1+\sqrt{2})^2} \Big) + \cot^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) \Big) + \cot^{-1} \Big(\frac{1}{(1+6\sqrt{2})^2} \Big) \Big) + \\ \\ \\ \\ \left(1 \Big/ \Big(\cot^{-1} \Big(\frac{1}{(1+\sqrt{2})^2} \Big) + \cot^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) + \cot^{-1} \Big(\frac{1}{(1+6\sqrt{2})^2} \Big) \Big) + \\ \\ \\ \\ \\ \\ \left(1 \Big/ \Big(\cot^{-1} \Big) \Big) + \cot^{-1} \Big(\frac{1}{(1+2\sqrt{2})^2} \Big) + \cot^{-1} \Big(\frac{1}{(1+6\sqrt{2})^2} \Big) \Big) + \\ \\ \\ \\ \\ \\ \\ \right) \Big| \int d^{-1} \Big(\frac{1}{(1+\sqrt{2})^2} \Big) + \cot^{-1} \Big(\frac{1$$

From the following alternate form

 $\frac{1}{\tan^{-1} \left(\frac{190\,969\,859251\,\sqrt{2}\,-216845\,894344}{156\,747\,794\,826}\right)^5}$

We obtain:

1/2((1/tan^(-1)((-216845894344 + 190969859251 sqrt(2))/156747794826)^5))+5+golden ratio

Where 5 is a Fibonacci number

 $\tan^{-1}(x)$ is the inverse tangent function ϕ is the golden ratio

Exact Result:

(result in radians)

Decimal approximation:

139.6359755539264603628272048794970584759324233908362145591...

(result in radians)

139.635975... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms: $\frac{1}{2} \left(11 + \sqrt{5} \right) + \frac{1}{2 \tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794826} \right)^5}$ $5 + \frac{1}{2} \left(1 + \sqrt{5} \right) + \frac{1}{2 \tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794826} \right)^5}$

$$\phi + 5 + \frac{10}{\left(\tan^{-1}\left(\frac{190,969,859,251\sqrt{2},-2168,45,894,344}{156,747,794,826}\right) - \tan^{-1}\left(\frac{216,845,894,344,-190,969,859,251\sqrt{2}}{156,747,794,826}\right)\right)^5}$$

16

Alternative representations:

Series representations:

$$\begin{aligned} \frac{1}{\tan^{-1} \left(\frac{-216845\ 894344\ +190\ 969\ 859251\ \sqrt{2}}{156\ 747\ 794\ 826}\right)^5 2} + 5 + \phi &= \\ 5 + \phi - (16\ i) \left/ \left(-\log(2) + \log\left(-i\left(i + \frac{-216\ 845\ 894\ 344\ +190\ 969\ 859\ 251\ \sqrt{2}}{156\ 747\ 794\ 826}\right)\right) + \\ &\sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^k \left(i + \frac{-216\ 845\ 894\ 344\ +190\ 969\ 859\ 251\ \sqrt{2}}{156\ 747\ 794\ 826}\right)^k}{k} \right)^5 \end{aligned}$$

Continued fraction representations:

 $\frac{1}{\tan^{-1}\left(\frac{-216845894344+190969859251\sqrt{2}}{156747794826}\right)^5 2} + 5 + \phi = 5 + \phi + \phi$ 47 312 642 310 909 092 068 219 567 484 966 973 846 403 528 990 332 452 688 $\left(1 + \underset{k=1}{\overset{\infty}{\mathrm{K}}} \frac{\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\,\right)^{2}\,k^{2}}{\frac{24569\,871\,182\,813\,792\,370\,276}{1+2\,k}}\right)^{3}\right) \right/$ $\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^5 = 5 + \phi + \phi$ (47 312 642 310 909 092 068 219 567 484 966 973 846 403 528 990 332 452 688 $\left(1 + \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2\right)$ (24 569 871 182 813 792 370 276 $\frac{(3 + (-216845894344 + 190969859251\sqrt{2})^2}{(6142467795703448092569)} \\ \frac{(5 + (-216845894344 + 190969859251\sqrt{2})^2}{(2729985686979310263364(7 + (4(-216845894344 + 190969859251\sqrt{2})^2)/(6142467795703448092569))} \\ \frac{(2729985686979310263364(7 + (4(-216845894344 + 190969859251\sqrt{2})^2))}{(6142467795703448092569))}$

$$\frac{1}{\tan^{-1} \left(\frac{-216845894344+100060859251\sqrt{2}}{156747704826}\right)^{5} 2} + 5 + \phi = 5 + \phi + \frac{1}{156747704826}$$

$$\left(47312642310909092068219567484966973846403528990332452688\right)$$

$$\left(1 + \left(\frac{5}{k+1}\right)^{\frac{2}{24569871182813792370276}}{1+2k}\right)^{\frac{5}{2}}\right)^{\frac{5}{2}}$$

$$\left(-216845894344 + 190969859251\sqrt{2}\right)^{\frac{5}{2}} = 5 + \phi + \frac{1}{216845894344 - 190969859251\sqrt{2}}$$

$$\left(1 + \left(216845894344 - 190969859251\sqrt{2}\right)^{\frac{2}{2}}\right)^{\frac{2}{2}}$$

$$\left(24569871182813792370276\right)^{\frac{2}{2}}$$

$$\left(3 + \left(216845894344 - 190969859251\sqrt{2}\right)^{\frac{2}{2}}\right)^{\frac{2}{2}}$$

$$\left(5 + \left(216845894344 - 190969859251\sqrt{2}\right)^{\frac{2}{2}}\right)^{\frac{2}{2}}$$

$$\left(2729985686979310263364\right)$$

$$\left(7 + \left(4\left(216845894344 - 190969859251\sqrt{2}\right)^{\frac{2}{2}}\right)^{\frac{2}{2}}$$

$$\left(-216845894344 + 190969859251\sqrt{2}\right)^{\frac{5}{2}}$$

$$\frac{1}{\tan^{-1}\left(\frac{-216845894344+100069859251\sqrt{2}}{156747704826}\right)^{5}2} + 5 + \phi = 5 + \phi + \frac{1}{156747704826}$$

$$\left(47312642310909092068219567484966973846403528990332452688 \\ \left(1 + \left(\frac{x}{k-1} \frac{\frac{(216845894344-100069859251\sqrt{2})^{2}(1-2k)^{2}}{24569871182813792370276}}\right)^{5}\right)\right)^{\prime}$$

$$\left(-216845894344 + 190969859251\sqrt{2}\right)^{5} = 5 + \phi + \frac{1}{122642310909092068219567484966973846403528990332452688} \\ \left(1 + \left(216845894344 - 190969859251\sqrt{2}\right)^{2}\right)^{2} + \frac{1}{24569871182813792370276} \\ \left(24569871182813792370276\right)^{2} + \frac{1}{24569871182813792370276} \\ \left(3 - \frac{\left(216845894344 - 190969859251\sqrt{2}\right)^{2}}{24569871182813792370276} + \frac{1}{2616845894344 - 190969859251\sqrt{2}}\right)^{2} \right) / \frac{1}{2}279985686979310263364} \\ \left(5 - \frac{\left(216845894344 - 190969859251\sqrt{2}\right)^{2}}{8189957060937930790092} + \frac{1}{265\left(216845894344 - 190969859251}\sqrt{2}\right)^{2} \right) / \frac{1}{24569871182813792370276} \\ \left(7 - \left(5\left(216845894344 - 190969859251\sqrt{2}\right)^{2} + \frac{1}{266845894344} - 190969859251}\sqrt{2}\right)^{2} \right) / \frac{1}{24569871182813792370276} \\ \left(7 - \left(5\left(216845894344 - 190969859251\sqrt{2}\right)^{2} + \frac{1}{266845894344} - 190969859251}\sqrt{2}\right)^{2} \right) / \frac{1}{24569871182813792370276} \\ \left(7 - \left(5\left(216845894344 - 190969859251\sqrt{2}\right)^{2} + \frac{1}{266845894344} - 190969859251}\sqrt{2}\right)^{2} \right) / \frac{1}{24569871182813792370276} \\ \left(7 - \left(5\left(216845894344 - 190969859251\sqrt{2}\right)^{2} + \frac{1}{266845894344} - 190969859251}\sqrt{2}\right)^{2} \right) / \frac{1}{24569871182813792370276} + \frac{1}{216845894344} - 190969859251}\sqrt{2}\right)^{2} \right) / \frac{1}{24569871182813792370276} \\ \left(216845894344 - 190969859251\sqrt{2}\right)^{2} - \frac{1}{3509981597544827481468} + \frac{1}{10}\right) \frac{1}{350981597544827481468} + \frac{1}{10}\right) \frac{1}{350981597544827481468} + \frac{1}{10}\right) \frac{1}{350981597544827481468} + \frac{1}{10}\right) \frac{1}{3}\right) \frac{1}{3}}$$

1/2((1/tan^(-1)((-216845894344 + 190969859251 sqrt(2))/156747794826)^5))-11+Pi

Where 11 is a Lucas number

Input:

$$\frac{1}{2} \times \frac{1}{\tan^{-1} \left(\frac{-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}}{156\,747\,794826}\right)^5} - 11 + \pi$$

Exact Result:

(result in radians)

Decimal approximation:

125.1595342187663587530852614284109232424092836104055575180...

(result in radians)

125.159534... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

log(x) is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

Alternative representations:

Series representations:

$$\frac{1}{\tan^{-1} \left(\frac{-216845\ 894344 + 190.969\ 859251\ \sqrt{2}}{156\ 747\ 794\ 826}\right)^{5} 2} - 11 + \pi = -11 + \pi - (16\ i) \left/ \left(-\log(2) + \log\left(-i\left(i + \frac{-216\ 845\ 894\ 344 + 190\ 969\ 859\ 251\ \sqrt{2}}{156\ 747\ 794\ 826}\right)\right) + \frac{\sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^{k} \left(i + \frac{-216845\ 894344 + 190\ 969\ 859\ 251\ \sqrt{2}}{156\ 747\ 794\ 826}\right)^{k}}{156\ 747\ 794\ 826}\right)}{k} \right)$$

Continued fraction representations:

$$\frac{1}{\tan^{-1} \left(\frac{-216845894344+1800669859251\sqrt{2}}{156747794826}\right)^{5} 2} - 11 + \pi = -11 + \pi + \frac{1}{167} \left[\frac{-216845894344+1800669859251\sqrt{2}}{156747794826}\right)^{5} 2 - 11 + \pi + \frac{1}{167} \left(\frac{-216845894344+190069859251\sqrt{2}}{24569871182813792370276}\right)^{5} \right] / \frac{1}{128} \left(-216845894344 + 190969859251\sqrt{2} \right)^{5} = -11 + \pi + \frac{1}{167} \left(\frac{1}{16845894344} + 190969859251\sqrt{2} \right)^{5} = -11 + \pi + \frac{1}{167} \left(\frac{1}{16845894344} + 190969859251\sqrt{2} \right)^{5} = -11 + \pi + \frac{1}{167} \left(\frac{1}{16845894344} + 190969859251\sqrt{2} \right)^{2} \right) - \frac{1}{16845894344} + 190969859251\sqrt{2} \right)^{2} / \frac{1}{16} + \frac{1}{16} +$$

$$\frac{1}{\tan^{-1} \left(\frac{-216845894344+100060859251\sqrt{2}}{156747704826}\right)^5 2} -11 + \pi = -11 + \pi + \frac{1}{156747704826} \left[47312642310909092068219567484966973846403528990332452688 \\ \left(1 + \frac{\infty}{k_{=1}} \frac{\left(\frac{216845894344-190060859251\sqrt{2}}{24569871182813792370276}\right)^5 \right)}{1 + 2k} \right)^5 \right) / \frac{1}{k_{=1}} \left(-216845894344 + 190969859251\sqrt{2} \right)^5 = -11 + \pi + \frac{1}{k_{=1}} \left(47312642310909092068219567484966973846403528990332452688 \\ \left(1 + \left(216845894344 - 190969859251\sqrt{2} \right)^2 \right) \right) / \frac{1}{k_{=1}} \left(24569871182813792370276 \\ \left(3 + \left(216845894344 - 190969859251\sqrt{2} \right)^2 \right) \right) / \frac{1}{k_{=1}} \left(6142467795703448092569 \\ \left(5 + \left(216845894344 - 190969859251\sqrt{2} \right)^2 \right) \right) / \frac{1}{k_{=1}} \left(2729985686979310263364 \\ \left(7 + \left(4 \left(216845894344 - 190969859251\sqrt{2} \right)^2 \right) \right) / \frac{1}{k_{=1}} \left(-216845894344 + 190969859251\sqrt{2} \right)^5 \right) / \frac{1}{k_{=1}} \left(-216845894344 + 190969859251\sqrt{2} \right)^5 \right)^5$$

$$\frac{1}{\tan^{-1}\left(\frac{-216845894344+100069859251\sqrt{2}}{156747704826}\right)^{5}2} - 11 + \pi = -11 + \pi + \frac{1}{156747704826}$$

$$\left(47312642310909092068219567484966973846403528990332452688\left(1 + \frac{216845894344-100069859251\sqrt{2}}{24569871182813792370276}\right)^{5}\right) / \frac{1}{1+2k} - \frac{(216845894344-100069859251\sqrt{2})^{2}(-1-2k)}{24569871182813792370276}\right)^{5}} / \frac{1}{1+2k} - \frac{(216845894344-100069859251\sqrt{2})^{5}}{2-11+\pi} + \frac{1}{1+2k} + \frac{(216845894344-190969859251\sqrt{2})^{5}}{24569871182813792370276}} + \frac{1}{1+2k} + \frac{(216845894344-190969859251\sqrt{2})^{2}}{24569871182813792370276}} + \frac{(216845894344-190969859251\sqrt{2})^{2}}{24569871182813792370276} + \frac{(216845894344-190969859251\sqrt{2})^{2}}{2(25(216845894344-190969859251\sqrt{2})^{2}} + \frac{(25(216845894344-190969859251\sqrt{2})^{2}}{8189957060937930790092}} + \frac{(25(216845894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} / \frac{(24569871182813792370276}{\sqrt{2}} + \frac{(216845894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} / \frac{(25(216845894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} + \frac{(26(2645894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} + \frac{(26(2645894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} + \frac{(26(2645894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} / \frac{(216845894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} + \frac{(216845894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} / \frac{(216845894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} / \frac{(216845894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} + \frac{(216845894344-190969859251\sqrt{2})^{2}}{\sqrt{2}} / \frac{(216845894344-190969859251\sqrt{2})^{2}}}{\sqrt{2}} / \frac{(216845894344+190969859251\sqrt{2})^{2}}{\sqrt{2}} / \frac$$

2Pi*((1/tan^(-1)((-216845894344 + 190969859251 sqrt(2))/156747794826)^5))+47+11-1/golden ratio

Where 47 and 11 are Lucas numbers

Input:

 $\tan^{-1}(x)$ is the inverse tangent function ϕ is the golden ratio

Exact Result:

(result in radians)

Decimal approximation:

1728.934718078430510743282317395182371646810220521659841850...

