Assuming $c<\operatorname{rad}^{2}(a b c)$ implies The abc Conjecture true

Abdelmajid Ben Hadj Salem

Abstract

In this paper, assuming that $c<\operatorname{rad}^{2}(a b c)$ is true, we give a proof of the $a b c$ conjecture by proposing the expression of the constant $K(\epsilon)$, then we approve that $\forall \epsilon>0$, for a, b, c positive integers relatively prime with $c=a+b$, we have $c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon}$. Some numerical examples are given.

Résumé

Assumant que la conjecture $c<\operatorname{rad}^{2}(a b c)$ est vraie, on donne une démonstration de la conjecture $a b c$ en proposant la constante $K(\epsilon)$. On approuve alors pour tout $\epsilon>0$, et pour tout triplet (a, b, c) avec $c=a+b$ et a, b, c des entiers positifs relativement premiers, on a $c<K(\epsilon) r a d^{1+\epsilon}(a b c)$. Des exemples numériques sont présentés.

Keywords: Elementary number theory, real functions of one variable.
2010 MCS 11AXX 26AXX
To the memory of my Father who taught me arithmetic To my wife Wahida and my children Sinda and Mohamed Mazen

1 Introduction and notations

Let a a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph CEsterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:
Conjecture 1.1. ($a b c$ Conjecture): Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists a constant $K(\epsilon)$ such that :

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{3}
\end{equation*}
$$

$K(\epsilon)$ depending only of ϵ.
The idea to try to write a paper about this conjecture was born after the publication of an article in Quanta magazine about the remarks of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a proof of the $a b c$ conjecture is due to the incomprehensibility how the prime factors are organized in c giving a, b with $c=a+b$.

We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ [1]. A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ [3]. It is the key to resolve the $a b c$ conjecture. In my paper, assuming that $c<\operatorname{rad}^{2}(a b c)$, I give a proof of the $a b c$ conjecture. The paper is organized as follows: in the second section, we give the proof of the $a b c$ conjecture. In section three, we present some numerical examples.

2 The proof of the $a b c$ conjecture

2.1 The Proof of the $a b c$ Conjecture (1.1), Case : $\epsilon \geq 1$

Assuming that $c<\operatorname{rad}^{2}(a b c)$ is true, we have $\forall \epsilon \geq 1$:

$$
\begin{equation*}
c<R^{2} \leq R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon \geq 1 \tag{4}
\end{equation*}
$$

We verify easily that $K(\epsilon)>1$ for $\epsilon \geq 1$. Then the $a b c$ conjecture is true.

2.2 The Proof of the $a b c$ Conjecture (1.1), Case : $\epsilon<1$

2.3 Case: $\epsilon<1$

2.3.1 Case: $c<R$

In this case, we can write :

$$
\begin{equation*}
c<R<R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon<1 \tag{5}
\end{equation*}
$$

here also $K(\epsilon)>1$ for $\epsilon<1$ and the $a b c$ conjecture is true.

2.3.2 Case: $c>R$

In this case, we confirm that :

$$
\begin{equation*}
c<K(\epsilon) \cdot R^{1+\epsilon}, \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, 0<\epsilon<1 \tag{6}
\end{equation*}
$$

If not, then $\left.\exists \epsilon_{0} \in\right] 0,1[$, so that the triplets (a, b, c) checking $c>R$ and:

$$
\begin{equation*}
c \geq R^{1+\epsilon_{0}} \cdot K\left(\epsilon_{0}\right) \tag{7}
\end{equation*}
$$

are in finite number. We have:

$$
\begin{array}{r}
c \geq R^{1+\epsilon_{0}} \cdot K\left(\epsilon_{0}\right) \Longrightarrow R^{1-\epsilon_{0}} \cdot c \geq R^{1-\epsilon_{0}} \cdot R^{1+\epsilon_{0}} \cdot K\left(\epsilon_{0}\right) \Longrightarrow \\
\quad R^{1-\epsilon_{0}} \cdot c \geq R^{2} . K\left(\epsilon_{0}\right)>c \cdot K\left(\epsilon_{0}\right) \Longrightarrow R^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \tag{8}
\end{array}
$$

As $c>R$, we obtain:

$$
\begin{array}{r}
c^{1-\epsilon_{0}}>R^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \Longrightarrow \\
c^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \Longrightarrow c>K\left(\epsilon_{0}\right)\left(\frac{1}{1-\epsilon_{0}}\right) \tag{9}
\end{array}
$$

We deduce that it exists an infinity of triples (a, b, c) verifying (7), hence the contradiction. Then the proof of the $a b c$ conjecture is finished. We obtain that $\forall \epsilon>0$, $c=a+b$ with a, b, c relatively coprime, $a>b \geq 2$:

$$
\begin{equation*}
c<K(\epsilon) \cdot r^{2 d} d^{1+\epsilon}(a b c) \quad \text { with } \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)} \tag{10}
\end{equation*}
$$

Q.E.D

3 Examples

In this section, we are going to verify some numerical examples.

