Addendum to vixra:2001.0061

Ervin Goldfain

Abstract

We have previously shown that 3-dimensional space equipped with minimal fractality provides a qualitative explanation for both rotation curves of disk galaxies and cosmological expansion. This brief Addendum brings up an additional argument in support of our findings.

Consider a non-relativistic, homogeneous and spherically symmetric distribution of matter surrounding a massive object placed at the center of the sphere. Let *R* denote the sphere radius and let's assume that the Newtonian potential falls off as [1]

$$\varphi'(r) \sim -\frac{1}{r^{1\mp\varepsilon}}, \varepsilon \ll 1$$
 (1)

at large distances from the center. No matter is assumed to exist inside a small spherical neighborhood of radius δ ($0 < \delta << R$), whose function is to regularize the potential (1) at small distances from the center. Following [1], we assume that (1) describes reasonably well gravitation on ultrashort time scales $t << O(M_{EW}^{-1})$, where M_{EW} is the Fermi scale. The energy of the gravitating system in nearly 3-dimensional space may be estimated from [2]

$$E(\varepsilon) = \int_{\delta}^{R} \frac{\rho G_{N}}{r^{1 \mp \varepsilon}} d^{3}r = \frac{4\pi}{2 \pm \varepsilon} \rho G_{N}(R^{2 \pm \varepsilon} - \delta^{2 \pm \varepsilon})$$
(1)

in which ρ stands for the mass density. Taking the ratio of (1) to the energy of the system in Newtonian mechanics at $\varepsilon = 0$ leads to the approximation

1 | Page

$$\lambda(\varepsilon) = \frac{E(\varepsilon)}{E(0)} \sim R^{\pm \varepsilon}$$
⁽²⁾

A similar scaling behavior emerges by comparing the corresponding gravitational forces computed at $\varepsilon \neq 0$ and $\varepsilon = 0$, respectively, i.e.

$$\lambda(\varepsilon) = \frac{f_N(\varepsilon)}{F_N(0)} \sim R^{\pm \varepsilon}$$
(3)

Both (2) and (3) are undefined in the combined limit $R \to \infty$, $\varepsilon \to 0$. Following again [1], we introduce the constrain

$$\left|\frac{dR}{d\tau}\right| >> \left|\frac{d\varepsilon}{d\tau}\right| \tag{4}$$

where τ plays the role of a time-like autonomous parameter. Under these conditions, it is seen that the scaling $\lambda = R^{\epsilon}$ mimics the *gravitational effect of Dark Matter*, whereas $\lambda = R^{-\epsilon}$ the *cosmological expansion* of the Universe. It is conceivable that (2) and (3) stem from the nonlocal structure of spacetime in the early Universe and carry over as residual effects to the observable cosmological scales [1].

References

[1] Available at the following sites:

viXra:2001.0061

https://www.researchgate.net/publication/338409772 Fractional Spacetime and th e Emergence of the Dark Sector https://www.academia.edu/41523295/Fractional Spacetime and the Emergence of

the Dark Sector

[2] <u>https://arxiv.org/pdf/0907.0323.pdf</u>