(result in radians)

1728.934718....

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross– Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Alternate forms:

$$\frac{58 - \frac{2}{1 + \sqrt{5}} + \frac{2\pi}{\tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826}\right)^5}}{\frac{1}{2} \left(117 - \sqrt{5}\right) + \frac{2\pi}{\tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826}\right)^5}}{\frac{2\left(28 + 29\,\sqrt{5}\right)}{1 + \sqrt{5}} + \frac{2\pi}{\tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826}\right)^5}$$

Alternative representations:

Series representations:

$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845\ 894344\ +190\ 969\ 859\ 251\ \sqrt{2}}{156\ 747\ 794\ 826}\right)^5} + 47 + 11 - \frac{1}{\phi} = 58 - \frac{1}{\phi} - (64\ i\ \pi) \left/ \left(-\log(2) + \log\left(-i\left(i + \frac{-216\ 845\ 894\ 344\ +190\ 969\ 859\ 251\ \sqrt{2}}{156\ 747\ 794\ 826}\right) \right) + \sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^k \left(i + \frac{-216\ 845\ 894\ 344\ +190\ 969\ 859\ 251\ \sqrt{2}}{156\ 747\ 794\ 826}\right)^k}{k} \right)^5}{k}$$

Continued fraction representations:

$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845894344+100969859251\sqrt{2}}{156747794826}\right)^{5}} + 47 + 11 - \frac{1}{\phi} = 58 - \frac{1}{\phi} + \frac{1}{\phi} + \frac{1}{166747794826} \left[189250569243636368272878269939867895385614115961329810752\right] \\ \pi \left(1 + \frac{1}{K} \left(\frac{-216845894344+100969859251\sqrt{2}}{24569871182813792370276}\right)^{5}\right) \right] \\ \left(-216845894344 + 190969859251\sqrt{2}\right)^{5} = 58 - \frac{1}{\phi} + \frac{1}{\phi} + \frac{1}{189250569243636368272878269939867895385614115961329810752} \\ \pi \left(1 + \left(-216845894344 + 190969859251\sqrt{2}\right)^{5}\right) = 58 - \frac{1}{\phi} + \frac{1}{\phi} + \frac{1}{189250569243636368272878269939867895385614115961329810752} \\ \pi \left(1 + \left(-216845894344 + 190969859251\sqrt{2}\right)^{2} \right) - \frac{1}{\phi} + \frac{1}{\phi$$

$$\begin{aligned} &\frac{2\pi}{\tan^{-1} \left(\frac{-216845804344+100060850251\sqrt{2}}{156747704826}\right)^5} + 47 + 11 - \frac{1}{\phi} = 58 - \frac{1}{\phi} + \\ &\left(189250569243636368272878269939867895385614115961329810752\right) \\ &\left. \pi \left(1 + \frac{\infty}{K} \frac{\left(\frac{216845804344-100060859251\sqrt{2}\right)^2 k^2}{24569871182813702370276}\right)}{1+2k}\right)^5\right) \right/ \\ &\left(-216845894344 + 190969859251\sqrt{2}\right)^5 = 58 - \frac{1}{\phi} + \\ &\left(189250569243636368272878269939867895385614115961329810752\right) \\ &\left. \pi \left(1 + \left(216845894344 - 190969859251\sqrt{2}\right)^2\right) \right/ \\ &\left(24569871182813792370276\right) \\ &\left(3 + \left(216845894344 - 190969859251\sqrt{2}\right)^2\right) \right/ \\ &\left(6142467795703448092569\right) \\ &\left(5 + \left(216845894344 - 190969859251\sqrt{2}\right)^2\right) \right/ \\ &\left(2729985686979310263364\right) \\ &\left(7 + \left(4\left(216845894344 - 190969859251\sqrt{2}\right)^2\right) \right/ \\ &\left(-216845894344 + 190969859251\sqrt{2}\right)^5 \end{aligned}$$

$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845894344+100069859251\sqrt{2}}{156747704826}\right)^5} + 47 + 11 - \frac{1}{\phi} = 58 - \frac{1}{\phi} + \frac{1}{169250569243636368272878269939867895385614115961329810752}$$

$$\pi \left(1 + \frac{\kappa}{k_{-1}} \frac{\frac{(21684589434-100069859251\sqrt{2})^2(1-2k)^2}{24569871182813792370276}}\right)^5 \right) / (-216845894344-100969859251\sqrt{2})^5 = 58 - \frac{1}{\phi} + \frac{1}{189250569243636368272878269939867895385614115961329810752}$$

$$\pi \left(1 + \left(216845894344 - 190969859251\sqrt{2}\right)^2 - \frac{1}{24569871182813792370276}\right) + \frac{1}{(216845894344 - 190969859251\sqrt{2})^2} + \frac{1}{(25(216845894344 - 190969859251\sqrt{2})^2} + \frac{1}{(216845894344 - 190969859251\sqrt{2})^2} + \frac{1}{(21684589434$$

From the previous expression, by the alternate form

 $\tan^{-1}\left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826}\right)$

We obtain:

 $1/10^{52}((((\tan^{-1})((-216845894344 + 190969859251 \text{ sqrt}(2))/156747794826) + 1/\text{golden ratio} + (18-2)/10^{2} + 2/10^{4}))))$

Where 18 and 2 are Lucas numbers

Input:

$$\frac{1}{10^{52}} \left(\tan^{-1} \left(\frac{-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826} \right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4} \right)$$

 $\tan^{-1}(x)$ is the inverse tangent function ϕ is the golden ratio

Exact Result:

 $\frac{1}{\phi} + \frac{801}{5000} + \tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156747\,794826} \right)$

Decimal approximation:

 $1.1055836955626154936490249471638310006878458079788670...\times 10^{-52}$

(result in radians)

 $1.105583695...*10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056*10^{-52}$ m⁻²

Alternate forms:

 $\phi \left(801 + 5000 \tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2} - 216\,845\,894\,344}{156\,747\,794\,826} \right) \right) + 5000$

 $\frac{2500\,\sqrt{5}\,-\!1699}{5000}+\tan^{-1}\!\left(\frac{190\,969\,859\,251\,\sqrt{2}\,-\!216\,845\,894\,344}{156747\,794826}\right)$

 $\frac{801}{5000} + \frac{2}{1+\sqrt{5}} + \tan^{-1} \left(\frac{190\,969\,859251\,\sqrt{2}\,-216845\,894344}{156\,747\,794\,826} \right)$

Alternative representations:

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^2}}{10^5} = \frac{\sec^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{16}{10^2} + \frac{2}{10^4}}{10^4}}{10^{52}} = \frac{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4}}{10^{52}} = \frac{10^{52}}{10^5}$$

$$\frac{\tan^{-1}\left(1, \frac{-216845894344+190969859251\sqrt{2}}{156747794826}\right) + \frac{1}{\phi} + \frac{16}{10^2} + \frac{2}{10^4}}{10^{52}}$$

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4}}{i\,10^{52}} = \frac{10^{52}}{i\,156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{16}{10^2} + \frac{2}{10^4}}{10^4}$$

Series representations:

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^{52}} = \frac{10^{52}}{10^{52}}$$

$$\frac{\tan^{-1} \left(\frac{-216845\ 804344+190\ 969\ 859251\ \sqrt{2}}{156\ 747\ 794\ 826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4} = \frac{10^{52}}{\left(\frac{801}{5000} + \frac{1}{\phi} + \frac{1}{313\ 495\ 589\ 652}\left(-216\ 845\ 894\ 344 + 190\ 969\ 859\ 251\ \sqrt{2}\right)\right)}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{1}{\Gamma\left(\frac{3}{2} - s\right)}24569\ 871\ 182\ 813\ 792\ 370\ 276^s} \left(-216\ 845\ 894\ 344 + 190\ 969\ 859\ 251\ \sqrt{2}\right)^{-2\ s} \left(\frac{1}{2} - s\right)\Gamma(1 - s)\ \Gamma(s)\right) \right)$$

Integral representations:

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4}}{10^{52}} = \left(\frac{801}{5000} + \frac{1}{\phi} + \frac{-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}}{\int_0^1 \frac{1}{1 + \frac{\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2 t^2}{24\,569\,871\,182\,813\,792\,370\,276}}\,dt\right)}/$$

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4}}{\left(\frac{801}{5000} + \frac{1}{\phi} - \frac{i\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)}{626\,991\,179\,304\,\pi}\right)}{626\,991\,179\,304\,\pi}$$
$$\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \frac{1}{\Gamma\left(\frac{3}{2} - s\right)}\,24\,569\,871\,182\,813\,792\,370\,276^{s}}{\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^{-2\,s}}$$
$$\left(\frac{1}{2} - s\right)\Gamma(1 - s)\,\Gamma(s)\,d\,s\right) \Big/$$

 $\frac{\tan^{-1} \left(\frac{-216845\,894344 + 190.969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4} = \\ \left(\frac{801}{5000} + \frac{1}{\phi} - \frac{i\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)}{626\,991\,179\,304\,\pi^{3/2}} \right) \\ \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \left(1 + \frac{\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2}{24\,569\,871\,182\,813\,792\,370\,276}\right)^{-s} \\ \Gamma\left(\frac{1}{2} - s\right)\Gamma(1 - s)\,\Gamma(s)^2\,d\,s\right) \right/$

Continued fraction representations:

With regard Pi/8, we obtain:

Pi/8

$\frac{\text{Input:}}{\frac{\pi}{8}}$

Decimal approximation:

0.392699081698724154807830422909937860524646174921888227621...

0.392699081....

Property:

 $\frac{\pi}{8}$ is a transcendental number

Alternative representations:

$$\frac{\pi}{8} = \frac{180^{\circ}}{8}$$
$$\frac{\pi}{8} = -\frac{1}{8} i \log(-1)$$
$$\frac{\pi}{8} = \frac{1}{8} \cos^{-1}(-1)$$

Series representations:

$$\begin{aligned} \frac{\pi}{8} &= \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{1+2k} \\ \frac{\pi}{8} &= \sum_{k=0}^{\infty} -\frac{(-1)^k 1195^{-1-2k} \left(5^{1+2k} - 4 \times 239^{1+2k}\right)}{2(1+2k)} \\ \frac{\pi}{8} &= \frac{1}{8} \sum_{k=0}^{\infty} \left(-\frac{1}{4}\right)^k \left(\frac{1}{1+2k} + \frac{2}{1+4k} + \frac{1}{3+4k}\right) \end{aligned}$$

Integral representations:

$$\frac{\pi}{8} = \frac{1}{2} \int_0^1 \sqrt{1 - t^2} dt$$
$$\frac{\pi}{8} = \frac{1}{4} \int_0^1 \frac{1}{\sqrt{1 - t^2}} dt$$
$$\frac{\pi}{8} = \frac{1}{4} \int_0^\infty \frac{1}{1 + t^2} dt$$

Page 310 Manuscript 1

 $f(x^{4}) = f(x^{4}, -x^{4}) - x^{4}f(-x^{4}, -x^{7}) - x = f(-x, -x^{9}).$ $f(x^{4}) = f(x^{4}, -x^{4}) - x^{4}f(-x^{4}, -x^{7}) - x = f(-x, -x^{9}).$ $f(x^{4}) = f(x^{4}, -x^{4}) - x^{4}f(-x^{4}, -x^{7}) - x = f(-x, -x^{9}).$ $f(x^{4}) = f(x^{4}, -x^{4}) - x^{4}f(-x^{4}, -x^{4})$ $f(x^{4}) = f(x^{4}, -x^{4}) - x^{4}f(-x^{4}, -x^{4}) - x^{4}f$ = 5 \$ (x) \$ (x") - 20x fasfan + 32x ftx) ftx) - 20x3 4 (x) 44 x"). = \$ (a) \$ (a') [5. 1+ Jan + Max - 1/2 \$1 - 1/2 \$1 - 1/2 \$1 - 1/2 \$ $3 + 4\left(\frac{x^{2}}{1-x^{2}} + \frac{2x^{5}}{1-x^{6}} + s_{1}\right) - 4\left(\frac{19x^{28}}{1-x^{16}} + \frac{38x^{76}}{1-x^{76}} + s_{1}\right)$ = \$ (a) \$ (a 19) 3. 1+ Jan + Ja x1 m - 1 \$ 1 - 5/4A - 1/2 ADTIN 11+18(x4 + 2x5 + x5)-12(23x46 + 46272 + bc) = \$ w \$ (2 ") \$ 11. 1+ JAA + Je-23(1-A). - 16 3/2. 15 930-1011-A). 1+ 5/4/3 + 3/11-2 - 10 37 . VARCI- ASTI-AS

 $11+12(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-12((((23^2^46)/(1-2^46)+(46^2^92)/(1-2^92))))$

Input:

 $11 + 12\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1-2^{46}} + \frac{46 \times 2^{92}}{1-2^{92}}\right)$

Exact result: 263 235 569 953 644 556 439 442 644 011 330 117 343 809 434 739 973 099 793

Decimal approximation:

797.400000000039221959013959202392769638452537006676432338...

797.4...

Alternate form:

263 235 569 953 644 556 439 442 644 011

 $330\,117\,343\,809\,434\,739\,973\,099\,793$

Mixed fraction:

797 <u>132046937525068680882108990</u> <u>330117343809434739973099793</u>

Continued fraction:

 $2((11+12(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-12((((23^2^46)/(1-2^46)+(46^2^92)/(1-2^92)))))+123+11$

Where 123 and 11 are Lucas numbers

Input:

$$2\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)+123+11$$

Exact result:

570 706 863 977 753 368 035 280 660 284

330 117 343 809 434 739 973 099 793

Decimal approximation:

1728.80000000007844391802791840478553927690507401335286467...

1728.8....

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-Zagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternate form: 570 706 863 977 753 368 035 280 660 284 330 117 343 809 434 739 973 099 793

Mixed fraction:

1728 264093875050137361764217980 330117343809434739973099793

Continued fraction:

((11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^66)+(46*2^92)/(1-2^66)+(46*2^92)/(1-2^66)+(46*2^92)/(1-2^66)+(46*2^92)/(1-2^66)+(46*2^92)/(1-2^66)+(46*2^66) 2^92)))))-18+Pi

Where 18 is a Lucas number

Input:

$$\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-18+\pi$$

Result: 257 293 457 765 074 731 119 926 847 737 330 117 343 809 434 739 973 099 793

Decimal approximation:

782.5415926535937154343640393035187798480424231000427490548...