3.1 Example 1

The example is given by:

$$
\begin{equation*}
1+5 \times 127 \times(2 \times 3 \times 7)^{3}=19^{6} \tag{11}
\end{equation*}
$$

$a=5 \times 127 \times(2 \times 3 \times 7)^{3}=47045880 \Rightarrow \mu_{a}=2 \times 3 \times 7=42$ and $\operatorname{rad}(a)=$ $2 \times 3 \times 5 \times 7 \times 127$,
$b=1 \Rightarrow \mu_{b}=1$ and $\operatorname{rad}(b)=1$,
$c=19^{6}=47045880 \Rightarrow \operatorname{rad}(c)=19$. Then $\operatorname{rad}(a b c)=\operatorname{rad}(a c)=2 \times 3 \times 5 \times 7 \times$ $19 \times 127=506730$..

We have $c>\operatorname{rad}(a c)$ but $\operatorname{rad}^{2}(a c)=506730^{2}=256775292900>c=$ 47045880.

3.1.1 Case $\epsilon=0.01$

$c<K(\epsilon) \cdot \operatorname{rad}(a c)^{1+\epsilon} \Longrightarrow 47045880 \stackrel{?}{<} e^{10000} .506730^{1.01}$. The expression of $K(\epsilon)$ becomes:

$$
\begin{equation*}
K(\epsilon)=e^{\frac{1}{0.0001}}=e^{10000}=8,7477777149120053120152473488653 e+4342 \tag{12}
\end{equation*}
$$

We deduce that $c \ll K(0.01) .506730^{1.01}$ and the equation 10 is verified.

3.1.2 Case $\epsilon=0.1$

$K(0.1)=e^{\frac{1}{0.01}}=e^{100}=2,6879363309671754205917012128876 e+43 \Longrightarrow c<$ $K(0.1) \times 506730^{1.01}$. And the equation 10 is verified.

3.1.3 Case $\epsilon=1$

$K(1)=e \Longrightarrow c=47045880<e \cdot \operatorname{rad}^{2}(a c)=697987143184,212$. and the equation (10) is verified.

3.1.4 Case $\epsilon=100$

$$
\begin{array}{r}
K(100)=e^{0.0001} \Longrightarrow c=47045880 \stackrel{?}{<} e^{0.0001} .506730^{101}= \\
1,5222350248607608781853142687284 e+576
\end{array}
$$

and the equation 10 is verified.

3.2 Example 2

We give here the example of Eric Reyssat [1] , it is given by:

$$
\begin{equation*}
3^{10} \times 109+2=23^{5}=6436343 \tag{13}
\end{equation*}
$$

$a=3^{10} .109 \Rightarrow \mu_{a}=3^{9}=19683$ and $\operatorname{rad}(a)=3 \times 109$,
$b=2 \Rightarrow \mu_{b}=1$ and $\operatorname{rad}(b)=2$,
$c=23^{5}=6436343 \Rightarrow \operatorname{rad}(c)=23$. Then $\operatorname{rad}(a b c)=2 \times 3 \times 109 \times 23=15042$. For example, we take $\epsilon=0.01$, the expression of $K(\epsilon)$ becomes:

$$
\begin{equation*}
K(\epsilon)=e^{9999.99}=8,7477777149120053120152473488653 e+4342 \tag{14}
\end{equation*}
$$

Let us verify 10):

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot r a d(a b c)^{1+\epsilon} \Longrightarrow c=6436343 \stackrel{?}{<} K(0.01) \times(3 \times 109 \times 2 \times 23)^{1.01} \Longrightarrow \\
6436343 \ll K(0.01) \times 15042^{1.01} \tag{15}
\end{gather*}
$$

Hence (10) is verified.

3.3 Example 3

The example of Nitaj about the ABC conjecture (1) is:

$$
\begin{array}{r}
a=11^{16} .13^{2} .79=613474843408551921511 \Rightarrow \operatorname{rad}(a)=11.13 .79 \\
b=7^{2} .41^{2} .311^{3}=2477678547239 \Rightarrow \operatorname{rad}(b)=7.41 .311 \\
c=2.3^{3} .5^{23} .953=613474845886230468750 \Rightarrow \operatorname{rad}(c)=2.3 .5 .953 \\
\operatorname{rad}(a b c)=2.3 .5 .7 .11 .13 .41 .79 .311 .953=28828335646110 \tag{19}
\end{array}
$$

3.3.1 Case 1

we take $\epsilon=100$ we have:

$$
\begin{gathered}
c \stackrel{?}{<} K(\epsilon) \cdot r a d(a b c)^{1+\epsilon} \Longrightarrow \\
613474845886230468750 \stackrel{?}{<} e^{0.0001} \cdot(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 41 \cdot 79 \cdot 311 \cdot 953)^{101} \Longrightarrow \\
613474845886230468750<2,7657949971494838920022381186039 e+1359
\end{gathered}
$$

then 10 is verified.

