
ON THE ERDÓS-ULAM PROBLEM

T. AGAMA

Abstract. In this paper we introduce and develop the topology of compres-

sion of points in space. We then use this Topology to solve the Erdós-Ulam

problem. We provide a positive solution in this paper.

1. Introduction

The Erdós-Ulam problem is a question about the possible existence of dense set
of points in the plane at rational distances from each other. More formally, the
problem states

Conjecture 1.1. Is there a dense set of points in a plane at rational distances
from each other?

Eventhough the Erdós-Ulam problem remained unsolved until now, there has
been various studies concerning the rational distances between pairs of points in a
plane. An important observation has been made in [1], which shows that the only
algebraic curves containing dense set of points at rational distances from each other
are circles and lines. In this paper however, we provide a positive solution to the
problem. We start by introducing and developing the topology of compression of
points in space. Consequently, we managed to prove the following theorem:

Theorem 1.1. There exist a dense set of points in Rn at rational distances from
each other.

2. Compression

Definition 2.1. By the compression of scale m ≥ 1 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin away from the origin by certain scale and similarly
draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale m ≥ 1 with Vm : Rn −→ Rn is a bijective
map.
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Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression.

Definition 2.3. By the mass of a compression of scale m ≥ 1 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

Remark 2.4. Next we prove upper and lower bounding the mass of the compression
of scale m ≥ 1.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Nn, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1

�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m

n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m

n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.5. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 −
m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
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3. The ball induced by compression

In this section we introduce the notion of the ball induced by a point (x1, x2, . . . , xn) ∈
Nn under compression of a given scale. We launch more formally the following lan-
guage.

Definition 3.1. Let (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
Then by the ball induced by (x1, x2, . . . , xn) ∈ Nn under compression of scale m,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ ≤ 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality.

Remark 3.2. Next we prove that smaller balls induced by points should essentially
be covered by the bigger balls in which they are embedded. We state and prove
this statement in the following result.

For simplicity we will on occasion choose to write the ball induced by the point
~x = (x1, x2, . . . , xn) under compression as

B 1
2G◦Vm[~x][~x].

We adopt this notation to save enough work space in many circumstances. We first
prove a preparatory result in the following sequel. We find the following estimates
for the compression gap useful.

Proposition 3.1. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
+ m2M◦ V1[(x2

1, . . . , x
2
n)]− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
− 2mn + O

(
m2M◦ V1[(x2

1, . . . , x
2
n)]

)
.

Proposition 3.1 offers us an extremely useful identity. It allows us to pass from
the gap of compression on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
than points with a relatively smaller gap under compression. That is to say, the
inequality

G ◦ Vm[~x] ≤ G ◦ Vm[~y]

if and only if ||~x|| ≤ ||~y|| for ~x, ~y ∈ Nn. This important transference principle will
be mostly put to use in obtaining our results.

Lemma 3.3 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2, then we
have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2
j ) + m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn
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and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2
j ) + m2 log

(
1− n− 1

sup(x2
j )

)−1

− 2mn.

Theorem 3.4. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] ≤ G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] > G ◦ Vm[~y],

then it follows that ||~y|| < ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

then it follows from Proposition 3.1 that ||~z|| ≤ ||~y|| and sup(zj) ≤ sup(yj) by
Lemma 3.3. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �

Theorem 3.5. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 3.4 that

G ◦ Vm[~z] > G ◦ Vm[~x].

It follows that

G ◦ Vm[~y] ≥ G ◦ Vm[~z]

> G ◦ Vm[~x]

≥ G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 3.6. Theorem 3.5 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.
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3.1. Interior points and the limit points of balls induced under compres-
sion. In this section we launch the notion of an interior and the limit point of
balls induced under compression. We study this notion in depth and explore some
connections.

Definition 3.7. Let ~y = (y1, y2, . . . , yn) ∈ Nn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then a point ~z ∈ B 1

2G◦Vm[~y][~y] is an interior point if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for most ~x ∈ B 1
2G◦Vm[~y][~y]. An interior point ~z is then said to be a limit point if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for all ~x ∈ B 1
2G◦Vm[~y][~y]

Remark 3.8. Next we prove that there must exist an interior and limit point in any
ball induced by points under compression of any scale in any dimension.

Theorem 3.9. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
Then the ball B 1

2G◦Vm[~x][~x] contains an interior point and a limit point.