782.541592.... result practically equal to the rest mass of Omega meson 782.65

Property:

257 293 457 765 074 731 119 926 847 737 330 117 343 809 434 739 973 099 793 + π is a transcendental number

Alternate forms:

 $\frac{257\,293\,457\,765\,074\,731\,119\,926\,847\,737+330\,117\,343\,809\,434\,739\,973\,099\,793\,\pi}{330\,117\,343\,809\,434\,739\,973\,099\,793}$

 $\frac{257\,293\,457\,765\,074\,731\,119\,926\,847\,737+330\,117\,343\,809\,434\,739\,973\,099\,793\,\pi}{330\,117\,343\,809\,434\,739\,973\,099\,793}$

Continued fraction:

Alternative representations:

$$\left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = -7 + 180^\circ + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right)$$

$$\left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = -7 - i \log(-1) + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right)$$
$$\left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = -7 - i \log(-1) + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = -7 - i \log(-1) + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = -7 - i \log(-1) + 12 \left(\frac{2}{1 - 2^{46}} + \frac{2}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) - 18 + \pi = -7 - i \log(-1) + 12 \left(\frac{2}{1 - 2^{46}} + \frac{2}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = -7 - i \log(-1) + 12 \left(\frac{2}{1 - 2^{46}} + \frac{2}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) - 18 + \pi = -7 - i \log(-1) + 12 \left(\frac{2}{1 - 2^{46}} + \frac{2}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) - 18 + \pi = -7 - i \log(-1) + 12 \left(\frac{2}{1 - 2^{46}} + \frac{2}{1 - 2^{46}} + \frac{4}{1 - 2^{46}} \right)$$

$$\left(\frac{11+12}{1-2^2} \left(\frac{1}{1-2^4} + \frac{1}{1-2^4} \right)^{-12} \left(\frac{1}{1-2^{46}} + \frac{1}{1-2^{92}} \right) \right)^{-18+3} + \frac{1}{1-2^{46}} - \frac{1}{1-2^{92}} \right) - \frac{1}{10} \left(\frac{1}{1-2^{46}} + \frac{1}{1-2^{92}} + \frac{1}{1-2^{92}} \right)^{-18+3} + \frac{1}{1-2^{92}} \right)$$

Series representations:

$$\left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = \frac{257293457765074731119926847737}{330117343809434739973099793} + 4 \sum_{k=0}^{\infty} \frac{(-1)^k}{1 + 2k} \right)$$

$$\begin{pmatrix} 11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right) \end{pmatrix}-18+\pi=\\ \frac{257\,293\,457\,765\,074\,731\,119\,926\,847\,737}{330\,117\,343\,809\,434\,739\,973\,099\,793}+\\ \sum_{k=0}^{\infty}-\frac{4\,(-1)^k\,1195^{-1-2\,k}\left(5^{1+2\,k}-4\times 239^{1+2\,k}\right)}{1+2\,k} \end{pmatrix}$$

$$\begin{pmatrix} 11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right) \end{pmatrix}-18+\pi=\\ \frac{257\,293\,457\,765\,074\,731\,119\,926\,847\,737}{330\,117\,343\,809\,434\,739\,973\,099\,793}+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^k\left(\frac{1}{1+2\,k}+\frac{2}{1+4\,k}+\frac{1}{3+4\,k}\right)$$

Integral representations:

Integral representations:

$$\left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = \frac{257293457765074731119926847737}{330117343809434739973099793} + 4 \int_0^1 \sqrt{1 - t^2} dt$$

$$\left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = \frac{257293457765074731119926847737}{330117343809434739973099793} + 2 \int_0^1 \frac{1}{\sqrt{1 - t^2}} dt$$

$$\left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 18 + \pi = \frac{257293457765074731119926847737}{330117343809434739973099793} + 2 \int_0^\infty \frac{1}{1 + t^2} dt$$

 $1/6((11+12(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-12((((23^2^4)/(1-2^4)))-12)))$ 2^46)+(46*2^92)/(1-2^92)))))+2Pi+1/golden ratio

Input:

 $\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi}$

Result:

 $\frac{1}{\phi} + \frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} + 2\,\pi$

Decimal approximation:

139.8012192959301350244467729209645233800888569286672483763...

139.80121929.... result practically equal to the rest mass of Pion meson 139.57 MeV

Property: $\frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} + \frac{1}{\phi} + 2\,\pi \text{ is a transcendental number}$

Alternate forms:

(262 245 217 922 216 252 219 523 344 632 + 990 352 031 428 304 219 919 299 379 $\sqrt{5}$ + 3 961 408 125 713 216 879 677 197 516 π)/ 1980704062856608439838598758 (263 235 569 953 644 556 439 442 644 011 \$\overline{0}\$+ 3 961 408 125 713 216 879 677 197 516 m \$\phi\$ + 1980704062856608439838598758)/

(1980704062856608439838598758 d)

 $\frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758}+\frac{2}{1+\sqrt{5}}+2\,\pi$

Alternative representations:

$$\begin{aligned} &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \\ &2\pi + -\frac{1}{2\cos(216^\circ)} + \frac{1}{6} \left(11 + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) \\ &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \\ &360^\circ + -\frac{1}{2\cos(216^\circ)} + \frac{1}{6} \left(11 + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{42}} \right) \right) + 2\pi + \frac{1}{\phi} = \\ &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{42}} \right) \right) + 2\pi + \frac{1}{\phi} = \\ &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \end{aligned}$$

$$\frac{1}{6} \left[\frac{11+12}{1-2^2} + \frac{1}{1-2^4} \right] - \frac{12}{1-2^{46}} + \frac{1}{1-2^{92}} \left[\frac{1+2\pi}{1-2^{92}} + \frac{1}{\phi} \right] + \frac{1}{2\pi} + \frac{1}{\phi} = \frac{1}{2\pi} + \frac{1}{2\cos\left(\frac{\pi}{5}\right)} + \frac{1}{6} \left(\frac{11+12}{1+2} \left(-\frac{4}{3} + \frac{2\times 2^4}{1-2^4} \right) - \frac{12}{12} \left(\frac{23\times 2^{46}}{1-2^{46}} + \frac{46\times 2^{92}}{1-2^{92}} \right) \right)$$

Series representations:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \frac{263 \, 235 \, 569 \, 953 \, 644 \, 556 \, 439 \, 442 \, 644 \, 011}{1 \, 980 \, 704 \, 062 \, 856 \, 608 \, 439 \, 838 \, 598 \, 758} + \frac{1}{\phi} + 8 \sum_{k=0}^{\infty} \frac{(-1)^k}{1 + 2 \, k} \right)$$

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \frac{263 \, 235 \, 569 \, 953 \, 644 \, 556 \, 439 \, 442 \, 644 \, 011}{1 \, 980 \, 704 \, 062 \, 856 \, 608 \, 439 \, 838 \, 598 \, 758} + \frac{1}{\phi} + \frac{1}{\phi} + \sum_{k=0}^{\infty} -\frac{8 \, (-1)^k \, 1195^{-1-2k} \left(5^{1+2k} - 4 \times 239^{1+2k} \right)}{1 + 2 \, k} \right)$$

$$\frac{1}{6} \left(11 + 12 \left(\frac{2}{1-2^2} + \frac{2 \times 2}{1-2^4} \right) - 12 \left(\frac{23 \times 2}{1-2^{46}} + \frac{46 \times 2}{1-2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \frac{263 \, 235 \, 569 \, 953 \, 644 \, 556 \, 439 \, 442 \, 644 \, 011}{1 \, 980 \, 704 \, 062 \, 856 \, 608 \, 439 \, 838 \, 598 \, 758} + \frac{1}{\phi} + 2 \sum_{k=0}^{\infty} \left(-\frac{1}{4} \right)^k \left(\frac{1}{1+2k} + \frac{2}{1+4k} + \frac{1}{3+4k} \right)$$

Integral representations:

$$\begin{aligned} &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \\ &\frac{263 \, 235 \, 569 \, 953 \, 644 \, 556 \, 439 \, 442 \, 644 \, 011}{1 \, 980 \, 704 \, 062 \, 856 \, 608 \, 439 \, 838 \, 598 \, 758} + \frac{1}{\phi} + 8 \int_0^1 \sqrt{1 - t^2} \, dt \\ &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \\ &\frac{263 \, 235 \, 569 \, 953 \, 644 \, 556 \, 439 \, 442 \, 644 \, 011}{1 \, 980 \, 704 \, 062 \, 856 \, 608 \, 439 \, 838 \, 598 \, 758} + \frac{1}{\phi} + 4 \int_0^1 \frac{1}{\sqrt{1 - t^2}} \, dt \\ &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \\ &\frac{263 \, 235 \, 569 \, 953 \, 644 \, 556 \, 439 \, 442 \, 644 \, 011}{1 \, 980 \, 704 \, 062 \, 856 \, 608 \, 439 \, 838 \, 598 \, 758} + \frac{1}{\phi} + 4 \int_0^\infty \frac{1}{\sqrt{1 - t^2}} \, dt \\ &\frac{1}{980 \, 704 \, 062 \, 856 \, 608 \, 439 \, 838 \, 598 \, 758} + \frac{1}{\phi} + 4 \int_0^\infty \frac{1}{1 + t^2} \, dt \end{aligned}$$

$$1/6((11+12(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-12(((((23^2^46)/(1-2^4))+(46^2^92)/(1-2^92))))))-7-1/golden ratio$$

where 7 is a Lucas number

Input:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 7 - \frac{1}{\phi}$$

 ϕ is the golden ratio

Result:

 $\frac{249\,370\,641\,513\,648\,297\,360\,572\,452\,705}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758}-\frac{1}{\phi}$

Decimal approximation:

125.2819660112507588511123124856742413762538997703055110101...

125.281966.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{250\,360\,993\,545\,076\,601\,580\,491\,752\,084-990\,352\,031\,428\,304\,219\,919\,299\,379\,\sqrt{5}}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758}$

 $-\frac{1\,980\,704\,062\,856\,608\,439\,838\,598\,758-249\,370\,641\,513\,648\,297\,360\,572\,452\,705\,\phi}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758\,\phi}$

 $\frac{249\,370\,641\,513\,648\,297\,360\,572\,452\,705\,\phi-1\,980\,704\,062\,856\,608\,439\,838\,598\,758}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758\,\phi}$

Alternative representations:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 7 - \frac{1}{\phi} = -7 + \frac{1}{6} \left(11 + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - \frac{1}{2 \sin(54^\circ)} = \frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 7 - \frac{1}{\phi} = -7 - \frac{1}{2 \cos(216^\circ)} + \frac{1}{6} \left(11 + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 7 - \frac{1}{\phi} = \frac{1}{2 \cos(216^\circ)} + \frac{1}{6} \left(11 + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right)$$

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 7 - \frac{1}{\phi} = -7 + \frac{1}{6} \left(11 + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - \frac{1}{2\sin(666^\circ)}$$

where 7, 29 and 76 are Lucas numbers

Input:

$$\frac{1}{10^{52}} \left(1 + \frac{1}{11 + 12\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)} + \frac{76 + 29}{10^3} - \frac{7}{10^4} \right)$$

Exact result:

Decimal approximation:

 $1.1055540757461750628057051019715804684585174184916532...\times 10^{-52}$

 $1.105554075\ldots^*10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056^*10^{-52}~m^{-2}$

Alternate form:

Or:

Input:

$$\frac{1}{10^{52}} \left(76 - 11 \sqrt{11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right)} - \frac{26}{10^4} \right)$$

Result:

263235569953644556439442644011 330117343809434739973099793 5000

Decimal approximation:

 $1.1056587600373385535582711646108932935595666539265738... \times 10^{-52}$

 $1.10565876...*10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056*10^{-52}$ m⁻²

Alternate forms:

 $(5000 \times 330\,117\,343\,809\,434\,739\,973\,099\,793^{64/65}$

 $\sqrt[65]{263235569953644556439442644011} = 4291525469522651619650297309}/$

 $3+4(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-4(((((19^2/38)/(1-2^38)+(38^2/76)/(1-2^76))))))$

Input:

3 + 4	(2 ²	2×2^4		(19×2^{38})	38×2^{76}
	$(1-2^2)^+$	$1 - 2^4$	-4	$(1-2^{38})$	$1 - 2^{76}$

Exact result:

 $\frac{1\,093\,742\,054\,024\,961\,387\,511\,299}{5\,037\,190\,915\,060\,954\,894\,609}$

Decimal approximation:

217.1333333336098197226753210725341023125581586079271315974...

217.13333....

Alternate form:

 $\frac{1\,093\,742\,054\,024\,961\,387\,511\,299}{5\,037\,190\,915\,060\,954\,894\,609}$

Mixed fraction:

217 <u>671625456734175381146</u> <u>5037190915060954894609</u>

Continued fraction:

 $3+4(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-4(((((19^2^38)/(1-2^38)+(38^2^76)/(1-2^76))))) - 76$ - golden ratio

Where 76 is a Lucas number

Input:

$$3 + 4\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - 76 - \phi$$

∉ is the golden ratio

Result:

 $\frac{710\,915\,544\,480\,328\,815\,521\,015}{5\,037\,190\,915\,060\,954\,894\,609}-\phi$

Decimal approximation:

139.5152993448599248744707342381684641948378494281213687353...

139.515299.... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

 $\frac{1\,416\,793\,898\,045\,596\,676\,147\,421-5\,037\,190\,915\,060\,954\,894\,609\,\sqrt{5}}{10\,074\,381\,830\,121\,909\,789\,218}$

 $\frac{710\,915\,544\,480\,328\,815\,521\,015-5\,037\,190\,915\,060\,954\,894\,609\,\phi}{5\,037\,190\,915\,060\,954\,894\,609}$

 $\frac{1416\,793\,898\,045\,596\,676\,147\,421}{10\,074\,381\,830\,121\,909\,789\,218} - \frac{\sqrt{5}}{2}$

Alternative representations:

$$3 + 4\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - 76 - \phi = -73 + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - 2\sin(54^\circ)$$

$$3 + 4\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - 76 - \phi = -73 + 2\cos(216^\circ) + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right)$$

$$3 + 4\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - 76 - \phi = -73 + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) + 2\sin(666^\circ)$$

 $3+4(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-4((((19^2^38)/(1-2^38)+(38^2^76)/(1-2^76))))) - 89 - golden ratio^2$

Input:

$$3 + 4\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right) - 89 - \phi^2$$

∉ is the golden ratio

Result:

 $\frac{645\,432\,062\,584\,536\,401\,891\,098}{5\,037\,190\,915\,060\,954\,894\,609}-\phi^2$

Decimal approximation:

125.5152993448599248744707342381684641948378494281213687353...