3.3.2 Case 2

We take $\epsilon=0.5$, then:

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Longrightarrow \tag{20}\\
613474845886230468750 \stackrel{?}{<} e^{4} \cdot(2.3 \cdot 5 \cdot 7 \cdot 11.13 .41 \cdot 79.311 .953)^{1.5} \Longrightarrow \\
613474845886230468750<8450961319227998887403,9993 \tag{21}
\end{gather*}
$$

We obtain that 10 is verified.

3.3.3 Case 3

We take $\epsilon=1$, then

$$
\begin{gathered}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Longrightarrow \\
613474845886230468750 \stackrel{?}{<}(2.3 .5 \cdot 7 \cdot 11.13 \cdot 41.79 .311 .953)^{2} \Longrightarrow \\
613474845886230468750<831072936124776471158132100
\end{gathered}
$$

We obtain that 10 is verified.

3.4 Example 4

It is of Ralf Bonse about the ABC conjecture [3] :

$$
\begin{gather*}
2543^{4} .182587 .2802983 .85813163+2^{15} .3^{77} \cdot 11.173=5^{56} .245983 \tag{23}\\
a=2543^{4} .182587 .2802983 .85813163 \\
b=2^{15} .3^{77} \cdot 11.173 \\
c=5^{56} .245983
\end{gather*}
$$

$$
\operatorname{rad}(a b c)=2.3 .5 .11 .173 .2543 .182587 .245983 .2802983 .85813163
$$

$$
\begin{equation*}
\operatorname{rad}(a b c)=1.5683959920004546031461002610848 e+33 \tag{24}
\end{equation*}
$$

3.4.1 Case 1

For example, we take $\epsilon=10$, the expression of $K(\epsilon)$ becomes:

$$
K(\epsilon)=e^{0.01}=1,0078157404282956743204617416779
$$

Let us verify 10 :

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Rightarrow c=5^{56} \cdot 245983 \stackrel{?}{<} \\
e^{0.01} \cdot(2.3 .5 \cdot 11.173 .2543 .182587 .245983 .2802983 .85813163)^{11} \\
\Longrightarrow 3.4136998783296235160378273576498 e+44< \\
1,4236200596494908176008120925721 e+365 \tag{25}
\end{gather*}
$$

The equation 10 is verified.

3.4.2 Case 2

We take $\epsilon=0.4 \Longrightarrow K(\epsilon)=12,18247347425151215912625669608$, then:

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Rightarrow c=5^{56} \cdot 245983 \stackrel{?}{<} \\
e^{6.25} \cdot(2.3 \cdot 5 \cdot 11.173 .2543 .182587 .245983 .2802983 .85813163)^{1.4} \\
\Longrightarrow 3 \cdot 4136998783296235160378273576498 e+44< \\
3,6255465680011453642792720569685 e+47 \tag{26}
\end{gather*}
$$

And the equation 10 is verified.

> Ouf, end of the mystery!

4 Conclusion

Assuming $c<R^{2}$ true, we have given an elementary proof of the $a b c$ conjecture in the two cases $c=a^{\prime}+1$ and $c=a+b$, confirmed by some numerical examples. We can announce the important theorem:

Theorem 4.1. Let a, b, c positive integers relatively prime with $c=a+b$ and assuming that $c<R^{2}$ holds, then for each $\epsilon>0$, there exists $K(\epsilon)$ such that :

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{27}
\end{equation*}
$$

where $K(\epsilon)$ is a constant depending of ϵ proposed equal to $e^{\left(\frac{1}{\epsilon^{2}}\right) \text {. }}$

Acknowledgements

The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the $a b c$ conjecture.

References

[1] M. Waldschmidt : On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
[2] K. Kremmerz: For Quanta Magazine: Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. The Quanta Newsletter, 20 September 2018. www.quantamagazine.org. (2018).
[3] P. Mihăilescu: Around $A B C$. European Mathematical Society Newsletter \mathbf{N}° 93, September 2014. 29-34, (2014)

Address: Abdelmajid Ben Hadj Salem: Résidence Bousten 8, Mosquée Er-Raoudha, Bloc B, Appart. B8, 1181 Soukra Er-Raoudha, Tunisia.

E-mail: abenhadjsalem@gmail.com