Proof. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n and
suppose on the contrary that B 1

2G◦Vm[~x][~x] contains no limit point. Then pick

~z1 ∈ B 1
2G◦Vm[~x][~x]

for ~z1 6= ~x. Then by Theorem 3.5 and Theorem 3.4 It follows that

B 1
2G◦Vm[~z1][~z1] ⊂ B 1

2G◦Vm[~x][~x]

with G ◦ Vm[~z1] < G ◦ Vm[~x]. Again pick ~z2 ∈ B 1
2G◦Vm[~z1][~z1] for ~z2 6= ~z1. Then by

employing Theorem 3.5 and Theorem 3.4, we have

B 1
2G◦Vm[~z2][~z2] ⊂ B 1

2G◦Vm[~z1][~z1]

with G◦Vm[~z2] < G◦Vm[~z1]. By continuing the argument in this manner we obtain
the infinite descending sequence of the gap of compression

G ◦ Vm[~x] > G ◦ Vm[~z1] > G ◦ Vm[~z2] > · · · > G ◦ Vm[~zn] > · · ·

which follows from Theorem 3.4 that

||~x|| > ||~z1|| > · · · > ||~zn|| > · · · > · · ·

thereby ending the proof of the theorem. �

3.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 3.10. Let ~y = (y1, y2, . . . , yn) ∈ Nn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].
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Remark 3.11. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball. Next we show
that all balls can in principle be generated by their admissible points.

Theorem 3.12. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 3.4, we obtain the inequality

G ◦ Vm[~y] < G ◦ Vm[~z] ≤ G ◦ Vm[~x].

It follows from Proposition 3.1 that ||~y|| < ||~x||. This contradicts the fact that the
point ~y ∈ B 1

2G◦Vm[~x][~x] is an admissible point. Now we notice that ~y ∈ B 1
2G◦Vm[~x][~x]

certainly implies G ◦ Vm[~y] ≤ G ◦ Vm[~x]. Conversely we notice as well that ~x ∈
B 1

2G◦Vm[~y][~y], which certainly implies G ◦Vm[~x] ≤ G ◦Vm[~y] by Theorem 3.4. Thus

the conclusion follows. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y must satisfy the
inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x]

and ~y is indeed admissible, thereby ending the proof. �

3.3. The dilation of the ball induced by compression. In this section we
introduce the notion of the dilation of balls induced by points under compression.
We study this in relation to other concepts of compression.

Definition 3.13. Let ~x = (x1, x2, . . . , xn) ∈ Nn and Vm : Rn −→ Rn be a com-
pression of scale m. Then by the dilation of the induced ball B 1

2G◦Vm[~x][~x] by a

scale factor of t > 0, we mean the map

B 1
2G◦Vm[~x][~x] −→ Bt1

2G◦Vm[~x][~x] = B 1
2G◦Vm[t~x][t~x].
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Remark 3.14. Next we show that we can in practice embed all balls in their positive
dilation.

Proposition 3.2. Let ~x = (x1, x2, . . . , xn) ∈ Nn. For all t > 1, we have

B 1
2G◦Vm[~x][~x] ⊂ Bt1

2G◦Vm[~x][~x] = B 1
2G◦Vm[t~x][t~x].

Proof. First let ~x = (x1, x2, . . . , xn) ∈ Nn and take t > 1. Suppose

B 1
2G◦Vm[~x][~x] 6⊂ Bt1

2G◦Vm[~x][~x] = B 1
2G◦Vm[t~x][t~x].

Then it follows that there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that ~z /∈ Bt1

2G◦Vm[~x]
[~x] =

B 1
2G◦Vm[t~x][t~x]. By Theorem 3.4, It follows that

G ◦ Vm[~x] > G ◦ Vm[~z]

> G ◦ Vm[t~x]

> tG ◦ Vm[~x].

This is absurd since t > 1, and the proof is complete. �

The result in Proposition 3.2 can be thought of as an analogue of most embedding
theorems. It tells us for the most part we can in principle cover all balls of various
sizes by their dilates. Next we show that dilation of balls and their sub-balls still
preserves an embedding in the ball. We formalize this assertion in the following
proposition.

Proposition 3.3. Let ~y ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x]. Then for any t > 1, we have

Bt1
2G◦Vm[~y][~y] ⊆ Bt1

2G◦Vm[~x][~x].