125.515299... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

 $\frac{1275752552423889939098369 - 5037190915060954894609\sqrt{5}}{10074381830121909789218}$ $\frac{1275752552423889939098369}{10074381830121909789218} - \frac{\sqrt{5}}{2}$ $\frac{645432062584536401891098 - 5037190915060954894609\phi^{2}}{5037190915060954894609}$

Alternative representations:

$$3 + 4\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - 89 - \phi^2 = -86 + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - (2\sin(54^\circ))^2$$

$$3 + 4\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - 89 - \phi^2 = -86 - (-2\cos(216^\circ))^2 + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right)$$

$$3 + 4\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - 89 - \phi^2 = -86 + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right) - (-2\sin(666\,^\circ))^2$$

Where 8 is a Fibonacci number

Input:

$$8\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)-8$$

Exact result: 8709 638 904 879 203 460 933 520 5 037 190 915 060 954 894 609

Decimal approximation:

 $1729.066666668878557781402568580272818500465268863417052779\ldots$

1729.066...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Alternate form:

8709638904879203460933520

5 037 190 915 060 954 894 609

 $2* (((3+4(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-4((((19*2^38)/(1-2^38)+(38*2^76)/(1-2^76)))))))+47+golden ratio$

Where 47 is a Lucas number

Input:

$$2\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+47+\phi$$

 ϕ is the golden ratio

Result:

 $\phi + \frac{2424232081057787655069221}{5037190915060954894609}$

Decimal approximation:

482.8847006559695342935552289794338427428366263956600260571...

482.8847006... result very near to Holographic Ricci dark energy model, where

$$\chi^2_{\rm RDE} = 483.130.$$

Alternate forms:

 $4\,853\,501\,353\,030\,636\,265\,033\,051+5\,037\,190\,915\,060\,954\,894\,609\,\sqrt{5}$

 $10\,074\,381\,830\,121\,909\,789\,218$

 $5\,037\,190\,915\,060\,954\,894\,609\,\phi + 2\,424\,232\,081\,057\,787\,655\,069\,221$

5037190915060954894609

 $\frac{4853501353030636265033051}{10074381830121909789218}+\frac{\sqrt{5}}{2}$

Alternative representations:

$$2\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+47+\phi=$$

$$47+2\left(3+4\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+2\sin(54^\circ)$$

$$2\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+47+\phi=$$

$$47-2\cos(216^\circ)+2\left(3+4\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)$$

$$2\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+47+\phi=$$

$$47+2\left(3+4\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)-2\sin(666^\circ)$$

We observe also that from the sum of the two results, adding 5 that is a Fibonacci number, we obtain:

$$\begin{split} &11+12(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-12((((23^2^46)/(1-2^46)+(46^2^92)/(1-2^92)))) + (((3+4(((2^2/(1-2^2))+(2^2^4)/(1-2^4)))-4((((19^2^38)/(1-2^38)+(38^2^76)/(1-2^76)))))))+5 \end{split}$$

Input:

$$\begin{aligned} &11 + 12\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1-2^{46}} + \frac{46 \times 2^{92}}{1-2^{92}}\right) + \\ & \left(3 + 4\left(\frac{2^2}{1-2^2} + \frac{2 \times 2^4}{1-2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1-2^{38}} + \frac{38 \times 2^{76}}{1-2^{76}}\right)\right) + 5 \end{aligned}$$

Exact result:

 $1\,695\,345\,363\,604\,491\,043\,436\,883\,743\,614\,143\,568\,419\,476\,425\,677\,491$

 $1\,662\,864\,085\,140\,938\,431\,378\,392\,734\,842\,904\,212\,377\,354\,715\,937$

Decimal approximation:

1019.533333333613741918576716992773379276403412308594774831...

1019.5333... result practically equal to the rest mass of Phi meson 1019.445

Alternate form:

 $\frac{1\,695\,345\,363\,604\,491\,043\,436\,883\,743\,614\,143\,568\,419\,476\,425\,677\,491}{1\,662\,864\,085\,140\,938\,431\,378\,392\,734\,842\,904\,212\,377\,354\,715\,937}$

Mixed fraction:

 $1019 \frac{886860845874781862301546809224176006951970137688}{1662864085140938431378392734842904212377354715937}$

Continued fraction:

Page 311

 $= \phi^{+}(x) \phi^{+}(x^{-1}) \begin{cases} 11. \frac{1+\sqrt{dn} + \sqrt{1-dn(1-n)}}{2} \\ - \frac{16\sqrt{2} \sqrt{1-dn(1-n)}}{2} \\ 1 + \sqrt{dn} + \sqrt{1-dn(1-n)} \\ 2 \end{cases}$ - 10 3/4. STAREN ASTERS }

7 + 12 (x2 + 2x5 + 2c) = ie (1000 + 30x20 + 2c) $= \phi^{*}(a) \phi^{*}(a) \underbrace{f(1)}_{1+\sqrt{a}p} + \int f(a)(1-p) \\ -2 \underbrace{\int ap(a) ap(1-p)}_{1+\sqrt{a}p} (1+ \underbrace{\nabla ap} + \underbrace{\nabla (ra)(1-p)}_{1+\sqrt{a}p}) \\ = \underbrace{1}_{1+\sqrt{a}} + \underbrace{1}_{1+\sqrt{a}} - \underbrace{s \underbrace{\int ap(1-a)(1-p)}_{1+\sqrt{a}}}_{1+\sqrt{a}} \underbrace{f(1+\sqrt{a})}_{1+\sqrt{a}} + \underbrace{\nabla (ra)(1-p)}_{1+\sqrt{a}} \Big\}$ $5 + 4\left(\frac{x^{2}}{1-x} + \frac{2x^{2}}{1-x} + k^{2}\right) - 4\left(\frac{31x62}{1-x62} + \frac{62x}{1-x}\frac{116}{1-x} + k^{2}\right)$ \$ (x) \$ 4(x)] } 5- 1+ Jap + JE 2)(+A) - 6 JAP(1-A)(1-A) (1+ JAP - 4 Was (1-2) (1-2) JI+ Jap + V(-2)(-1) (1+ JAP + 1/+2,1) $1 + 6\left(\frac{x^{2}}{1-x} + \frac{2x^{2}}{1-x^{2}} + x\right) - 6\left(\frac{1-x^{10}}{1-x^{10}} + \frac{10x^{10}}{1-x^{10}} + x\right)$ = \$ (a) \$ (as) J + Vaa + Jia. Fo { 1+ Jao + Juaxim = + an prais fit day + Stanta = \$ GI\$ (1) 5 1+ do + 1- 1) - 3 - 3/ do (1-1)(1-1)

Now, we have that:

 $\begin{array}{l}11+12 \left(\left((2^2/(1-2^2))+((2^{*}2^4)/(1-2^4))\right)\right)-12 \left(\left((15^{*}2^{-10})/(1-2^{-10})\right)+(30^{*}2^{-20})/(1-2^{-20})\right)\\2^{2}20\right)\right)$

Input:

$$11 + 12\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{15 \times 2^{10}}{1 - 2^{10}} + \frac{30 \times 2^{20}}{1 - 2^{20}}\right)$$

Exact result: 35621931

69905

Decimal approximation:

509.5762964022602102853873113511193762964022602102853873113...

509.5762964...

Mixed fraction: 509⁴⁰²⁸⁶ 69905

Continued fraction:

 $5+4 (((2^2/(1-2^2))+((2^2^4)/(1-2^4))))-4(((31^2^62)/(1-2^62))+(62^2^124)/(1-2^62))+(62^2(1-2^6))+$ $2^{124}))$

Input:

$$5 + 4\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{31 \times 2^{62}}{1 - 2^{62}} + \frac{62 \times 2^{124}}{1 - 2^{124}}\right)$$

Exact result:

514 866 125 727 319 947 395 068 128 497 011 253 285

1417843195503910264430727530965700881

Decimal approximation:

363.13333333333333333602215472109738433142095187351435258965...

363.1333...

Alternate form:

514866125727319947395068128497011253285 1417843195503910264430727530965700881

Mixed fraction:

 $363 \frac{189045759400521406714034756461833482}{1417843195503910264430727530965700881}$

Continued fraction:

 $1+6 (((2^2/(1-2^2))+((2^2^4)/(1-2^4))))-6(((5^2^10)/(1-2^10))+(10^2^20)/(1-2^20)))$

Input:

$$1 + 6\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 6\left(\frac{5 \times 2^{10}}{1 - 2^{10}} + \frac{10 \times 2^{20}}{1 - 2^{20}}\right)$$

Exact result: 981877 13981

Decimal approximation:

70.22938273371003504756455189185322938273371003504756455189...

70.2293827...

Mixed fraction: 70³²⁰⁷/₁₃₉₈₁

Continued fraction:

We observe that, from the sum of the three results:

35621931/69905+514866125727319947395068128497011253285/14178431955039 10264430727530965700881+981877/13981

We obtain:

(35621931/69905)+(514866125727319947395068128497011253285/141784319550 3910264430727530965700881)+(981877/13981)-4

Where 4 is a Lucas number

Input:

 $\frac{35\,621\,931}{69\,905}+\frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881}+\frac{981\,877}{13\,981}-4$

Exact result:

93 062 309 800 060 263 697 797 495 157 845 549 949 832 101 99 114 328 581 700 847 035 030 008 052 157 320 086 305

Decimal approximation:

938.9390124693035786931734104539464489933454889804764777597...

938.93901246... result practically equal to the rest mass of neutron mass in MeV

2*((((35621931/69905)+(514866125727319947395068128497011253285/14178431 95503910264430727530965700881)+(981877/13981))))-123-29-Pi-golden ratio

Where 123 and 29 are Lucas numbers

Input:

 $2\left(\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \frac{981\,877}{13\,981}\right) - 123 - 29 - \pi - \phi$

 ϕ is the golden ratio

Result:

 $-\phi + \frac{171\,852\,156\,284\,355\,605\,422\,550\,669\,156\,180\,445\,807\,236\,282}{99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305} - 2000$

Decimal approximation:

1729.118398296267469299679590690247756984773499381772086836...

1729.118398...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Property:

```
\frac{171\,852\,156\,284\,355\,605\,422\,550\,669\,156\,180\,445\,807\,236\,282}{99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305}-\phi-\pi is a transcendental number
```

Alternate forms:

(343 605 198 240 129 509 998 066 308 304 308 734 294 386 259 -

99 114 328 581 700 847 035 030 008 052 157 320 086 305 $\sqrt{5}$ – 198 228 657 163 401 694 070 060 016 104 314 640 172 610 π)/ 198 228 657 163 401 694 070 060 016 104 314 640 172 610

 $\begin{array}{l}(-99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305\,\phi +\\ 171\,852\,156\,284\,355\,605\,422\,550\,669\,156\,180\,445\,807\,236\,282-\\ 99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305\,\pi)/\\ 99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305\,\pi)/\end{array}$

343 605 198 240 129 509 998 066 308 304 308 734 294 386 259	$\sqrt{5}$	1
198 228 657 163 401 694 070 060 016 104 314 640 172 610	2	- 1

Alternative representations:

The number of the sentences of the sente
$2\left(\frac{35621931}{1}+\frac{514866125727319947395068128497011253285}{981877}\right)$
² (69 905 ['] 1 417 843 195 503 910 264 430 727 530 965 700 881 ['] 13 981 [']
$\frac{123 - 29 - \pi - \phi}{2} = -152 - \pi + 2\cos(216^\circ) + \frac{35621931}{2} + \frac{514866125727319947395068128497011253285}{2}$
² (13981 69905 1417843195503910264430727530965700881)
$2\left(\frac{35621931}{1}+\frac{514866125727319947395068128497011253285}{981877}+\frac{981877}{1}\right)$
69 905 1417 843 195 503 910 264 430 727 530 965 700 881 13 981
$123 - 29 - \pi - \phi = -152 - 180^{\circ} + 2\cos(216^{\circ}) + \cos(216^{\circ}) + \cos(216$
$2\left(\frac{981877}{100000} + \frac{35621931}{100000000000000000000000000000000000$
² (13981 69905 1417843195503910264430727530965700881)
$2\left(\frac{35621931}{2}+\frac{514866125727319947395068128497011253285}{2}+\frac{981877}{2}\right)$
$(69905 \ 1417843\ 195503\ 910\ 264\ 430\ 727\ 530\ 965\ 700\ 881 \ 13\ 981)$
$123 - 29 - \pi - \phi = -152 - \pi - 2\cos\left(\frac{\pi}{5}\right) +$
981877 35621931 514866125727319947395068128497011253285
2 3 981 + 69905 + 1417843195503910264430727530965700881

Series representations:

35 621 931 514 866 125 727 319 947 395 068 128 497 011 253 285 981 877
2 69 905 + 1417 843 195 503 910 264 430 727 530 965 700 881 + 13 981 -
$123 - 29 - \pi - \phi =$
$\frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305} - \phi - 4\sum_{k=1}^{\infty} \frac{(-1)^k}{1+2k}$
$99114328581700847035030008052157320086305 \qquad -\phi - 4\sum_{k=0}^{\infty} \frac{1}{1+2k}$
$2\left(\frac{35621931}{2}+\frac{514866125727319947395068128497011253285}{2}+\frac{981877}{2}\right)$
² (69 905 ¹ 1417 843 195 503 910 264 430 727 530 965 700 881 ¹ 13 981)
$123 - 29 - \pi - \phi = 171852156284355605422550669156180445807236282$
99 114 328 581 700 847 035 030 008 052 157 320 086 305 $ = \sum_{k=1}^{\infty} \frac{4(-1)^{k} 1195^{-1-2k} \left(5^{1+2k} - 4 \times 239^{1+2k}\right)}{5^{1+2k} - 4 \times 239^{1+2k}} $
$\psi + \sum_{k=0} 1 + 2k$

Integral representations:

 $2\left(\frac{\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \frac{981\,877}{13\,981}\right) - \frac{123-29-\pi-\phi}{171\,852\,156\,284\,355\,605\,422\,550\,669\,156\,180\,445\,807\,236\,282}{99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305} - \frac{171\,92}{6}\right)$

 $2\left(\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \frac{981\,877}{13\,981}\right) - \frac{123-29-\pi-\phi}{171\,852\,156\,284\,355\,605\,422\,550\,669\,156\,180\,445\,807\,236\,282}{99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305} - \frac{1}{\phi-2}\int_{0}^{1}\frac{1}{\sqrt{1-t^{2}}}\,dt$ $2\left(\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \frac{981\,877}{13\,981}\right) - \frac{1}{2}\left(\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \frac{981\,877}{13\,981}\right) - \frac{1}{2}\right)$

 $\frac{123 - 29 - \pi - \phi}{171\,852\,156\,284\,355\,605\,422\,550\,669\,156\,180\,445\,807\,236\,282}{99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305} - \phi - 2\int_0^\infty \frac{1}{1 + t^2}\,dt$

1/7((((35621931/69905)+(514866125727319947395068128497011253285/14178431 95503910264430727530965700881)+(981877/13981))))+5

Input:

1	35 621 931	514866 125 727 319 947 395 068 128 497 011 253 285	981877	. 5
7	69905	1 417 843 195 503 910 264 430 727 530 965 700 881	13981	+5

Exact result:

96 927 768 614 746 596 732 163 665 471 879 685 433 197 996

 $693\,800\,300\,071\,905\,929\,245\,210\,056\,365\,101\,240\,604\,135$

Decimal approximation:

139.7055732099005112418819157791352069990493555686394968228...

139.705573... result practically equal to the rest mass of Pion meson 139.57 MeV

Mixed fraction:

 $139 \frac{489526904751672567079467637130612989223231}{693800300071905929245210056365101240604135}$

Continued fraction:

1/7(((((35621931/69905)+(514866125727319947395068128497011253285/14178431 95503910264430727530965700881)+(981877/13981))))-11+golden ratio

Where 11 is a Lucas number

In	put:		
1	35 621 931	514 866 125 727 319 947 395 068 128 497 011 253 285	981877
7	69905	1 417 843 195 503 910 264 430 727 530 965 700 881	+ 13981)-
	$11 + \phi$		

 ϕ is the golden ratio

Result:

85 826 963 813 596 101 864 240 304 570 038 065 583 531 836 693 800 300 071 905 929 245 210 056 365 101 240 604 135

Decimal approximation:

125.3236071986504060900865026135008451167696647484452596849...

125.323607... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

172 347 727 927 264 109 657 725 819 196 441 232 407 667 807 +

693 800 300 071 905 929 245 210 056 365 101 240 604 135 √5)/

1387600600143811858490420112730202481208270

(693 800 300 071 905 929 245 210 056 365 101 240 604 135 φ + 85826963813596101864240304570038065583531836)/ 693 800 300 071 905 929 245 210 056 365 101 240 604 135

172 347 727 927 264 109 657 725 819 196 441 232 407 667 807 $\sqrt{5}$ 1 387 600 600 143 811 858 490 420 112 730 202 481 208 270

Alternative representations:

 $\frac{1}{7} \left(\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \\ 11 + \phi = -11 + \frac{1}{7} \left(\frac{981\,877}{13\,981} + \frac{35\,621\,931}{69\,905} + \\ \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{128\,497\,011\,253\,285} \right) + 2\sin(8)$ + 2 sin(54 °) 1417 843 195 503 910 264 430 727 530 965 700 881 1 (35 621 931 514 866 125 727 319 947 395 068 128 497 011 253 285 $\begin{array}{c} 69\,905 & + & \hline 1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881 \\ 11 + \phi = -11 - 2\,\cos(216\,^\circ) + \frac{1}{7} \left(\frac{981\,877}{13\,981} + \frac{35\,621\,931}{69\,905} + \\ 514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285 \end{array} \right)$ 7 69 905 13981 1417843195503910264430727530965700881 $\frac{1}{7} \left(\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \frac{981\,877}{13\,981} \right) - 11 + \phi = -11 + \frac{1}{7} \left(\frac{981\,877}{13\,981} + \frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{69\,905} \right) - 2\sin(666\,°)$ - 2 sin(666 °) 1417 843 195 503 910 264 430 727 530 965 700 881

1/2((((35621931/69905)+(514866125727319947395068128497011253285/14178431 95503910264430727530965700881)+(981877/13981))))-7-1/golden ratio

Where 7 is a Lucas number

Input:

 $\frac{1}{2} \left(\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \frac{981\,877}{13\,981} \right) - 7 - \frac{1}{\phi}$

 ϕ is the golden ratio

Result:

 $\frac{92\,071\,166\,514\,243\,255\,227\,447\,195\,077\,323\,976\,748\,969\,051}{198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610}-\frac{1}{\phi}$

Decimal approximation:

463.8514722459018944983821183926075863789524353104324760177...

463.8514722459... result very near to Holographic Dark Energy model, where

 $\chi^2_{\rm HDE} = 465.912.$

Alternate forms:

92 170 280 842 824 956 074 482 225 085 376 134 069 055 356 -

99 114 328 581 700 847 035 030 008 052 157 320 086 305 $\sqrt{5}$

 $198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610$

 $-((198\ 228\ 657\ 163\ 401\ 694\ 070\ 060\ 016\ 104\ 314\ 640\ 172\ 610\ -$ 92 071 166 514 243 255 227 447 195 077 323 976 748 969 051 $\phi)/$ (198 228 657 163 401 694 070 060 016 104 314 640 172 610 $\phi))$

 $\begin{array}{l}(92\,071\,166\,514\,243\,255\,227\,447\,195\,077\,323\,976\,748\,969\,051\,\phi-\\198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610\,)/\\(198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610\,\phi)\end{array}$

Alternative representations:

$\frac{1}{2} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{\phi} = -7 + \frac{1}{2} \left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right) - \frac{1}{2\sin(54^\circ)}$
$ \frac{1}{2} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{\phi} = -7 + \frac{1}{2} \left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right)\frac{1}{2\cos(216^\circ)} $
$ \frac{1}{2} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{7 - \frac{1}{\phi}}{10} = -7 + \frac{1}{2} \left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right)\frac{1}{2\sin(666\circ)} $

And:

 $\frac{1}{10^{52}((((1+1/((((35621931/69905)+(514866125727319947395068128497011253285/1417843195503910264430727530965700881)+(981877/13981))))+(7+3)/10^{2}+(47-2)/10^{4}))))}{(7+3)/10^{2}+(632)/10^{4}))))}$

Where 2, 3, 7 and 47 are Lucas numbers

Exact result:

Decimal approximation:

 $1.1055605139746856682141664262726504850514268403606160...\times 10^{-52}$

 $1.1055605\ldots^*10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056^*10^{-52}~m^{-2}$

Alternate form:

Continued fraction:

1

9 045 185 562 975 861 517 070 790 391 337 765 558 947 244 523 684 128 + $\frac{1}{3}$

Page 324

Jo log(1+x2) Cosmxdx=- Ine-n log(1+z)- 3 log(1+z)+5 log(1+z) -2xtan-10

integrate [$\ln(1+x^2)\cos^2x$] dx – Pi/2*e^(-2) Input:

$$\int \log(1+x^2)\cos(2x)\,dx - \frac{\frac{a}{2}}{e^2}$$

log(x) is the natural logarithm

Exact result: π

$$-\frac{1}{2e^{2}} + \frac{1}{4e^{2}} \left(-i\left(e^{4}-1\right)\operatorname{Ci}(2i-2x)+i\left(e^{4}-1\right)\operatorname{Ci}(2x+2i)+e^{4}\operatorname{Si}(2i-2x)+\operatorname{Si}(2i-2x)-e^{4}\operatorname{Si}(2x+2i)-\operatorname{Si}(2x+2i)+2e^{2}\log(x^{2}+1)\sin(2x)\right)\right)$$

 $\operatorname{Ci}(x)$ is the cosine integral

Si(x) is the sine integral

Plots: y 1.0 0.5 (x from -2.3 to 2.3) х 2 -2 -0.5 -1.0-1.5y 2 1 (x from -13.7 to 13.7) -3

Series expansion of the integral at x = 0:

$$-\frac{\pi}{2e^2} + \frac{x^3}{3} - \frac{x^5}{2} + \frac{2x^7}{7} + O(x^9)$$
(Taylor series)

Series expansion of the integral at x = -i:

$$\frac{\frac{1}{4e^2}i\left(-e^4\operatorname{Ci}(4i) + \operatorname{Ci}(4i) + e^4\operatorname{Shi}(4) + \operatorname{Shi}(4) - \frac{(e^4 - 1)\log(1 - ix) + (e^4 - 1)\log(x + i) + 2i\pi + e^4\gamma - \gamma\right) +}{(1 + e^4)(x + i)(-1 + \log(2 - 2ix))} + \frac{i(x + i)^2\left(4(e^4 - 1)\log(2 - 2ix) - e^4 + 3\right)}{8e^2} + \frac{(x + i)^3\left(-48\left(1 + e^4\right)\log(2 - 2ix) - 5e^4 + 43\right)}{144e^2} + O\left((x + i)^4\right)$$

(generalized Puiseux series)

Series expansion of the integral at x = i:

$$\begin{aligned} \overline{2 e^2} \\ & \left(\left(-\frac{1}{2} i \left(-e^4 \log(i x + 1) + \log(2 i x + 2) + e^4 \log(x - i) - \log(2 (x - i)) + e^4 \operatorname{Shi}(4) + \operatorname{Shi}(4) - e^4 \operatorname{Ci}(4 i) + \operatorname{Ci}(4 i) + i e^4 \pi - 3 i \pi + e^4 \gamma - \gamma \right) + \left(1 + e^4 \right) \right) \\ & \left(\log(2 i x + 2) - 1 \right) (x - i) - \frac{1}{4} i \left(4 \left(-1 + e^4 \right) \log(2 i x + 2) - e^4 + 3 \right) (x - i)^2 + \frac{1}{72} \left(-48 \left(1 + e^4 \right) \log(2 i x + 2) - 5 e^4 + 43 \right) (x - i)^3 + O((x - i)^4) \right) + \\ & \pi \left[\frac{\operatorname{arg}(x - i)}{2 \pi} \right] + e^4 \pi \left[- \frac{\operatorname{arg}(x - i)}{2 \pi} \right] \right) \end{aligned}$$

Series expansion of the integral at
$$\mathbf{x} = \infty$$
:

$$\sin(2x) \left[\log(x) + \frac{1}{2x^2} + O\left(\left(\frac{1}{x}\right)^4\right) \right] + \left(-\frac{i(-8i\pi - 2\log(2) + 2e^4\log(2) + \log(4) - e^4\log(4))}{8e^2} + O\left(\left(\frac{1}{x}\right)^4\right) \right) + \frac{i(-8i\pi - 2\log(2) + 2e^4\log(2) + \log(4) - e^4\log(4))}{8e^2} + O\left(\left(\frac{1}{x}\right)^4\right) \right) + \frac{i(-2ix)\left(\frac{ie^2}{16e^2x^2} + \frac{e^2}{8e^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(\frac{ie^2}{16e^2x^2} + \frac{e^2}{8e^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(\frac{1}{8e^2x^2} - \frac{ie^2}{8e^2x^2} - \frac{3e^2}{16e^2x^2} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{e^2}{8x} + \frac{ie^2}{8e^2x^2} - \frac{3e^2}{16e^2x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{ie^2}{16e^2x^2} + \frac{e^2}{8e^3x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{ie^2}{16e^2x^2} + \frac{e^2}{8e^3x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{ie^2}{16e^2x^2} + \frac{e^2}{8e^3x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{ie^2}{16e^2x^2} + \frac{e^2}{8e^2x^3} - \frac{3e^2}{16e^2x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{ie^2}{16e^2x^2} + \frac{1}{8e^2x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{ie^2}{16e^2x^2} - \frac{e^2}{8e^2x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{ie^2}{16e^2x^2} - \frac{e^2}{8e^2x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \frac{i(-2ix)\left(-\frac{ie^2}{16e^2x^2} - \frac{e^2}{8e^2x^3} + O\left(\left(\frac{1}{e^2}x^4\right)\right) + \frac{i(-2ix)\left(\frac{1}{8e^2x} - \frac{e^2}{8e^2x^2} - \frac{3ie^2}{16e^2x^3} + O\left(\left(\frac{1}{e^2}x^4\right)\right)\right) + \frac{i(-2ix)\left(\frac{1}{8e^2x} - \frac{e^2}{8e^2x^2} - \frac{3ie^2}{16e^2x^3} + O\left(\left(\frac{1}{e^2}x^4\right)\right) + \frac{i(-2ix)\left(\frac{1}{8e^2x} - \frac{e^2}{8e^2x^2} - \frac{3ie^2}{16e^2x^3} + O\left(\left(\frac{1}{e^2}x^4\right)\right)\right) + \frac{i(-2ix)\left(\frac{1}{8e^2x} - \frac{e^2}{8e^2x^2} - \frac{3ie^2}{16e^2x^3} + O\left(\frac{1}{8e^2x^4}\right) + \frac{i(-2ix)\left(\frac{1}{8e^2x} - \frac{e^2}{8e^2x^2} - \frac{3ie^2}{16e^2x^3} + \frac{i(-2ix)\left(\frac{1}{8e^2$$

Indefinite integral:

$$\int \log(1+x^2)\cos(2x) \, dx - \frac{\pi}{2e^2} = -\frac{\pi}{2e^2} + \left(\text{constant} + \frac{1}{4e^2} \left(-i\left(e^4 - 1\right)\operatorname{Ci}(2i - 2x) + i\left(e^4 - 1\right)\operatorname{Ci}(2x + 2i) + e^4\operatorname{Si}(2i - 2x) + \operatorname{Si}(2i - 2x) + e^4\operatorname{Si}(2x + 2i) - \operatorname{Si}(2x + 2i) + 2e^2\log(x^2 + 1)\sin(2x) \right) \right)$$

From

$$-\frac{\pi}{2 e^{2}} + \frac{1}{4 e^{2}} \left(-i \left(e^{4}-1\right) \operatorname{Ci}(2 i-2 x)+i \left(e^{4}-1\right) \operatorname{Ci}(2 x+2 i)+e^{4} \operatorname{Si}(2 i-2 x)+\operatorname{Si}(2 i-2 x)-e^{4} \operatorname{Si}(2 x+2 i)-\operatorname{Si}(2 x+2 i)+2 e^{2} \log (x^{2}+1) \sin (2 x)\right)$$

For x = 2, we obtain:

 $-\pi/(2 e^{2}) + (-i (e^{4} - 1) Ci(2 i - 4) + i (e^{4} - 1) Ci(4 + 2 i) + e^{4} Si(2 i - 4) + Si(2 i - 4) + Si(2 i - 4) + Si(4 + 2 i) + 2 e^{2} log(4 + 1) sin(4))/(4 e^{2})$

Input:

$$-\frac{\pi}{2e^{2}} + \frac{1}{4e^{2}} \left(-i\left(e^{4}-1\right)\operatorname{Ci}(2i-4) + i\left(e^{4}-1\right)\operatorname{Ci}(4+2i) + e^{4}\operatorname{Si}(2i-4) + \operatorname{Si}(2i-4) + \operatorname{Si}(2i-4) - e^{4}\operatorname{Si}(4+2i) - \operatorname{Si}(4+2i) + 2e^{2}\log(4+1)\sin(4)\right)\right)$$

 $\operatorname{Ci}(x)$ is the cosine integral

Si(x) is the sine integral

log(x) is the natural logarithm

i is the imaginary unit

Exact result:

$$-\frac{\pi}{2e^{2}} + \frac{1}{4e^{2}} \left(-i\left(e^{4}-1\right)\operatorname{Ci}(-4+2i) + i\left(e^{4}-1\right)\operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) + e^{4}\operatorname{Si}(-4+2i) - \operatorname{Si}(4+2i) - e^{4}\operatorname{Si}(4+2i) + 2e^{2}\log(5)\sin(4)\right)\right)$$

Decimal approximation:

-1.18321332402796601454275392981085658958037709205874608141...