Proof. First suppose ~y ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x]. Then by Theorem 3.5 it follows

that

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x]

and it follows from Proposition 3.1 that ||~y|| ≤ ||~x||. Now suppose on the contrary
that

Bt1
2G◦Vm[~y][~y] 6⊆ Bt1

2G◦Vm[~x][~x].

Then it follows that there exist some ~z ∈ Nn with ~z ∈ Bt
1
2G◦Vm[~y]

[~y] such that

~z /∈ Bt1
2G◦Vm[~x]

[~x]. By appealing to Theorem 3.4, it follows that

G ◦ Vm[t~y] ≥ G ◦ Vm[~z]

> G ◦ Vm[t~x].

This certainly implies ||t~x|| < ||t~y|| for t > 1 by appealing to Proposition 3.1. This
is a contradiction, and the proof of the Proposition is complete. �
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3.4. The order of points in the ball induced under compression. In this
section we introduce the notion of the order of points contained in balls induced
under compression on points in Nn. We launch the following formal language.

Definition 3.15. Let ~y = (y1, y2, . . . , yn) ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x]. Then we

say the point ~y is of order t > 0 in the ball if ~x ‖ ~y and there exist some t > 0 such
that

Bt1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x].

Otherwise we say the point ~y is free in the ball.

Remark 3.16. Next we show that the existence of order of points in a ball induced
by points under compression is mostly in continuum. We formalize this claim in
the following proposition.

Proposition 3.4. Let ~x, ~y, ~z ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x] and B 1

2G◦Vm[~x][~x] ⊂
B 1

2G◦Vm[~z][~z]. If the point ~y ∈ B 1
2G◦Vm[~x][~x] is of order t > 1 and the point ~x ∈

B 1
2G◦Vm[~z][~z] is of order s > 1. Then the point

~y ∈ B 1
2G◦Vm[~z][~z]

is of order st > 1.

Proof. First suppose ~x, ~y, ~z ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x] and B 1

2G◦Vm[~x][~x] ⊂ B 1
2G◦Vm[~z][~z].

Then by Theorem 3.5, we have the following chains of ball embedding

B 1
2G◦Vm[~y][~y] ⊂ B 1

2G◦Vm[~x][~x] ⊂ B 1
2G◦Vm[~z][~z].

Since ~y ∈ B 1
2G◦Vm[~x][~x] is of order t > 1, It follows that

Bt1
2G◦Vm[~y][~y] = B 1

2G◦Vm[t~y][t~y]

= B 1
2G◦Vm[~x][~x]

and by appealing to Theorem 3.4, G ◦ Vm[t~y] = G ◦ Vm[~x] and it follows that
||t~y|| = ||~x||, by Proposition 3.1. Again the point ~x ∈ B 1

2G◦Vm[~z][~z] is of order s > 1

and it follows that

Bs1
2G◦Vm[~x][~x] = B 1

2G◦Vm[s~x][s~x]

= B 1
2G◦Vm[~z][~z].

By appealing to Theorem 3.4, It follows that G◦Vm[s~x] = G◦Vm[~z] and ||s~x|| = ||~z||.
By combining the two relations, we have

st||~y|| = ||~z||

It follows that st~y = ~z and the result follows immediately. �

4. Application to the Erdós-Ulam problem

In this section we apply the topology to the Erdós-Ulam problem in the following
sequel. We first launch the following preparatory results.

Lemma 4.1. Let ~x ∈ Nn with m ∈ N. Then G ◦ Vm[~x]× G ◦ Vm[~x] ∈ Q. That is,
the square of compression gap induced on the point ~y ∈ Nn is always rational.
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Proof. Suppose ~x = (x1, x2, . . . , xn) ∈ Nn and let m ∈ N, then by invoking Propo-
sition 3.1, we have

G ◦ Vm[~x]× G ◦ Vm[~x] =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
+ m2M◦ V1[(x2

1, . . . , x
2
n)]− 2mn.

The result follows since

M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
, m2M◦ V1[(x2

1, . . . , x
2
n)], 2mn ∈ Q

thereby proving the Lemma. �

Lemma 4.2. Let ~x ∈ Nn with G ◦ Vm[~x] > 1 , then

B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x] ⊂ B 1

2G◦Vm[G◦Vm[~x]~x][G ◦ Vm[~x]~x].

Proof. Suppose ~x ∈ Nn and let G ◦ Vm[~x] > 1. First, we notice that the two balls
so constructed

B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x] and B 1

2G◦Vm[G◦Vm[~x]~x][G ◦ Vm[~x]~x]

are centered at the same point. Thus it suffices to show that

(G ◦ Vm[~x])2 ≤ G ◦ Vm[G ◦ Vm[~x]~x].