-1.18321332...

Alternate forms:

$$\frac{1}{4e^2} \left(e^4 \left(-i\operatorname{Ci}(-4+2i) + i\operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) - \operatorname{Si}(4+2i) \right) + i\operatorname{Ci}(-4+2i) + i\operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) - \operatorname{Si}(4+2i) - 2\pi + e^2 \log(25) \sin(4) \right) \right)$$

$$\frac{1}{4e^2} \left(i\operatorname{Ci}(-4+2i) - ie^4 \operatorname{Ci}(-4+2i) - i\operatorname{Ci}(4+2i) + ie^4 \operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) + e^4 \operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) + e^4 \operatorname{Ci}(4+2i) - 2\pi + 2e^2 \log(5) \sin(4) \right) \right)$$

$$\frac{1}{4e^2} \left(i\operatorname{Ci}(-4+2i) - \operatorname{Si}(4+2i) - e^4 \operatorname{Si}(4+2i) - 2\pi + 2e^2 \log(5) \sin(4) \right) = 1 + \operatorname{Ci}(4+2i) - \operatorname{Si}(4+2i) - 2\pi + 2e^2 \log(5) \sin(4) \right)$$

$$\frac{\frac{1}{4}i\operatorname{Gi}(-4+2i) - \frac{1}{4}i\operatorname{Gi}(4+2i) + \frac{1}{4}\operatorname{Si}(-4+2i) - \frac{\operatorname{Si}(+2i)}{4} - \frac{1}{2}}{e^2} + e^2\left(-\frac{1}{4}i\operatorname{Gi}(-4+2i) + \frac{1}{4}i\operatorname{Gi}(4+2i) + \frac{1}{4}\operatorname{Si}(-4+2i) - \frac{\operatorname{Si}(4+2i)}{4}\right) + \frac{1}{2}\log(5)\sin(4)$$

Expanded form:

$$\frac{i\operatorname{Ci}(-4+2i)}{4e^2} - \frac{1}{4}ie^2\operatorname{Ci}(-4+2i) - \frac{i\operatorname{Ci}(4+2i)}{4e^2} + \frac{1}{4}ie^2\operatorname{Ci}(4+2i) + \frac{\operatorname{Si}(-4+2i)}{4e^2} + \frac{1}{4}e^2\operatorname{Ci}(4+2i) + \frac{\operatorname{Si}(-4+2i)}{4e^2} + \frac{1}{4}e^2\operatorname{Si}(-4+2i) - \frac{\operatorname{Si}(4+2i)}{4e^2} - \frac{1}{4}e^2\operatorname{Si}(4+2i) - \frac{\pi}{2e^2} + \frac{1}{2}\log(5)\sin(4)$$

Alternative representations:

$$\begin{aligned} &-\frac{\pi}{2 e^2} + \frac{1}{4 e^2} \left(-i \left(\left(e^4 - 1\right) \operatorname{Ci}(2 i - 4)\right) + i \left(e^4 - 1\right) \operatorname{Ci}(4 + 2 i) + e^4 \operatorname{Si}(2 i - 4) + \right. \\ &\left. \operatorname{Si}(2 i - 4) - e^4 \operatorname{Si}(4 + 2 i) - \operatorname{Si}(4 + 2 i) + 2 e^2 \log(4 + 1) \sin(4)\right) = -\frac{\pi}{2 e^2} + \right. \\ &\left. \frac{1}{4 e^2} \left(-i \left(\left(\log(-4 + 2 i) + \frac{1}{2} \left(-\Gamma(0, -i (-4 + 2 i)) - \Gamma(0, i (-4 + 2 i)) - \log(-i (-4 + 2 i)) - \log(-i (-4 + 2 i)) - \log(i (-4 + 2 i))\right) - \log(i (-4 + 2 i))\right) - \log(i (-4 + 2 i))\right) \right. \\ &\left. \left. \frac{1}{2} \left(-\Gamma(0, -i (4 + 2 i)) - \Gamma(0, i (4 + 2 i)) - \log(-i (4 + 2 i)) - \log(i (4 + 2 i)))\right) \right) \right. \\ &\left. \left(-1 + e^4\right) + \frac{2 \log(a) \log_a(5) e^2 \left(-e^{-4 i} + e^{4 i}\right)}{2 i} - i \operatorname{Shi}(i (-4 + 2 i)) - \left. i \left(e^4 \operatorname{Shi}(i (-4 + 2 i))\right) + i \operatorname{Shi}(i (4 + 2 i)) + i e^4 \operatorname{Shi}(i (4 + 2 i))\right) \right. \end{aligned}$$

$$\begin{split} &-\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(\left(e^4-1\right)\operatorname{Gi}(2\,i-4)\right) + i\left(e^4-1\right)\operatorname{Gi}(4+2\,i) + e^4\operatorname{Si}(2\,i-4) + \right.\\ & \operatorname{Si}(2\,i-4) - e^4\operatorname{Si}(4+2\,i) - \operatorname{Si}(4+2\,i) + 2\,e^2\operatorname{log}(4+1)\operatorname{sin}(4)\right) = -\frac{\pi}{2\,e^2} + \\ & \frac{1}{4\,e^2} \left(\frac{1}{2}\,i\left(\Gamma(0,\,-i\,(-4+2\,i)) - \Gamma(0,\,i\,(-4+2\,i)) + \log(-i\,(-4+2\,i)) - \log(i\,(-4+2\,i))) - \right.\\ & \frac{1}{2}\,i\left(\Gamma(0,\,-i\,(4+2\,i)) - \Gamma(0,\,i\,(4+2\,i)) + \log(-i\,(4+2\,i)) - \log(i\,(4+2\,i))) + \right.\\ & 2\,\cos\left(-4+\frac{\pi}{2}\right)\log(a)\log_a(5)\,e^2 - \\ & i\left(\left(\log(-4+2\,i) + \frac{1}{2}\,(-\Gamma(0,\,-i\,(-4+2\,i)) - \Gamma(0,\,i\,(-4+2\,i)) - \left.\log(i\,(-4+2\,i))\right)\right)\right) - \left.1 + e^4\right)\right) + \\ & i\left(\log(4+2\,i) + \frac{1}{2}\,(-\Gamma(0,\,-i\,(4+2\,i)) - \Gamma(0,\,i\,(4+2\,i)) - \log(-i\,(4+2\,i)) - \left.\log(i\,(4+2\,i)) - \left.\log(i\,(4+2\,i)\right)\right)\right)\right) - \left.\log(i\,(4+2\,i))\right) - \left.\log(i\,(4+2\,i)\right) - \left.\log(i\,(4+2\,i)\right) - \left.\log(i\,(-4+2\,i)\right) - \left.\log(i\,(-4+2\,i)\right)\right) - \left.\log(i\,(-4+2\,i)\right) - \left.\log(i\,(-4+2\,i)\right)\right) \right] \right) \right] \right] \\ & \left(\Gamma(0,\,-i\,(-4+2\,i)) - \Gamma(0,\,i\,(-4+2\,i)) + \log(-i\,(-4+2\,i)) - \log(i\,(-4+2\,i))) e^4 - \left.\frac{1}{2}\,i\,(\Gamma(0,\,-i\,(4+2\,i)) - \Gamma(0,\,i\,(4+2\,i)) + \log(-i\,(4+2\,i)) - \log(i\,(4+2\,i))) e^4\right)\right] \end{split}$$

Series representations:

$$\begin{split} &-\frac{\pi}{2\,\epsilon^2} + \frac{1}{4\,\epsilon^2} \left(-i\left(\left(e^4 - 1\right)\operatorname{Ci}(2\,i - 4)\right) + i\left(e^4 - 1\right)\operatorname{Ci}(4 + 2\,i) + e^4\operatorname{Si}(2\,i - 4) + \right.\\ & \operatorname{Si}(2\,i - 4) - e^4\operatorname{Si}(4 + 2\,i) - \operatorname{Si}(4 + 2\,i) + 2\,e^2\log(4 + 1)\sin(4)\right) = \frac{1}{4\,\epsilon^2} \\ & \left(-2\,\pi + i\log(-4 + 2\,i) - i\,e^4\log(-4 + 2\,i) - i\log(4 + 2\,i) + i\,e^4\log(4 + 2\,i) + \right.\\ & \left.4\,e^2\sum_{k=1}^{\infty} - \frac{i(-1)^k \,2^{-3+2\,k}\left((-2 + i)^{2\,k} - (2 + i)^{2\,k}\right)\left(-1 + e^4\right)}{e^2\,k\,(2\,k)!} + \right.\\ & \left.4\,e^2\sum_{k=0}^{\infty} \left((-1)^k \,2^{-1+2\,k}\left((-2 + i)^{1+2\,k} - (2 + i)^{1+2\,k} + \right.\\ & \left.\left((-2 + i)^{1+2\,k} - (2 + i)^{1+2\,k}\right)e^4 + 4^{1+k}\,e^2\,(1 + 2\,k)\log(4)\right)\right)\right/ \\ & \left(e^2\,(1 + 2\,k)\,(1 + 2\,k)!\right) - 2\,e^2\sum_{k_1=1}^{\infty}\sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} \,4^{1-k_1+2k_2}}{(1 + 2\,k_2)!\,k_1}\right) \\ & \left.-\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2}\left(-i\left(\left(e^4 - 1\right)\operatorname{Ci}(2\,i - 4)\right) + i\left(e^4 - 1\right)\operatorname{Ci}(4 + 2\,i) + e^4\operatorname{Si}(2\,i - 4) + \right.\\ & \left.\operatorname{Si}(2\,i - 4) - e^4\operatorname{Si}(4 + 2\,i) - \operatorname{Si}(4 + 2\,i) + 2\,e^2\log(4 + 1)\sin(4)\right) = \frac{1}{4\,e^2} \\ & \left(-2\,\pi + i\log(-4 + 2\,i) - i\,e^4\log(-4 + 2\,i) - i\log(4 + 2\,i) + i\,e^4\log(4 + 2\,i) + \right.\\ & \left.4\,e^2\sum_{k=1}^{\infty} - \frac{i(-1)^k \,2^{-3+2\,k}\left((-2 + i)^{2\,k} - (2 + i)^{2\,k}\right)\left(-1 + e^4\right)}{e^2\,k\,(2\,k)!} + \\ & \left.4\,e^2\sum_{k=0}^{\infty} \left(\frac{(-2 + i)^{1+2\,k}\,(-1)^k \,2^{-1+2\,k}}{e^2\,(1 + 2\,k)^2\,(2\,k)!} + \frac{(-1)^{1+k} \,2^{-1+2\,k}\,(2 + i)^{1+2\,k}}{e^2\,(1 + 2\,k)^2\,(2\,k)!} + \frac{(-1)^{1+k} \,2^{-1+2\,k}\,(2 + i)^{1+2\,k}}{e^2\,(1 + 2\,k)^2\,(2\,k)!} + \\ & \left.\frac{(-1)^k \,2^{1+4\,k}\,\log(4)}{(1 + 2\,k)!}\right) - 2\,e^2\sum_{k_1=1}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} \,4^{1-k_1+2\,k_2}}{(1 + 2\,k_2)!\,k_1}\right) \end{aligned}$$

$$\begin{aligned} -\frac{\pi}{2 e^2} + \frac{1}{4 e^2} \left(-i\left(\left(e^4 - 1\right)\operatorname{Gi}(2 i - 4)\right) + i\left(e^4 - 1\right)\operatorname{Gi}(4 + 2 i) + e^4\operatorname{Si}(2 i - 4) + \right.\\ & \operatorname{Si}(2 i - 4) - e^4\operatorname{Si}(4 + 2 i) - \operatorname{Si}(4 + 2 i) + 2 e^2\operatorname{log}(4 + 1)\operatorname{sin}(4)\right) = \frac{1}{4 e^2} \\ & \left(-2 \pi + i \operatorname{log}(-4 + 2 i) - i e^4\operatorname{log}(-4 + 2 i) - i \operatorname{log}(4 + 2 i) + i e^4\operatorname{log}(4 + 2 i) + \right.\\ & \left.4 e^2 \sum_{k=1}^{\infty} -\frac{i (-1)^k 2^{-3+2k} \left((-2 + i)^{2k} - (2 + i)^{2k}\right) \left(-1 + e^4\right)}{e^2 k (2 k)!} + \right.\\ & \left.4 e^2 \sum_{k=0}^{\infty} \left(\frac{(-2 + i)^{1+2k} (-1)^k 2^{-1+2k}}{e^2 (1 + 2 k)^2 (2 k)!} + \frac{(-1)^{1+k} 2^{-1+2k} (2 + i)^{1+2k}}{e^2 (1 + 2 k)^2 (2 k)!} + \right.\\ & \left.\frac{(-2 + i)^{1+2k} (-1)^k 2^{-1+2k} e^2}{(1 + 2 k)^2 (2 k)!} + \frac{(-1)^{1+k} 2^{-1+2k} (2 + i)^{1+2k} e^2}{(1 + 2 k)^2 (2 k)!} + \left.\frac{(-1)^k \left(4 - \frac{\pi}{2}\right)^{2k} \operatorname{log}(4)}{2 (2 k)!}\right) - 2 e^2 \sum_{k_1=1}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} 4^{-k_1} \left(4 - \frac{\pi}{2}\right)^{2k_2}}{(2 k_2)! k_1} \right) \end{aligned}$$

$$\ln(1+4) - 3 \ln(1+4/9) + 5 \ln(1+4/25)$$

Input:

 $\log(1+4) - 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right)$

log(x) is the natural logarithm

Exact result:

 $5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5)$

Decimal approximation:

1.248363597649514704720535259613067685211291893852936258545...

1.2483635...

Property: $5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5)$ is a transcendental number

Alternate forms: $5 \log\left(\frac{29}{25}\right) + \log\left(\frac{3645}{2197}\right)$ $6\log(3) - 9\log(5) - 3\log(13) + 5\log(29)$

 $-9\log(5) - 3\log(13) + 5\log(29) + \log(729)$

Alternative representations:

$$\log(1+4) - 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) = \log(a)\log_a(5) - 3\log(a)\log_a\left(1+\frac{4}{9}\right) + 5\log(a)\log_a\left(1+\frac{4}{25}\right)$$

$$\log(1+4) - 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) = \log_e(5) - 3\log_e\left(1+\frac{4}{9}\right) + 5\log_e\left(1+\frac{4}{25}\right)$$
$$\log(1+4) - 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) = -\text{Li}_1(-4) + 3\text{Li}_1\left(-\frac{4}{9}\right) - 5\text{Li}_1\left(-\frac{4}{25}\right)$$

Series representations:

$$\log(1+4) - 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) = 6i\pi\left[\frac{\pi - \arg\left(\frac{1}{z_0}\right) - \arg(z_0)}{2\pi}\right] + 3\log(z_0) + \sum_{k=1}^{\infty} \frac{(-1)^{1+k} \left(5\left(\frac{29}{25} - z_0\right)^k - 3\left(\frac{13}{9} - z_0\right)^k + (5-z_0)^k\right)z_0^{-k}}{k}$$

$$\log(1+4) - 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) = 10 i \pi \left[\frac{\arg\left(\frac{29}{25}-x\right)}{2\pi}\right] - 6 i \pi \left[\frac{\arg\left(\frac{13}{9}-x\right)}{2\pi}\right] + 2 i \pi \left[\frac{\arg(5-x)}{2\pi}\right] + 3\log(x) + \sum_{k=1}^{\infty} \frac{(-1)^{1+k} \left(5\left(\frac{29}{25}-x\right)^k - 3\left(\frac{13}{9}-x\right)^k + (5-x)^k\right)x^{-k}}{k} \quad \text{for } x < 0$$

$$\begin{aligned} \log(1+4) - 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) &= \\ 5\left\lfloor \frac{\arg\left(\frac{29}{25}-z_{0}\right)}{2\pi} \right\rfloor \log\left(\frac{1}{z_{0}}\right) - 3\left\lfloor \frac{\arg\left(\frac{13}{9}-z_{0}\right)}{2\pi} \right\rfloor \log\left(\frac{1}{z_{0}}\right) + \left\lfloor \frac{\arg(5-z_{0})}{2\pi} \right\rfloor \log\left(\frac{1}{z_{0}}\right) + \\ 3\log(z_{0}) + 5\left\lfloor \frac{\arg\left(\frac{29}{25}-z_{0}\right)}{2\pi} \right\rfloor \log(z_{0}) - 3\left\lfloor \frac{\arg\left(\frac{13}{9}-z_{0}\right)}{2\pi} \right\rfloor \log(z_{0}) + \\ \left\lfloor \frac{\arg(5-z_{0})}{2\pi} \right\rfloor \log(z_{0}) + \sum_{k=1}^{\infty} \frac{(-1)^{1+k} \left(5\left(\frac{29}{25}-z_{0}\right)^{k} - 3\left(\frac{13}{9}-z_{0}\right)^{k} + (5-z_{0})^{k}\right) z_{0}^{-k}}{k} \end{aligned}$$

Integral representations:

$$\begin{split} \log(1+4) &- 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) = \int_{1}^{\frac{29}{25}} 5\left(\frac{1}{t} + 5\left(\frac{3}{16-25t} + \frac{1}{-24+25t}\right)\right) dt\\ \log(1+4) &- 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) = \\ &\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \frac{i\,2^{-1-2\,s}\left(-1+3^{1+2\,s} - 5^{1+2\,s}\right)\Gamma(-s)^2\,\Gamma(1+s)}{\pi\,\Gamma(1-s)}\,ds \quad \text{for} \ -1 < \gamma < 0 \end{split}$$

4/Pi((((((((1-e^((-2Pi)/2))/(1)^2))-((1-e^((-6Pi)/2))/(3)^2))+((1-e^((-10Pi)/2))/(5)^2))))-2*2 tan^-1(e^((-2Pi)/2))

Input:

 $\frac{4}{\pi}\left[\left(\frac{1-e^{1/2}(-2\pi)}{1^2}-\frac{1-e^{1/2}(-6\pi)}{3^2}\right)+\frac{1-e^{1/2}(-10\pi)}{5^2}\right)-(2\times 2)\tan^{-1}\left(e^{1/2}(-2\pi)\right)$

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result: $\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(e^{-3\pi}-1\right)\right)}{\pi}-4\tan^{-1}(e^{-\pi})$

(result in radians)

Decimal approximation:

0.954939611254082249939094312747766773216649377749888300192...

(result in radians)

 $0.954939611254\ldots$ result very near to the spectral index n_s , to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1)\sqrt{5}}-\varphi+1} = 1 - \frac{e^{-\pi}}{1+\frac{e^{-2\pi}}{1+\frac{e^{-3\pi}}{1+\frac{e^{-4\pi}}{1+\frac{e^{-4\pi}}{1+\dots}}}}} \approx 0.9568666373$$

Alternate forms:

 $4\left(-209+9\ e^{-5\,\pi}-25\ e^{-3\,\pi}+225\ e^{-\pi}+225\ \pi\tan^{-1}(e^{-\pi})\right)$ 225π $\frac{836 - 4 \, e^{-5 \, \pi} \left(9 - 25 \, e^{2 \, \pi} + 225 \, e^{4 \, \pi}\right)}{225 \, \pi} - 4 \, \cot^{-1}\!\left(e^{\pi}\right)$ $\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(e^{-3\pi}-1\right)\right)}{\pi}-4\cot^{-1}(e^{\pi})$

 $\cot^{-1}(x)$ is the inverse cotangent function

Continued fraction:

Alternative representations:

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{\pi}{1-4} \operatorname{sc}^{-1}\left(e^{-\pi} \mid 0\right) + \frac{4\left(-\frac{1}{9}\left(1-e^{-3\pi}\right) + \frac{1}{1}\left(1-e^{-\pi}\right) + \frac{1-e^{-5\pi}}{5^2}\right)}{\pi}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{\pi}{1}$$
$$-4\tan^{-1}(1, e^{-\pi}) + \frac{4\left(-\frac{1}{9}\left(1-e^{-3\pi}\right) + \frac{1}{1}\left(1-e^{-\pi}\right) + \frac{1-e^{-5\pi}}{5^2}\right)}{\pi}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times 2=$$

$$-4\cot^{-1}\left(\frac{1}{e^{-\pi}}\right)+\frac{4\left(-\frac{1}{9}\left(1-e^{-3\pi}\right)+\frac{1}{1}\left(1-e^{-\pi}\right)+\frac{1-e^{-5\pi}}{5^2}\right)}{\pi}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times 2=\frac{\pi}{836}-\frac{4e^{-5\pi}}{25\pi}+\frac{4e^{-3\pi}}{9\pi}-\frac{4e^{-\pi}}{\pi}-4\sum_{k=0}^{\infty}\frac{e^{\left(-1-(2-i)k\right)\pi}}{1+2k}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{1}{\pi}$$
$$\frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} - 2i\log(2) + 2i\log(i(-i+e^{-\pi})) + 2i\sum_{k=1}^{\infty}\frac{\left(\frac{1}{2} + \frac{ie^{-\pi}}{2}\right)^k}{k}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} + 2i\log(2) - 2i\log(-i(i+e^{-\pi})) - 2i\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}i(i+e^{-\pi})\right)^k}{k}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{4} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} - 4e^{-\pi}\int_0^1 \frac{1}{1+e^{-2\pi}t^2} dt$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{4\pi^{-1}\left(e^{-(2\pi)/2}\right)2\times 2} = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} + \frac{ie^{-\pi}}{\pi^{3/2}}\int_{-i\infty+\gamma}^{i\infty+\gamma} (1+e^{-2\pi})^{-s}\Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\Gamma(s)^2\,ds \quad \text{for } 0 < \gamma < \frac{1}{2}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} + \frac{ie^{-\pi}}{\pi} \int_{-i\infty+\gamma}^{i\infty+\gamma} \frac{e^{2\pi s} \Gamma\left(\frac{1}{2} - s\right)\Gamma(1-s)\Gamma(s)}{\Gamma\left(\frac{3}{2} - s\right)} ds \text{ for } 0 < \gamma < \frac{1}{2}$$

Continued fraction representations:

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{\pi}{4\left(1-e^{-\pi} + \frac{1}{25}\left(1-e^{-5\pi}\right) + \frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi} - \frac{4e^{-\pi}}{1+\sum_{k=1}^{\infty}\frac{e^{-2\pi}k^2}{1+2k}} = \frac{4\left(1-e^{-\pi} + \frac{1}{25}\left(1-e^{-5\pi}\right) + \frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi} - \frac{4e^{-\pi}}{1+\frac{e^{-2\pi}k^2}{3+\frac{4e^{-2\pi}}{3+\frac{4e^{-2\pi}k^2}{5+\frac{9e^{-2\pi}k^2}{9+\dots}}}}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times 2=$$

$$\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3\pi}}{3+\overset{\infty}{K}}\frac{e^{-2\pi}\left(1+(-1)^{1+K}+k\right)^2}{3+2k}\right)=$$

$$\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3\pi}}{3+\frac{9e^{-2\pi}}{5+\frac{4e^{-2\pi}}{5+\frac{4e^{-2\pi}}{9+\frac{16e^{-2\pi}}{11+\ldots}}}}\right)$$

$$\frac{\left(\left[\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times 2= \\ \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{4e^{-\pi}}{1+\sum_{k=1}^{\infty}\frac{e^{-2\pi}\left(-1+2k\right)^2}{1+2k-e^{-2\pi}\left(-1+2k\right)}}= \\ \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{4e^{-\pi}}{1+\frac{e^{-2\pi}}{3-e^{-2\pi}+\frac{9e^{-2\pi}}{5-3e^{-2\pi}+\frac{9e^{-2\pi}}{7-5e^{-2\pi}+\frac{49e^{-2\pi}}{9+\dots-7e^{-2\pi}}}}}{\frac{1-e^{-(6\pi)/2}}{3^2}+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times 2= \\ \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{4e^{-\pi}}{1+e^{-2\pi}+\sum_{k=1}^{\infty}\frac{2e^{-2\pi}\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(1+\frac{1}{2}\left(1+(-1)^k\right)e^{-2\pi}\right)\left(1+2k\right)}}= \\ \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{4e^{-\pi}}{1+e^{-2\pi}+\sum_{k=1}^{\infty}\frac{2e^{-2\pi}\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(1+\frac{1}{2}\left(1+(-1)^k\right)e^{-2\pi}\right)\left(1+2k\right)}}= \\ \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{4e^{-\pi}}{1+e^{-2\pi}+\sum_{k=1}^{\infty}\frac{2e^{-2\pi}\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(1+\frac{1}{2}\left(1+(-1)^k\right)e^{-2\pi}\right)\left(1+2k\right)}}$$

 $\mathop{\mathbf{K}}\limits_{k=k_1}^{k_2}a_k/b_k$ is a continued fraction

We obtain also:

$$(((5 \log(29/25) - 3 \log(13/9) + \log(5))))x = (((4 (1 - e^{(-\pi)} + 1/25 (1 - e^{(-5\pi)}) + 1/9 (-1 + e^{(-3\pi)})))/\pi - 4 \tan^{(-1)}(e^{(-\pi)})))$$

Input:

$$\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) x = \frac{4 \left(1 - e^{-\pi} + \frac{1}{25} \left(1 - e^{-5\pi}\right) + \frac{1}{9} \left(-1 + e^{-3\pi}\right)\right)}{\pi} - 4 \tan^{-1}(e^{-\pi}) \right)$$

 $\log(x)$ is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

Alternate forms:

$$x \left(5 \log\left(\frac{29}{25}\right) + \log\left(\frac{3645}{2197}\right) \right) = \frac{836 - 4 e^{-5\pi} \left(9 - 25 e^{2\pi} + 225 e^{4\pi}\right)}{225\pi} - 4 \cot^{-1}(e^{\pi})$$

$$x \left(5 \log\left(\frac{29}{25}\right) + \log\left(\frac{3645}{2197}\right) \right) = \frac{\frac{836}{225} - \frac{4 e^{-5\pi}}{25} + \frac{4 e^{-3\pi}}{9} - 4 e^{-\pi}}{\pi} - 4 \tan^{-1}(e^{-\pi})$$

$$x \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) =$$

$$\frac{4 \left(1 - e^{-\pi} + \frac{1}{25} \left(1 - e^{-5\pi}\right) + \frac{1}{9} \left(e^{-3\pi} - 1\right)\right)}{\pi} - 4 \cot^{-1}(e^{\pi})$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Expanded form:

$$x \log(5) - 3x \log\left(\frac{13}{9}\right) + 5x \log\left(\frac{29}{25}\right) = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} - 4\tan^{-1}(e^{-\pi})$$

Alternate forms assuming x>0:

$$\frac{x \left(-9 \log(5) - 3 \log(13) + 5 \log(29) + \log(729)\right)}{\frac{836}{225} - \frac{4 e^{-5 \pi}}{25} + \frac{4 e^{-3 \pi}}{9} - 4 e^{-\pi}}{-4 \tan^{-1}(e^{-\pi})}$$

 $5 x (\log(29) - 2 \log(5)) - 3 x (\log(13) - 2 \log(3)) + x \log(5) = \frac{4 \left(1 - e^{-\pi} + \frac{1}{25} \left(1 - e^{-5\pi}\right) + \frac{1}{9} \left(e^{-3\pi} - 1\right)\right)}{\pi} - 4 \tan^{-1} \left(e^{-\pi}\right)$

Solution:

 $x \approx 0.76495$

0.76495

Thence:

 $(((5 \log(29/25) - 3 \log(13/9) + \log(5))))*0.76495$

Input: $\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) \times 0.76495$

log(x) is the natural logarithm

Result:

0.954935734021996273375973446841016125802377734202803590974...