Now let us set t = G ◦ Vm[~x] > 1. Then we obtain

G ◦ Vm[t~x] > tG ◦ Vm[~x]

and the result follows by substitution. �

Remark 4.3. We are now ready to prove the Erdós-Ulam conjecture. We assemble
the tools we have developed thus far to solve the problem.

4.1. Proof of the Erdós-Ulam conjecture. In this section we assemble the tools
we have developed thus far to solve the Erdós-Ulam problem. We provide a positive
solution to the problem as espoused in the following result.

Theorem 4.4. There exist a dense set of points in Rn at rational distances from
each other.

Proof. Pick arbitrarily ~x ∈ Nn and apply the compression Vm[~x] for m ∈ N. Con-
sider the ball induced under compression B 1

2G◦Vm[~x][~x]. Now dilate the ball with

the scale factor t = G ◦Vm[~x] > 1, then by Lemma 4.2 we obtain the embedding of
balls

B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x] ⊂ B 1

2G◦Vm[G◦Vm[~x]~x][G ◦ Vm[~x]~x].

Let us now consider the inner ball, centered at the same point as the outer ball,
but of rational radius by Lemma 4.1

1

2
(G ◦ Vm[~x])2.

For each admissible point ~z of B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x] we join with a line to the

admissible point exactly opposite. These two points are at rational distances

1

2
(G ◦ Vm[~x])2 +

1

2
(G ◦ Vm[~x])2 = (G ◦ Vm[~x])2
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from each other. We remark that the point ~z ∈ Rn is an arbitrary admissible point
and are dense on the ball. Thus there are infinitely many lines of rational distances
joining admissible points of the ball

B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x].

We construct sequence of embedding of balls in the following manner

B 1
2n (G◦Vm[~x])2 [G ◦ Vm[~x]~x] ⊂ · · · ⊂ B 1

2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x]

for n ≥ 2. The upshot is concentric balls all centered at the same point with
successively smaller radius

1

2n
(G ◦ Vm[~x])2

for n ≥ 2. We remark that the lines drawn joining points on the bigger ball will
also join points on the smaller balls at rational distance. The distance of points on
different balls on the same line are also at rational distance from each other. That
is, if ~s1 ∈ B 1

2 (G◦Vm[~x])2 [G ◦Vm[~x]~x] and ~s2 ∈ B 1
4 (G◦Vm[~x])2 [G ◦Vm[~x]~x] and ~s1 and ~s2

sit on the same line, then they must be of rational distance

1

2
(G ◦ Vm[~x])2 − 1

4
(G ◦ Vm[~x])2 =

1

2
(G ◦ Vm[~x])2

by Lemma 4.1. In general, the radius of the annular region of successive balls so
constructed is rational given by

1

2n
(G ◦ Vm[~x])2 − 1

2(n + 1)
(G ◦ Vm[~x])2 =

1

2n(n + 1)
(G ◦ Vm[~x])2

for n ∈ N for all n ≥ 1. Again we constructs sequence of embedding of balls centered
at the same point as before below

B 1+2n
4n(n+1)

(G◦Vm[~x])2 [G ◦ Vm[~x]~x] ⊂ · · · ⊂ B 3
8 (G◦Vm[~x])2 [G ◦ Vm[~x]~x]

for n ∈ N with n ≥ 2. Admissible points of each of these balls are at rational
distances away from the admissible point exactly opposite. That is, they are

1 + 2n

2n(n + 1)

for n ≥ 1. It is not difficult to see that we can embed this sequence of ball embedding
into the a priori sequence of ball embedding. By carrying out the argument in this
manner repeatedly, we then generate a dense set of points ~sn ∈ Rn that are at
rational distance from each other. This completes the proof of the theorem, since
the radius of the ball is determined by the point ~x ∈ Nn under compression and
this point can be chosen arbitrarily in space. That is, we can cover the entire space
with this construction by arbitrarily taking points far away from the origin. �

5. Further remarks

It is important to have noticed that Theorem 4.4 is a general Theorem that holds
in any euclidean space of any dimension. The Erdós-Ulam problem is a special case
of Theorem 4.4, by taking n = 2. Also it needs to be said that this method is
constructive in nature as opposed to analytic methods that might require the use
of various exotic estimates. 1.

1

.
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