0.954935734... result very near to the spectral index n_s , to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1)\sqrt{5}}-\varphi+1} = 1 - \frac{e^{-\pi}}{1+\frac{e^{-2\pi}}{1+\frac{e^{-3\pi}}{1+\frac{e^{-4\pi}}{1+\frac{e^{-4\pi}}{1+\frac{e^{-4\pi}}{1+\dots}}}}} \approx 0.9568666373$$

Alternative representations:

$$\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 = 0.76495 \left(\log(a) \log_a(5) - 3 \log(a) \log_a\left(\frac{13}{9}\right) + 5 \log(a) \log_a\left(\frac{29}{25}\right) \right)$$

$$\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right)0.76495 = 0.76495\left(\log_e(5) - 3\log_e\left(\frac{13}{9}\right) + 5\log_e\left(\frac{29}{25}\right)\right)$$

$$\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 = 0.76495 \left(-\text{Li}_1(-4) + 3 \text{Li}_1 \left(1 - \frac{13}{9}\right) - 5 \text{Li}_1 \left(1 - \frac{29}{25}\right) \right)$$

Series representations:

$$\begin{pmatrix} 5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \\ 0.76495 = 7.6495 i \pi \left\lfloor \frac{\arg\left(\frac{29}{25} - x\right)}{2 \pi} \right\rfloor - \\ 4.5897 i \pi \left\lfloor \frac{\arg\left(\frac{13}{9} - x\right)}{2 \pi} \right\rfloor + 1.5299 i \pi \left\lfloor \frac{\arg(5 - x)}{2 \pi} \right\rfloor + 2.29485 \log(x) + \\ \sum_{\substack{k=1\\0}}^{\infty} \frac{(-1)^k \left(-3.82475 \left(\frac{29}{25} - x\right)^k + 2.29485 \left(\frac{13}{9} - x\right)^k - 0.76495 (5 - x)^k \right) x^{-k}}{k} \quad \text{for } x < 0$$

$$\begin{split} & \left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right)0.76495 = \\ & 3.82475 \left\lfloor \frac{\arg\left(\frac{29}{25} - z_0\right)}{2\pi} \right\rfloor \log\left(\frac{1}{z_0}\right) - 2.29485 \left\lfloor \frac{\arg\left(\frac{13}{9} - z_0\right)}{2\pi} \right\rfloor \log\left(\frac{1}{z_0}\right) + \\ & 0.76495 \left\lfloor \frac{\arg(5 - z_0)}{2\pi} \right\rfloor \log\left(\frac{1}{z_0}\right) + 2.29485 \log(z_0) + 3.82475 \left\lfloor \frac{\arg\left(\frac{29}{25} - z_0\right)}{2\pi} \right\rfloor \log(z_0) - \\ & 2.29485 \left\lfloor \frac{\arg\left(\frac{13}{9} - z_0\right)}{2\pi} \right\rfloor \log(z_0) + 0.76495 \left\lfloor \frac{\arg(5 - z_0)}{2\pi} \right\rfloor \log(z_0) + \\ & \sum_{k=1}^{\infty} \frac{\left(-1\right)^k \left(-3.82475 \left(\frac{29}{25} - z_0\right)^k + 2.29485 \left(\frac{13}{9} - z_0\right)^k - 0.76495 \left(5 - z_0\right)^k\right) z_0^{-k}}{k} \end{split}$$

$$\begin{cases} 5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 = \\ 7.6495 i \pi \left\lfloor \frac{\pi - \arg\left(\frac{29}{25 z_0}\right) - \arg(z_0)}{2 \pi} \right\rfloor - 4.5897 i \pi \left\lfloor \frac{\pi - \arg\left(\frac{13}{9 z_0}\right) - \arg(z_0)}{2 \pi} \right\rfloor + \\ 1.5299 i \pi \left\lfloor \frac{\pi - \arg\left(\frac{5}{z_0}\right) - \arg(z_0)}{2 \pi} \right\rfloor + 2.29485 \log(z_0) + \\ \sum_{k=1}^{\infty} \frac{(-1)^k \left(-3.82475 \left(\frac{29}{25} - z_0\right)^k + 2.29485 \left(\frac{13}{9} - z_0\right)^k - 0.76495 (5 - z_0)^k \right) z_0^{-k}}{k}$$

Integral representations:

$$\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 = \int_{1}^{\frac{29}{25}} \frac{2.34993 - 4.40611 t + 2.29485 t^{2}}{0.6144 t - 1.6 t^{2} + t^{3}} dt$$

$$\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 = \int_{-i \, \infty + \gamma}^{i \, \infty + \gamma} \frac{4^{-s} \left(0.382475 - 1.14743 \times 9^{s} + 1.91238 \times 25^{s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{i \, \pi \, \Gamma(1-s)} ds \text{ for }$$

$$-1 < \gamma < 0$$

 $(((((5 \log(29/25) - 3 \log(13/9) + \log(5))))*0.76495)))^{1/64}$

Input:

$$\sqrt[64]{\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5)\right) \times 0.76495}$$

 $\log(x)$ is the natural logarithm

Result:

0.99927977...

0.99927977... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{9^{5}\sqrt{5^{3}}} - 1}} \approx 0.9991104684$$

$$\frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}$$

and to the dilaton value **0**. **989117352243** = ϕ

2*log base 0.99927977 (((((((5 log(29/25) - 3 log(13/9) + log(5))))*0.76495)))-Pi+1/golden ratio

Input interpretation: $2 \log_{0.99927977} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \times 0.76495 \right) - \pi + \frac{1}{\phi}$

log(x) is the natural logarithm

 $\log_b(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

125.476...

125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$2 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = -\pi + \frac{1}{\phi} + \frac{2 \log(0.76495 \left(\log(5) - 3 \log\left(\frac{13}{9}\right) + 5 \log\left(\frac{29}{25}\right)\right)}{\log(0.99928)} \right)$$

$$2 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = -\pi + 2 \log_{0.99928} \left(0.76495 \left(\log(a) \log_a(5) - 3 \log(a) \log_a\left(\frac{13}{9}\right) + 5 \log(a) \log_a\left(\frac{29}{25}\right) \right) \right) + \frac{1}{\phi}$$
$$2 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = -\pi + 2 \log_{0.99928} \left(0.76495 \left(\log_e(5) - 3 \log_e\left(\frac{13}{9}\right) + 5 \log_e\left(\frac{29}{25}\right) \right) \right) + \frac{1}{\phi}$$

$$2 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi - \frac{2 \sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + 3.82475 \log\left(\frac{29}{25}\right) - 2.29485 \log\left(\frac{13}{9}\right) + 0.76495 \log(5) \right)^k}{\log(0.99928)} - \frac{1}{\phi} + \frac{1}{\phi} + \frac{1}{\phi} = \frac{1}{\phi} + \frac{1$$

$$2 \log_{0.00028} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi - 2775.89 \log\left(0.76495 \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) \right) - 2 \log\left(0.76495 \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) \right) \sum_{k=0}^{\infty} (-0.00072023)^k G(k)$$

for $\left(G(0) = 0 \text{ and } \frac{(-1)^k k}{2(1+k)(2+k)} + G(k) = \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right)$

$$2 \log_{0.55528} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi - 2775.89 \log\left(0.76495 \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) \right) - 2 \log\left(0.76495 \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) \right) \sum_{k=0}^{\infty} (-0.00072023)^k G(k)$$

for $\left(G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 (1+k) (2+k)} + \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right)$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi + 2 \log_{0.99928} \left(0.76495 \int_{1}^{\frac{29}{25}} 5 \left(\frac{1}{t} + 5 \left(\frac{3}{16 - 25t} + \frac{1}{-24 + 25t} \right) \right) dt \right)$$

$$2 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi + 2 \log_{0.99928} \left(\frac{1}{i\pi} \int_{-i \ \infty + \gamma}^{i \ \infty + \gamma} \frac{4^{-s} \ (0.382475 - 1.14743 \times 9^{s} + 1.91238 \times 25^{s}) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} ds \right)$$
for $-1 < \gamma < 0$

2*log base 0.99927977 (((((((5 log(29/25) - 3 log(13/9) + log(5))))*0.76495)))+11+1/golden ratio

Input interpretation: $2 \log_{0.99927977} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \times 0.76495 \right) + 11 + \frac{1}{\phi} \right)$

log(x) is the natural logarithm

 $\log_b(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

139.618...

139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$2 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + \frac{1}{\phi} + \frac{2 \log\left(0.76495 \left(\log(5) - 3 \log\left(\frac{13}{9}\right) + 5 \log\left(\frac{29}{25}\right)\right)\right)}{\log(0.99928)}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + 2 \log_{0.99928} \left(0.76495 \left(\log(a) \log_a(5) - 3 \log(a) \log_a \left(\frac{13}{9} \right) + 5 \log(a) \log_a \left(\frac{29}{25} \right) \right) \right) + \frac{1}{\phi}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + 2 \log_{0.99928} \left(0.76495 \left(\log_e(5) - 3 \log_e \left(\frac{13}{9} \right) + 5 \log_e \left(\frac{29}{25} \right) \right) \right) + \frac{1}{\phi}$$

$$\begin{aligned} 2\log_{0.99928} &\left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right) 0.76495 \right) + 11 + \frac{1}{\phi} = \\ & 11 + \frac{1}{\phi} - \frac{2\sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + 3.82475 \log\left(\frac{29}{25}\right) - 2.29485 \log\left(\frac{13}{9}\right) + 0.76495 \log(5)\right)^k}{\log(0.99928)} \\ & 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right) 0.76495 \right) + 11 + \frac{1}{\phi} = \\ & 11 + \frac{1}{\phi} - 2775.89 \log\left(0.76495 \left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) \sum_{k=0}^{\infty} (-0.00072023)^k G(k) \\ & for \left(G(0) = 0 \text{ and } \frac{(-1)^k k}{2(1+k)(2+k)} + G(k) = \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \\ & 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = \\ & 11 + \frac{1}{\phi} - 2775.89 \log\left(0.76495 \left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) - 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) - 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) - 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) - 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) - \\ & 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) - 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) \right) = \\ & 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) = \\ & 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) = \\ & 2\log_{0.99928} \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) = \\ & 2\log_{0.99928} \left(\left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) = \\ & 2\log_{0.99928} \left(\left(\left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) = \\ & 2\log_{0.99928} \left(\left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \right) = \\ & 2\log_{0.99928} \left(\left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) = \\ & 2\log_{0.99928} \left(\left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) = \\ & 2\log_{0.9928} \left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) = \\ & 2\log_{0.9928} \left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) = \\ & 2\log_{0.9928} \left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) = \\ & 2\log_{0.9928} \left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) = \\ & 2\log_{0.9928} \left(\left(\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right)$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + \frac{1}{\phi} + 2 \log_{0.99928} \left(0.76495 \int_{1}^{\frac{29}{25}} 5 \left(\frac{1}{t} + 5 \left(\frac{3}{16 - 25t} + \frac{1}{-24 + 25t} \right) \right) dt \right)$$

$$2 \log_{0.00028} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + \frac{1}{\phi} + 2 \log_{0.00028} \left(\frac{1}{i\pi} \int_{-i\infty+\gamma}^{i\infty+\gamma} \frac{4^{-s} \left(0.382475 - 1.14743 \times 9^{s} + 1.91238 \times 25^{s} \right) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} \, ds \right)$$
for $-1 < \gamma < 0$

27*log base 0.99927977 (((((((5 log(29/25) - 3 log(13/9) + log(5))))*0.76495)))+1/golden ratio

Input interpretation: 27 log_{0.00027977} $\left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \times 0.76495 \right) + \frac{1}{\phi}$

log(x) is the natural logarithm

 $\log_b(x)$ is the base- b logarithm

∉ is the golden ratio

Result:

1728.61...

1728.61...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross– Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Alternative representations:

$$27 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \frac{1}{\phi} + \frac{27 \log(0.76495 \left(\log(5) - 3 \log\left(\frac{13}{9}\right) + 5 \log\left(\frac{29}{25}\right)\right)}{\log(0.99928)}$$

$$27 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = 27 \log_{0.99928} \left(0.76495 \left(\log(a) \log_a(5) - 3 \log(a) \log_a\left(\frac{13}{9}\right) + 5 \log(a) \log_a\left(\frac{29}{25}\right) \right) \right) + \frac{1}{\phi}$$

$$27 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = 27 \log_{0.99928} \left(0.76495 \left(\log_e(5) - 3 \log_e\left(\frac{13}{9}\right) + 5 \log_e\left(\frac{29}{25}\right) \right) \right) + \frac{1}{\phi}$$

$$\begin{aligned} 27 \log_{0.50028} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \\ \frac{1}{\phi} - \frac{27 \sum_{k=1}^{\infty} \frac{(-1)^k \left(-1+3.82475 \log\left(\frac{29}{25}\right) - 2.20485 \log\left(\frac{13}{9}\right) + 0.76495 \log(5)\right)^k}{\log(0.99928)} \\ 27 \log_{0.50028} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \\ \frac{1}{\phi} - 37474.5 \log\left(0.76495 \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) \right) \sum_{k=0}^{\infty} (-0.00072023)^k G(k) \\ for \left(G(0) = 0 \text{ and } \frac{(-1)^k k}{2(1+k)(2+k)} + G(k) = \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \\ 27 \log_{0.50028} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \\ \frac{1}{\phi} - 37474.5 \log\left(0.76495 \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \\ \frac{1}{\phi} - 37474.5 \log\left(0.76495 \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) \right) - 27 \log\left(0.76495 \left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) \right) \sum_{k=0}^{\infty} (-0.00072023)^k G(k) \\ for \left(G(0) = 0 \text{ and } \frac{(-1)^{1+k} k}{2(1+k)(2+k)} + \frac{1}{2(1+k)(2+k)} + \frac{1}{2(1+k)(2+k)} \right) \right) \\ \sum_{k=0}^{\infty} (-0.00072023)^k G(k) \\ for \left(G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2(1+k)(2+k)} + \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \end{aligned}$$

Integral representations:

$$27 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \frac{1}{\phi} + 27 \log_{0.99928} \left(0.76495 \int_{1}^{\frac{29}{25}} 5 \left(\frac{1}{t} + 5 \left(\frac{3}{16 - 25t} + \frac{1}{-24 + 25t}\right) \right) dt \right)$$

$$27 \log_{0.99928} \left(\left(5 \log\left(\frac{29}{25}\right) - 3 \log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \frac{1}{\phi} + 27 \log_{0.99928} \left(\frac{1}{i\pi} \int_{-i\infty+\gamma}^{i\infty+\gamma} \frac{4^{-s} (0.382475 - 1.14743 \times 9^{s} + 1.91238 \times 25^{s}) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} \, ds \right)$$
for $-1 < \gamma < 0$

Acknowledgments

We would like to thank Prof. **George E. Andrews** Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

References

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN