Analyzing some equations concerning the "Classical Stability with Broken Supersymmetry" by Ramanujan's mathematics. Further possible mathematical connections with some parameters of Particle Physics and String Theory.

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed and deepened some equations concerning the "Classical Stability with Broken Supersymmetry" by Ramanujan's mathematics and described new possible mathematical connections with some parameters of Particle Physics and String Theory.

[^0]
https://twitter.com/pickover/status/1056696709961650176

From:

Rotating strings confronting PDG mesons

Jacob Sonnenschein and Dorin Weissman - arXiv:1402.5603v1 [hep-ph] 23 Feb 2014

Traj.	N	m	α^{\prime}	a	
π / π_{2}	$4+3$	$m_{u / d}=110-250$	$0.788-0.852$	$a_{0}=(-0.22)-(-0.00)$	$a_{2}=(-0.00)-0.26$
a_{1}	4	$m_{u / d}=0-390$	$0.783-0.849$	$(-0.18)-0.21$	
h_{1}	4	$m_{u / d}-0-235$	$0.833-0.850$	$(-0.14)-(-0.02)$	
ω / ω_{3}	$5+3$	$m_{u / d}=255-390$	$0.988-1.18$	$a_{1}=0.81-1.00$	$a_{3}=0.95-1.15$
ϕ	3	$m_{s}=510-520$	$1.072-1.112$	1.00	
Ψ	4	$m_{c}=1380-1460$	$0.494-0.547$	$0.71-0.88$	
Υ	6	$m_{b}=4725-4740$	$0.455-0.471$	1.00	
χ_{b}	3	$m_{b}=4800$	0.499	0.58	

Table 2. The results of the meson fits in the (n, M^{2}) plane. The ranges listed are those where χ^{2} is within 10% of its optimal value. N is the number of data points in the trajectory.

Rogers-Ramanujan continued fraction

http://villemin.gerard.free.fr/Wwwgvmm/Nombre/FracRama.htm

With regard the Non-Supersymmetric Vacua, we have the following equations (5.33) and (5.34) concerning the scalar perturbations:

From:

On Classical Stability with Broken Supersymmetry

I. Basile, J. Mourad and A. Sagnotti - arXiv:1811.11448v2 [hep-th] 10 Jan 2019

Substituting these expressions in the first of eqs. (5.26) finally leads to a second-order eigenvalue equation for m^{2} :

$$
\begin{equation*}
A^{\prime \prime}+A^{\prime}\left(24 \Omega^{\prime}-\frac{2}{\phi^{\prime}} e^{2 \Omega} V_{\phi}\right)+A\left(m^{2}-\frac{7}{4} e^{2 \Omega} V-14 e^{2 \Omega} \Omega^{\prime} \frac{V_{\phi}}{\phi^{\prime}}\right)=0 . \tag{5.33}
\end{equation*}
$$

There is nothing else, since differentiating the third of eqs. (5.26) and using the background equations gives

$$
\begin{equation*}
\varphi^{\prime} \phi^{\prime}=-8 A^{\prime \prime}-120 A^{\prime} \Omega^{\prime}+8 e^{2 \Omega} \frac{V_{\phi}}{\phi^{\prime}} A^{\prime}+56 e^{2 \Omega} \frac{V_{\phi}}{\phi^{\prime}} \Omega^{\prime} A+7 e^{2 \Omega} V A, \tag{5.34}
\end{equation*}
$$

Taking this result into account, one can verify that the last of eqs. (5.26) also leads to (5.33), whose properties we now turn to discuss.

From:

$$
A^{\prime \prime}+A^{\prime}\left(24 \Omega^{\prime}-\frac{2}{\phi^{\prime}} e^{2 \Omega} V_{\phi}\right)+A\left(m^{2}-\frac{7}{4} e^{2 \Omega} V-14 e^{2 \Omega} \Omega^{\prime} \frac{V_{\phi}}{\phi^{\prime}}\right)=0
$$

We have that:
From:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan
Quarterly Journal of Mathematics, XLV, 1914, 350-372

$$
\begin{array}{ccc}
64 g_{22}^{24}= & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24}= & 4096 e^{-\pi \sqrt{22}}+\cdots \\
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
\end{array}
$$

We put:

$$
\begin{aligned}
& \left(A^{\prime \prime}+A^{\prime}\left(24 \Omega^{\prime}-\frac{2}{\phi^{\prime}} e^{2 \Omega} V_{\phi}\right)\right)=e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
& \left(A\left(m^{2}-\frac{7}{4} e^{2 \Omega} V-14 e^{2 \Omega} \Omega^{\prime} \frac{V_{\phi}}{\phi^{\prime}}\right)\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots
\end{aligned}
$$

Thence:

$$
\begin{gathered}
A^{\prime \prime}+A^{\prime}\left(24 \Omega^{\prime}-\frac{2}{\phi^{\prime}} e^{2 \Omega} V_{\phi}\right)+A\left(m^{2}-\frac{7}{4} e^{2 \Omega} V-14 e^{2 \Omega} \Omega^{\prime} \frac{V_{\phi}}{\phi^{\prime}}\right)=0 \\
\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+276^{*} \mathrm{e}^{\wedge}\left(-\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)+\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+4372^{*} \mathrm{e}^{\wedge}\left(-\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)
\end{gathered}
$$

Input:

$e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}+e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}$

Exact result:

$-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}$

Decimal approximation:

$5.01785599836741526610154931939557024423276967565237470 \ldots \times 10^{6}$
5017856

Property:

$-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}$ is a transcendental number

Alternate forms:

$2\left(-24+2324 e^{-\sqrt{22} \pi}+e^{\sqrt{22} \pi}\right)$
$2 e^{-\sqrt{22} \pi}\left(2324-24 e^{\sqrt{22} \pi}+e^{2 \sqrt{22} \pi}\right)$

Series representations:

$$
\begin{aligned}
& e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}+e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}= \\
& 2 e^{-\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}\left(2324-24 e^{\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}+e^{2 \pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}\right) \\
& e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}+e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}= \\
& 2 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \left(2324-24 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\exp \left(2 \pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \\
& e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}+e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}= \\
& 2 \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(22-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left(2324-24 \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(22-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+\right. \\
& \left.\exp \left(2 \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(22-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+276^{*} \mathrm{e}^{\wedge}\left(-\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)\right)\right)\right)+\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+4372 * \mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.\right.$ Pi^{*} sqrt22) $)$))))) $)^{\wedge} 1 / 2$

Input:

$\sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}$

Exact result:

$\sqrt{-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}}$

Decimal approximation:

2240.057141763891536934239982228162035382247986130420471070...
$2240.0571417 \ldots \approx 2240=64 * 35$

Property:

$\sqrt{-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}}$ is a transcendental number

Alternate forms:

$\sqrt{2\left(-24+2324 e^{-\sqrt{22} \pi}+e^{\sqrt{22} \pi}\right)}$
$e^{-\sqrt{11 / 2} \pi} \sqrt{2\left(2324-24 e^{\sqrt{22} \pi}+e^{2 \sqrt{22} \pi}\right)}$

All 2nd roots of $-48+4648 \mathrm{e}^{\wedge}(-\operatorname{sqrt}(22) \pi)+2 \mathrm{e}^{\wedge}(\operatorname{sqrt}(22) \pi):$
$\sqrt{-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}} e^{0} \approx 2240$. (real, principal root)
$\sqrt{-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}} e^{i \pi} \approx-2240$. (real root)

Series representations:

$$
\begin{aligned}
& \sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}= \\
& \sqrt{-49+4648 e^{-\pi \sqrt{22}}+2 e^{\pi \sqrt{22}}} \sum_{k=0}^{\infty}\left(-49+4648 e^{-\pi \sqrt{22}}+2 e^{\pi \sqrt{22}}\right)^{-k}\binom{\frac{1}{2}}{k} \\
& \sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}= \\
& \sqrt{-49+4648 e^{-\pi \sqrt{22}}+2 e^{\pi \sqrt{22}}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-49+4648 e^{-\pi \sqrt{22}}+2 e^{\pi \sqrt{22}}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
\end{aligned}
$$

$$
\sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}=
$$

$$
\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-48+4648 e^{-\pi \sqrt{22}}+2 e^{\pi \sqrt{22}}-z_{0}\right)^{k} z_{0}^{-k}}{k!}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

Integral representation:

$(1+z)^{a}=\frac{\int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$
$\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+276^{*} \mathrm{e}^{\wedge}\left(-\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)\right)\right)\right)+\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+4372 * \mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.\right.$ Pi*sqrt22))))))) $)^{\wedge} 1 / 2-2 * 64$

Input:

$\sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}-2 \times 64$

Exact result:

$\sqrt{-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}}-128$

Decimal approximation:

2112.057141763891536934239982228162035382247986130420471070...
$2112.0571417 \ldots$ result practically equal to the rest mass of strange D meson 2112.3

Property:

$-128+\sqrt{-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}}$ is a transcendental number

Alternate forms:

$\sqrt{2\left(-24+2324 e^{-\sqrt{22} \pi}+e^{\sqrt{22} \pi}\right)}-128$
$e^{-\sqrt{11 / 2} \pi} \sqrt{2\left(2324-24 e^{\sqrt{22} \pi}+e^{2 \sqrt{22} \pi}\right)}-128$
$e^{-\sqrt{11 / 2} \pi}\left(\sqrt{2\left(2324-24 e^{\sqrt{22} \pi}+e^{2 \sqrt{22} \pi}\right)}-128 e^{\sqrt{11 / 2} \pi}\right)$

Series representations:

$$
\begin{aligned}
& \sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}-2 \times 64=-128+ \\
& \left.\sqrt{2} \sqrt{e^{-\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}\left(2324-24 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{2 k}\binom{1 / 2}{k}\right.}+e^{2 \pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{2-k\binom{1 / 2}{k}}\right) \\
& \sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}-2 \times 64= \\
& -128+\sqrt{2} \sqrt{ } \left\lvert\, \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right. \\
& \left.\left(2324-24 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\exp \left(2 \pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)\right) \\
& \sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}-2 \times 64= \\
& -128+\sqrt{ }\left(-48+4648 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \mathrm{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)+\right. \\
& \left.2 \exp \left(\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)\right)
\end{aligned}
$$

2240.0571417-2112.0571417

Input interpretation:

2240.0571417-2112.0571417

Result:

128
128
$\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+276{ }^{*} \mathrm{e}^{\wedge}\left(-\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)\right)\right)\right)+\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+4372 * \mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 2-2112.0571417-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$$
\sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}-2112.0571417-\pi+\frac{1}{\phi}
$$

Result:

125.4764414...
125.4764414... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Series representations:

$$
\begin{gathered}
\sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}-2112.05714170000- \\
\pi+\frac{1}{\phi}=\frac{1}{\phi} 1.4142135623731(0.70710678118655-1493.4499271495 \phi+ \\
1.00000000000000 \sqrt{\left(e^{-\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k(1 / 2}\binom{k}{k}\right.}\left(2324-24 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}+\right. \\
\left.\left.\left.e^{2 \pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}\right)\right) \phi-0.70710678118655 \phi \pi\right)
\end{gathered}
$$

$$
\begin{gathered}
\sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}- \\
2112.05714170000-\pi+\frac{1}{\phi}=\frac{1}{\phi} 1.4142135623731
\end{gathered}
$$

$$
(0.70710678118655-1493.4499271495 \phi+1.00000000000000
$$

$$
\sqrt{ } \left\lvert\, \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(2324-24 e^{\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+}\right.\right.
$$

$$
\left.\left.\exp \left(2 \pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left.\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)\right)\right)_{\phi-0.70710678118655 \phi \pi)}
$$

$\sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}-$
$2112.05714170000-\pi+\frac{1}{\phi}=\frac{1}{\phi} 1.0000000000000$
$(1.00000000000000-2112.0571417000 \phi+1.00000000000000$

$$
\left.\left.\begin{array}{rl}
& \left(-48+4648 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)+2 \exp (\right. \\
& \left.\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
\end{array}\right) \phi-1.00000000000000 \phi \pi\right)
$$

$\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*}\right.\right.\right.\right.\right.\right.\right.$ sqrt22)$\left.\left.\left.-24+276^{*} \mathrm{e}^{\wedge}\left(-\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)\right)\right)\right)+\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)-24+4372 * \mathrm{e}^{\wedge}(-\right.\right.\right.$ Pi^{*} sqrt22))))))) $\wedge^{\wedge} 1 / 2-2112.0571417+11+1 /$ golden ratio

Input interpretation:

$$
\sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}-2112.0571417+11+\frac{1}{\phi}
$$

Result:

139.6180341...
$139.6180341 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Series representations:

$$
\begin{aligned}
& \sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}- \\
& 2112.05714170000+11+\frac{1}{\phi}=\frac{1}{\phi} 1.4142135623731(0.70710678118655- \\
& 1485.6717525565 \phi+1.00000000000000 \sqrt{\left(e^{-\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}\right.} \\
& \left.\left.\left(2324-24 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}+e^{2 \pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k(1 / 2} \begin{array}{c}
1 / 2 \\
k
\end{array}\right)\right) \phi\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}- \\
& 2112.05714170000+11+\frac{1}{\phi}=\frac{1}{\phi} 1.4142135623731(0.70710678118655- \\
& 1485.6717525565 \phi+1.00000000000000 \sqrt{\left(\exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right.} \\
& \left.\left.\left(2324-24 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\exp \left(2 \pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)\right) \phi\right) \\
& \sqrt{\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}\right)+\left(e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)}- \\
& 2112.05714170000+11+\frac{1}{\phi}=\frac{1}{\phi} 1.0000000000000 \\
& (1.00000000000000-2101.0571417000 \phi+1.00000000000000 \\
& \sqrt{ } \left\lvert\,-48+4648 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)+\right. \\
& \left.\left.2 \exp \left(\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)\right) \phi\right)
\end{aligned}
$$

We note that:
$1 / 64\left(\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqr}^{2} 22\right)-24+276 \mathrm{e}^{\wedge}{ }^{\wedge}(-\mathrm{Pi} * \mathrm{sqrt22})+\mathrm{e}^{\wedge}(\mathrm{Pi} * \mathrm{sqrt22})-24+4372 * \mathrm{e}^{\wedge}(-\right.\right.\right.$ Pi*sqrt22))))-64^2-728-89
where $728=9^{3}-1$ and 89 is a Fibonacci number

Input:

$$
\frac{1}{64}\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}+e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)-64^{2}-728-89
$$

Exact result:

$\frac{1}{64}\left(-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}\right)-4913$

Decimal approximation:

$73490.99997449086353283670811555578506613702618206835477081 \ldots$
73490.999...

Property:

$-4913+\frac{1}{64}\left(-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}\right)$ is a transcendental number

Alternate forms:

$\frac{1}{32}\left(-157240+2324 e^{-\sqrt{22} \pi}+e^{\sqrt{22} \pi}\right)$
$-\frac{19655}{4}+\frac{581}{8} e^{-\sqrt{22} \pi}+\frac{e^{\sqrt{22} \pi}}{32}$
$\frac{1}{32} e^{-\sqrt{22} \pi}\left(2324-157240 e^{\sqrt{22} \pi}+e^{2 \sqrt{22} \pi}\right)$

Series representations:

$$
\begin{aligned}
& \frac{1}{64}\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}+e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)-64^{2}-728-89= \\
& \left.\frac{1}{32} e^{-\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k(1 / 2} \begin{array}{c}
k \\
k
\end{array}\right)\left(2324-157240 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 0^{21^{-k}\binom{1 / 2}{k}}+e^{2 \pi \sqrt{21}} \sum_{k=0}^{\infty} 0^{21^{-k}\binom{1 / 2}{k}}\right) \\
& \frac{1}{64}\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}+e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)-64^{2}-728-89= \\
& \left.\frac{1}{32} \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}\right) \\
& \left(2324-157240 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\exp \left(2 \pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \\
& \frac{1}{64}\left(e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}+e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}\right)-64^{2}-728-89= \\
& \frac{1}{32} \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(22-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left(2324-157240 \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(22-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+\right. \\
& \left.\quad \exp \left(2 \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(22-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

$$
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

Thence, we have the following mathematical connections:

$$
\binom{I_{21} \ll \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant p^{1-\varepsilon},} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \ll}{\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}}
$$

$$
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general

$$
\begin{aligned}
& \left(\frac{1}{64}\left(-48+4648 e^{-\sqrt{22} \pi}+2 e^{\sqrt{22} \pi}\right)-4913\right)=73490.999 \ldots \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots . \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

From

$$
\varphi^{\prime} \phi^{\prime}=-8 A^{\prime \prime}-120 A^{\prime} \Omega^{\prime}+8 e^{2 \Omega} \frac{V_{\phi}}{\phi^{\prime}} A^{\prime}+56 e^{2 \Omega} \frac{V_{\phi}}{\phi^{\prime}} \Omega^{\prime} A+7 e^{2 \Omega} V A
$$

For ϕ^{\prime} equal to the following Rogers-Ramanujan continued fraction
$\frac{1}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\frac{\mathrm{e}^{-6 \pi}}{1+\cdots}}}}=\mathrm{e}^{2 \pi / 5}(\sqrt{\Phi \sqrt{5}}-\Phi)=0,9981360456 \ldots$
$V_{\phi}=138, \mathrm{~V}=0.57142857$ and $\Omega^{\prime}=\pi$, we obtain:
-8-
$120 \mathrm{Pi}+8^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*}{ }^{*} \mathrm{sqrt} 22\right) *(138 / 0.9981360456)+56 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}{ }^{*} \mathrm{sqrt} 22\right) *(138 * \mathrm{Pi} / 0.99813604$
$56)+7 * 0.57142857 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt22}\right)$

Input interpretation:

$$
\begin{aligned}
& -8-120 \pi+8 e^{\pi \sqrt{22}} \times \frac{138}{0.9981360456}+ \\
& 56 e^{\pi \sqrt{22}}\left(138 \times \frac{\pi}{0.9981360456}\right)+7 \times 0.57142857 e^{\pi \sqrt{22}}
\end{aligned}
$$

Result:

$6.381175064 \ldots \times 10^{10}$
$6.381175064 * 10^{10}$

Series representations:

$$
\begin{aligned}
& -8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}=7742.43 \\
& \left(-0.00103327+0.143374 e^{\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}-0.015499 \pi+e^{\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}} \pi\right)
\end{aligned}
$$

$-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}=$
$-8(1+15 \pi)+e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}(1110.06+7742.43 \pi)$
$-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}=$
$-8(1+15 \pi)+\exp \left(\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)(1110.06+7742.43 \pi)$
(((-8-
$120 \mathrm{Pi}+8^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}{ }^{*} \mathrm{sqrt22}\right) *((\mathrm{x}+13) / 0.9981360456)+56 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt}^{22}\right) *((\mathrm{x}+13) * \mathrm{Pi} / 0.998$ $1360456)+7 * 0.57142857 *{ }^{2}$ ^(Pi*sqrt22)))) $=6.381175064 \mathrm{e}+10$

Input interpretation:

$$
\begin{gathered}
-8-120 \pi+8 e^{\pi \sqrt{22}} \times \frac{x+13}{0.9981360456}+56 e^{\pi \sqrt{22}}\left((x+13) \times \frac{\pi}{0.9981360456}\right)+ \\
7 \times 0.57142857 e^{\pi \sqrt{22}}=6.381175064 \times 10^{10}
\end{gathered}
$$

Result:

$4.62331 \times 10^{8}(x+13)+1.00354 \times 10^{7}=6.38118 \times 10^{10}$
Plot:

Alternate forms:

$4.62331 \times 10^{8}(x+13.0217)=6.38118 \times 10^{10}$
$4.62331 \times 10^{8} x-5.77914 \times 10^{10}=0$
$4.62331 \times 10^{8} x+6.02034 \times 10^{9}=6.38118 \times 10^{10}$

Solution:

$x \approx 125$.
125 result practically equal to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV
$\left(\left(\left(-8-120 \mathrm{Pi}+8^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \text { sqrt22)}\right)^{*}((\mathrm{x}\right.\right.\right.$-golden ratio $) / 0.9981360456)+56{ }^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \text { sqrt22)}\right)^{*}((\mathrm{x}$-golden ratio $\left.\left.\left.) * \mathrm{Pi} / 0.9981360456)+7 * 0.57142857 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt22}\right)\right)\right)\right)=6.381175064 \mathrm{e}+10$

Input interpretation:

$$
\begin{aligned}
& -8-120 \pi+8 e^{\pi \sqrt{22}} \times \frac{x-\phi}{0.9981360456}+ \\
& 56 e^{\pi \sqrt{22}}\left((x-\phi) \times \frac{\pi}{0.9981360456}\right)+7 \times 0.57142857 e^{\pi \sqrt{22}}=6.381175064 \times 10^{10}
\end{aligned}
$$

Result:

$4.62331 \times 10^{8}(x-\phi)+1.00354 \times 10^{7}=6.38118 \times 10^{10}$

Plot:

Alternate forms:

$4.62331 \times 10^{8}(x-1.59633)=6.38118 \times 10^{10}$
$4.62331 \times 10^{8} x-6.45498 \times 10^{10}=0$
$4.62331 \times 10^{8} x-7.38032 \times 10^{8}=6.38118 \times 10^{10}$

Solution:

$x \approx 139.618$
139.618 result practically equal to the rest mass of Pion meson 139.57 MeV
$72 * \ln (()(-8-$
$120 \mathrm{Pi}+8 * \mathrm{e}^{\wedge}(\mathrm{Pi} * \mathrm{sqrt22}) *(138 / 0.9981360456)+56 *{ }^{*} \wedge(\mathrm{Pi} * \mathrm{sqrt22}) *(138 * \mathrm{Pi} / 0.99813604$ $56)+7 * 0.57142857 *{ }^{\wedge}$ ^($\left.\left.\mathrm{Pi} * \mathrm{sqrt22}\right)\right)$))) $-64+$ golden ratio

Input interpretation:

$\log (x)$ is the natural logarithm

Result:

1728.9206636...
1728.9206636...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternative representations:

$72 \log \left(-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}\right)-64+$

$$
\phi=-64+\phi+72 \log _{e}\left(-8-120 \pi+4 \cdot e^{\pi \sqrt{22}}+\frac{1104 e^{\pi \sqrt{22}}}{0.998136}+\frac{7728 \pi e^{\pi \sqrt{22}}}{0.998136}\right)
$$

$72 \log \left(-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}\right)-64+$

$$
\phi=-64+\phi+72 \log (a) \log a\left(-8-120 \pi+4 \cdot e^{\pi \sqrt{22}}+\frac{1104 e^{\pi \sqrt{22}}}{0.998136}+\frac{7728 \pi e^{\pi \sqrt{22}}}{0.998136}\right)
$$

$72 \log \left(-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}\right)-64+$
$\phi=-64+\phi-72 \mathrm{Li}_{1}\left(9+120 \pi-4 . e^{\pi \sqrt{22}}-\frac{1104 e^{\pi \sqrt{22}}}{0.998136}-\frac{7728 \pi e^{\pi \sqrt{22}}}{0.998136}\right)$

Series representations:

$$
\begin{gathered}
72 \log \left(-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}\right)-64+ \\
\phi=-64+\phi+72 \log \left(-8(1+15 \pi)+e^{\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}(1110.06+7742.43 \pi)}\right)
\end{gathered}
$$

$$
72 \log \left(-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}\right)-
$$

$$
64+\phi=-64+\phi+72 \log \left(-3(3+40 \pi)+e^{\pi \sqrt{22}}(1110.06+7742.43 \pi)\right)-
$$

$$
72 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3(3+40 \pi)+e^{\pi \sqrt{22}}(1110.06+7742.43 \pi)\right)^{-k}}{k}
$$

$72 \log \left(-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}\right)-$
$64+\phi=$
$-64+\phi+144 i \pi\left\lfloor\frac{\arg \left(-8-120 \pi+e^{\pi \sqrt{22}}(1110.06+7742.43 \pi)-x\right)}{2 \pi}\right\rfloor+72 \log (x)-$
$72 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-8-120 \pi+e^{\pi \sqrt{22}}(1110.06+7742.43 \pi)-x\right)^{k} x^{-k}}{k}$ for $x<0$

Integral representations:

$72 \log \left(-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}\right)-$

$$
64+\phi=-64+\phi+72 \int_{1}^{-8(1+15 \pi)+e^{\pi \sqrt{22}}(1110.06+7742.43 \pi)} \frac{1}{t} d t
$$

$72 \log \left(-8-120 \pi+\frac{\left(8 e^{\pi \sqrt{22}}\right) 138}{0.998136}+\frac{\left(56 e^{\pi \sqrt{22}}\right) 138 \pi}{0.998136}+7 \times 0.571429 e^{\pi \sqrt{22}}\right)-$
$64+\phi=-64+\phi+$

$$
\frac{36}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(-3(3+40 \pi)+e^{\pi \sqrt{22}}(1110.06+7742.43 \pi)\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s
$$

for $-1<\gamma<0$

Now, we have that:

$$
\begin{align*}
& \beta^{2} \sigma_{7}+\frac{5 \sigma_{7}}{2}+\frac{\tau_{7}}{2}+6 \pm \frac{1}{2} \sqrt{\left(4 \beta^{4}+40 \beta^{2}+25\right) \sigma_{7}^{2}+4\left(\tau_{7}-12\right)\left(\beta^{2}-5 / 2\right) \sigma_{7}+\left(\tau_{7}-12\right)^{2}} . \\
& \sigma_{7}=15, \quad \tau_{7}=75, \quad \beta=-1 \tag{4.30}
\end{align*}
$$

$$
15+75 / 2+75 / 2+6+1 / 2 * \operatorname{sqrt}\left(\left(\left((4+40+25) 15^{\wedge} 2+4(75-12)(1-5 / 2) 15+(75-12)^{\wedge} 2\right)\right)\right)
$$

Input:

$15+\frac{75}{2}+\frac{75}{2}+6+\frac{1}{2} \sqrt{(4+40+25) \times 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) \times 15+(75-12)^{2}}$
Result:
$96+24 \sqrt{6}$

Decimal approximation:

154.7877538267962743567348177929413934071827395357600830823...
154.7877538...

Alternate form:

$24(4+\sqrt{6})$

Minimal polynomial:

$x^{2}-192 x+5760$

We have also:
$15+75 / 2+75 / 2+6+1 / 2 * \operatorname{sqrt}\left(\left(\left((4+40+25) 15^{\wedge} 2+4(75-12)(1-5 / 2) 15+(75-12)^{\wedge} 2\right)\right)\right)-13-$ golden ratio ${ }^{\wedge} 2$

Input:

$$
\begin{aligned}
& 15+\frac{75}{2}+\frac{75}{2}+6+ \\
& \frac{1}{2} \sqrt{(4+40+25) \times 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) \times 15+(75-12)^{2}}-13-\phi^{2}
\end{aligned}
$$

Result:

$-\phi^{2}+83+24 \sqrt{6}$

Decimal approximation:

139.1697198380463795085302309585757552894624303559543202202...
139.169719... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$\frac{1}{2}(163-\sqrt{5}+48 \sqrt{6})$
$\frac{163}{2}-\frac{\sqrt{5}}{2}+24 \sqrt{6}$
$\frac{1}{2}(163+\sqrt{13829-96 \sqrt{30}})$

Minimal polynomial:

$x^{4}-326 x^{3}+32939 x^{2}-1038310 x+10126945$

Series representations:

$$
\begin{aligned}
& 15+\frac{75}{2}+\frac{75}{2}+6+\frac{1}{2} \sqrt{(4+40+25) 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) 15+(75-12)^{2}}- \\
& 13-\phi^{2}=83-\phi^{2}+\frac{1}{2} \sqrt{13823} \sum_{k=0}^{\infty} 13823^{-k}\binom{\frac{1}{2}}{k}
\end{aligned}
$$

$$
15+\frac{75}{2}+\frac{75}{2}+6+\frac{1}{2} \sqrt{(4+40+25) 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) 15+(75-12)^{2}}-
$$

$$
13-\phi^{2}=83-\phi^{2}+\frac{1}{2} \sqrt{13823} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{13823}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

$$
15+\frac{75}{2}+\frac{75}{2}+6+\frac{1}{2} \sqrt{(4+40+25) 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) 15+(75-12)^{2}}-
$$

$$
13-\phi^{2}=83-\phi^{2}+\frac{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 13823^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{4 \sqrt{\pi}}
$$

And:
$15+75 / 2+75 / 2+6+1 / 2 * \operatorname{sqrt}\left(\left(\left((4+40+25) 15^{\wedge} 2+4(75-12)(1-5 / 2) 15+(75-12)^{\wedge} 2\right)\right)\right)-29-$
$1 /$ golden ratio

Input:

$$
\begin{aligned}
& 15+\frac{75}{2}+\frac{75}{2}+6+ \\
& \frac{1}{2} \sqrt{(4+40+25) \times 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) \times 15+(75-12)^{2}}-29-\frac{1}{\phi}
\end{aligned}
$$

Result:

$$
-\frac{1}{\phi}+67+24 \sqrt{6}
$$

Decimal approximation:

$125.1697198380463795085302309585757552894624303559543202202 \ldots$
125.1697198... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{1}{2}(135-\sqrt{5}+48 \sqrt{6})$
$-\frac{(-67-24 \sqrt{6}) \phi+1}{\phi}$
$\frac{1}{2}(135+\sqrt{13829-96 \sqrt{30}})$

Minimal polynomial:

$x^{4}-270 x^{3}+20423 x^{2}-296730 x+1190521$

Series representations:

$$
\begin{aligned}
& 15+\frac{75}{2}+\frac{75}{2}+6+\frac{1}{2} \sqrt{(4+40+25) 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) 15+(75-12)^{2}}- \\
& 29-\frac{1}{\phi}=67-\frac{1}{\phi}+\frac{1}{2} \sqrt{13823} \sum_{k=0}^{\infty} 13823^{-k}\binom{\frac{1}{2}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& 15+\frac{75}{2}+\frac{75}{2}+6+\frac{1}{2} \sqrt{(4+40+25) 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) 15+(75-12)^{2}}- \\
& 29-\frac{1}{\phi}=67-\frac{1}{\phi}+\frac{1}{2} \sqrt{13823} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{13823}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& 15+\frac{75}{2}+\frac{75}{2}+6+\frac{1}{2} \sqrt{(4+40+25) 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) 15+(75-12)^{2}}- \\
& 29-\frac{1}{\phi}=67-\frac{1}{\phi}+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 13823^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{4 \sqrt{\pi}}
\end{aligned}
$$

$$
15+75 / 2+75 / 2+6-1 / 2 * \operatorname{sqrt}\left(\left(\left((4+40+25) 15^{\wedge} 2+4(75-12)(1-5 / 2) 15+(75-12)^{\wedge} 2\right)\right)\right)
$$

Input:

$$
15+\frac{75}{2}+\frac{75}{2}+6-\frac{1}{2} \sqrt{(4+40+25) \times 15^{2}+4(75-12)\left(1-\frac{5}{2}\right) \times 15+(75-12)^{2}}
$$

Result:

96-24 $\sqrt{6}$

Decimal approximation:

$37.21224617320372564326518220705860659281726046423991691761 \ldots$
37.212246...

Alternate forms:
$24(4-\sqrt{6})$
$-24(\sqrt{6}-4)$

Minimal polynomial:

$x^{2}-192 x+5760$

Now, we have that:

$$
\begin{equation*}
\beta^{2} \sigma_{3}+\frac{3 \sigma_{3}}{2}+\frac{\tau_{3}}{2}+2 \pm \frac{1}{2} \sqrt{4 \beta^{4} \sigma_{3}^{2}+16 \sigma_{3}\left(\sigma_{3}+\frac{\tau_{3}}{4}-1\right) \beta^{2}+9\left(\sigma_{3}-\frac{\tau_{3}}{3}+\frac{4}{3}\right)^{2}} \tag{3.41}
\end{equation*}
$$

There are regions of instability as one varies the parameters, but for the actual orientifold potential, where $\left(\beta, \sigma_{3}, \tau_{3}\right)=\left(1, \frac{3}{2}, \frac{9}{2}\right)$, the two eigenvalues,
$3 / 2+3 / 2 * 3 / 2+9 / 2 * 1 / 2+2+1 / 2 * \operatorname{sqrt}(((4 * 9 / 4+16 * 3 / 2(3 / 2+9 / 2 * 1 / 4-1)+9(3 / 2-$ $\left.\left.9 / 2 * 1 / 3+4 / 3)^{\wedge} 2\right)\right)$)

Input:

$\frac{3}{2}+\frac{3}{2} \times \frac{3}{2}+\frac{9}{2} \times \frac{1}{2}+2+\frac{1}{2} \sqrt{4 \times \frac{9}{4}+16 \times \frac{3}{2}\left(\frac{3}{2}+\frac{9}{2} \times \frac{1}{4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2} \times \frac{1}{3}+\frac{4}{3}\right)^{2}}$

Exact result:

12
12
$3 / 2+3 / 2 * 3 / 2+9 / 2 * 1 / 2+2-1 / 2 * \operatorname{sqrt}(((4 * 9 / 4+16 * 3 / 2(3 / 2+9 / 2 * 1 / 4-1)+9(3 / 2-$ $\left.\left.9 / 2 * 1 / 3+4 / 3)^{\wedge} 2\right)\right)$)

Input:

$\frac{3}{2}+\frac{3}{2} \times \frac{3}{2}+\frac{9}{2} \times \frac{1}{2}+2-\frac{1}{2} \sqrt{4 \times \frac{9}{4}+16 \times \frac{3}{2}\left(\frac{3}{2}+\frac{9}{2} \times \frac{1}{4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2} \times \frac{1}{3}+\frac{4}{3}\right)^{2}}$

Exact result:

4

4
$((((3 / 2+3 / 2 * 3 / 2+9 / 2 * 1 / 2+2+1 / 2 * \operatorname{sqrt}(((4 * 9 / 4+16 * 3 / 2(3 / 2+9 / 2 * 1 / 4-1)+9(3 / 2-$ $\left.\left.\left.\left.\left.\left.\left.9 / 2 * 1 / 3+4 / 3)^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)^{\wedge} 2$

Input:

$\left(\frac{3}{2}+\frac{3}{2} \times \frac{3}{2}+\frac{9}{2} \times \frac{1}{2}+2+\frac{1}{2} \sqrt{4 \times \frac{9}{4}+16 \times \frac{3}{2}\left(\frac{3}{2}+\frac{9}{2} \times \frac{1}{4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2} \times \frac{1}{3}+\frac{4}{3}\right)^{2}}\right)^{2}$

Exact result:

$12 *((((3 / 2+3 / 2 * 3 / 2+9 / 2 * 1 / 2+2+1 / 2 * \operatorname{sqrt}(((4 * 9 / 4+16 * 3 / 2(3 / 2+9 / 2 * 1 / 4-1)+9(3 / 2-$ $\left.\left.\left.\left.\left.\left.\left.9 / 2 * 1 / 3+4 / 3)^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)^{\wedge} 2$

Input:

$$
12\left(\frac{3}{2}+\frac{3}{2} \times \frac{3}{2}+\frac{9}{2} \times \frac{1}{2}+2+\frac{1}{2} \sqrt{4 \times \frac{9}{4}+16 \times \frac{3}{2}\left(\frac{3}{2}+\frac{9}{2} \times \frac{1}{4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2} \times \frac{1}{3}+\frac{4}{3}\right)^{2}}\right)^{2}
$$

Exact result:

1728
1728
This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729
$((((3 / 2+3 / 2 * 3 / 2+9 / 2 * 1 / 2+2+1 / 2 * \operatorname{sqrt}(((4 * 9 / 4+16 * 3 / 2(3 / 2+9 / 2 * 1 / 4-1)+9(3 / 2-$ $\left.\left.\left.\left.\left.\left.\left.9 / 2 * 1 / 3+4 / 3)^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)^{\wedge} 2-5+1 /$ golden ratio

Input:

$\left(\frac{3}{2}+\frac{3}{2} \times \frac{3}{2}+\frac{9}{2} \times \frac{1}{2}+2+\frac{1}{2} \sqrt{4 \times \frac{9}{4}+16 \times \frac{3}{2}\left(\frac{3}{2}+\frac{9}{2} \times \frac{1}{4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2} \times \frac{1}{3}+\frac{4}{3}\right)^{2}}\right)^{2}-$
$5+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}+139$
$139.61803398 \ldots$. result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$\frac{1}{2}(277+\sqrt{5})$
$\frac{139 \phi+1}{\phi}$
$\frac{\sqrt{5}}{2}+\frac{277}{2}$

Series representations:

$$
\begin{aligned}
& \left(\frac{3}{2}+\frac{3 \times 3}{2 \times 2}+\frac{9}{2 \times 2}+2+\frac{1}{2} \sqrt{\frac{4 \times 9}{4}+\frac{16}{2} \times 3\left(\frac{3}{2}+\frac{9}{2 \times 4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2 \times 3}+\frac{4}{3}\right)^{2}}\right)^{2}- \\
& \quad 5+\frac{1}{\phi}=-5+\frac{1}{\phi}+\left(8+\frac{1}{2} \sqrt{63} \sum_{k=0}^{\infty} 63^{-k}\binom{\frac{1}{2}}{k}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{3}{2}+\frac{3 \times 3}{2 \times 2}+\frac{9}{2 \times 2}+2+\frac{1}{2} \sqrt{\frac{4 \times 9}{4}+\frac{16}{2} \times 3\left(\frac{3}{2}+\frac{9}{2 \times 4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2 \times 3}+\frac{4}{3}\right)^{2}}\right)^{2}- \\
& \quad 5+\frac{1}{\phi}=-5+\frac{1}{\phi}+\left(8+\frac{1}{2} \sqrt{63} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{63}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}
\end{aligned}
$$

$$
\left(\frac{3}{2}+\frac{3 \times 3}{2 \times 2}+\frac{9}{2 \times 2}+2+\frac{1}{2} \sqrt{\frac{4 \times 9}{4}+\frac{16}{2} \times 3\left(\frac{3}{2}+\frac{9}{2 \times 4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2 \times 3}+\frac{4}{3}\right)^{2}}\right)^{2}-
$$

$$
5+\frac{1}{\phi}=-5+\frac{1}{\phi}+\left(8+\frac{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 63^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{4 \sqrt{\pi}}\right)^{2}
$$

$((((3 / 2+3 / 2 * 3 / 2+9 / 2 * 1 / 2+2+1 / 2 * \operatorname{sqrt}((4 * 9 / 4+16 * 3 / 2(3 / 2+9 / 2 * 1 / 4-1)+9(3 / 2-$ $\left.\left.\left.9 / 2 * 1 / 3+4 / 3)^{\wedge} 2\right)\right)\right)$)))) $)^{\wedge}-18-1 /$ golden ratio

Input:

$\left(\frac{3}{2}+\frac{3}{2} \times \frac{3}{2}+\frac{9}{2} \times \frac{1}{2}+2+\frac{1}{2} \sqrt{4 \times \frac{9}{4}+16 \times \frac{3}{2}\left(\frac{3}{2}+\frac{9}{2} \times \frac{1}{4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2} \times \frac{1}{3}+\frac{4}{3}\right)^{2}}\right)^{2}-$
$18-\frac{1}{\phi}$

Result:

$126-\frac{1}{\phi}$

Decimal approximation:

$125.3819660112501051517954131656343618822796908201942371378 \ldots$
125.381966.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{1}{2}(253-\sqrt{5})$
$\frac{126 \phi-1}{\phi}$
$-\frac{1-126 \phi}{\phi}$

Series representations:

$$
\begin{gathered}
\left(\frac{3}{2}+\frac{3 \times 3}{2 \times 2}+\frac{9}{2 \times 2}+2+\frac{1}{2} \sqrt{\frac{4 \times 9}{4}+\frac{16}{2} \times 3\left(\frac{3}{2}+\frac{9}{2 \times 4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2 \times 3}+\frac{4}{3}\right)^{2}}\right)^{2}- \\
18-\frac{1}{\phi}=-18-\frac{1}{\phi}+\left(8+\frac{1}{2} \sqrt{63} \sum_{k=0}^{\infty} 63^{-k}\binom{\frac{1}{2}}{k}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\frac{3}{2}+\frac{3 \times 3}{2 \times 2}+\frac{9}{2 \times 2}+2+\frac{1}{2} \sqrt{\frac{4 \times 9}{4}+\frac{16}{2} \times 3\left(\frac{3}{2}+\frac{9}{2 \times 4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2 \times 3}+\frac{4}{3}\right)^{2}}\right)^{2}- \\
& 18-\frac{1}{\phi}=-18-\frac{1}{\phi}+\left(8+\frac{1}{2} \sqrt{63} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{63}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2} \\
& \left(\frac{3}{2}+\frac{3 \times 3}{2 \times 2}+\frac{9}{2 \times 2}+2+\frac{1}{2} \sqrt{\frac{4 \times 9}{4}+\frac{16}{2} \times 3\left(\frac{3}{2}+\frac{9}{2 \times 4}-1\right)+9\left(\frac{3}{2}-\frac{9}{2 \times 3}+\frac{4}{3}\right)^{2}}\right)^{2}- \\
& 18-\frac{1}{\phi}=-18-\frac{1}{\phi}+\left(8+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 63^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{4 \sqrt{\pi}}\right)^{2}
\end{aligned}
$$

We note that:
from: Manuscript Book 1 of Srinivasa Ramanujan
Page 177

$$
\begin{aligned}
& V=\frac{2 l m x}{y+p-2 m l^{2}}+\frac{2(1-m)\left(1^{2}-n^{2}\right)}{1+\frac{2(1+m)\left(1^{2}-l^{2}\right)}{3 y+p+}} \\
& 2(2-m)\left(2^{2}-x^{2}\right) \\
& 1+\frac{2(2+m)\left(2^{2}-l^{2}\right)}{5 y+p+\text { de se }} \\
& \text { where } y=x^{2}-(1-m)^{2} \& p=\left(x^{2}-l^{2}\right)(1-2 m) \text {. } \\
& \begin{array}{l}
\neq \phi(x, y)=x+\frac{(1+y)^{2}+x}{2 x+\frac{(3+y)^{2}+n}{2 x+\frac{(5+y)^{2}+n}{2 x+8 c}}} \\
\text { then } \phi(x, y)=\phi(y, x) .
\end{array}
\end{aligned}
$$

For $x=2,1=3, m=5, n=8$
$y=2^{\wedge} 2-(1-5)^{\wedge} 2=-12$
$\mathrm{p}=\left(8^{\wedge} 2-3^{\wedge} 2\right)(1-2 * 5)=-495$
$2 * 3 * 5 * 8 /\left(\left(\left(\left(-12-495-2 * 5^{*} 3^{\wedge} 2\right)+\left(\left(\left(2(1-5)\left(1-8^{\wedge} 2\right)\right) /(1+(((((((-96 /(-36-495+(2(2-5))(4-\right.\right.\right.\right.\right.$ $64)) /(1+((((((-70) /(-60-495)))))))))))))))))$

Input:

Exact result:

$-\frac{204880}{213791}$

Decimal approximation:

-0.95831910604281751804332268430382944090256371877207178973...
-0.958319106...

Continued fraction:

$[-(2 * 3 * 5 * 8) /((((-12-495-2 * 5 * 3 \wedge 2)+(((2(1-5)(1-8 \wedge 2)) /(1+(((((((-96 /(-36-495+(2) 2-$ $5)(4-64)) /(1+(((((-70) /(-60-495)))))))))))))))))))))))]^{\wedge} 1 / 64$

Input:

$\sqrt[64]{-\frac{2 \times 3 \times 5 \times 8}{\left(-12-495-2 \times 5 \times 3^{2}\right)+\frac{2(1-5)\left(1-8^{2}\right)}{1-\frac{96}{-36-495+\frac{2(2-5)(4-64)}{1-\frac{70}{-60-495}}}}}}$

Result:

$\sqrt[64]{\frac{12805}{213791}} \sqrt[16]{2}$

Decimal approximation:

$0.999334995270014233707606973481877009422036043201135085501 \ldots$
$0.999334995 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Alternate forms:

$\frac{\sqrt[16]{2} \sqrt[64]{12805} 213791^{63 / 64}}{213791}$
root of $213791 x^{64}-204880$ near $x=0.999335$
$2 \log$ base $0.99933499527[-(2 * 3 * 5 * 8) /(((-12-495-2 * 5 * 3 \wedge 2)+(((2(1-5))(1-$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.8^{\wedge} 2\right)\right) /(1+((((((-96 /(-36-495+(2(2-5)(4-64)) /(1+(((((-70) /(-60-495))))))))))))))\right)\right)\right)\right)\right)\right)\right)\right)\right]-$ $\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$$
2 \log _{0.99933499527}\left(-\frac{2 \times 3 \times 5 \times 8}{\left.\left(-12-495-2 \times 5 \times 3^{2}\right)+\frac{2(1-5)\left(1-8^{2}\right)}{1-\frac{96}{-36-495+\frac{2(2-5)(4-64)}{1-\frac{70}{-60-495}}}}\right)-\pi+\frac{1}{\phi},-\frac{1}{1}}\right)
$$

$\log _{b}(x)$ is the base $-b$ logarithm
ϕ is the golden ratio

Result:

125.47644..
125.47644.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representation:

Series representations:

$2 \log$ base $0.99933499527[-(2 * 3 * 5 * 8) /((((-12-495-2 * 5 * 3 \wedge 2)+(((2)(1-5)(1-$
$\left.\left.8^{\wedge} 2\right)\right) /(1+(((((((-96 /(-36-495+(2(2-5)(4-64)) /(1+((((((-70) /(-60-$

Input interpretation:

$\log _{b}(x)$ is the base- b logarithm

Result:

139.61803...
$139.61803 \ldots$. result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representation:

$11+\frac{1}{\phi}+\frac{2 \log \left(-\frac{240}{-597-\frac{8\left(1-8^{2}\right)}{1-\frac{96}{-531+\frac{360}{1--\frac{70}{555}}}}}\right)}{\log (0.999334995270000)}$

Series representations:

$2 \log _{0.999334995270000}\left(-\frac{2 \times 3 \times 5 \times 8}{\left.\left(-12-495-2 \times 5 \times 3^{2}\right)+\frac{2(1-5)\left(1-8^{2}\right)}{\left.1-\frac{96}{-36-495+\frac{2(2-5)(4-64)}{1-\frac{70}{-60-495}}}\right)}\right)+11+\frac{1}{\phi}=}\right.$
$11+\frac{1}{\phi}-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\frac{8911}{213791}\right)^{k}}{k}}{\log (0.999334995270000)}$

Thence, we have the following mathematical connections:

Now, we have that:

Einstein frame this translates into the dilaton potential [10]

$$
\begin{equation*}
V=T e^{\frac{5}{2} \phi} \tag{1.2}
\end{equation*}
$$

In the heterotic case $V \sim e^{\frac{5}{2} \phi}$, and

$$
\begin{equation*}
b=\frac{7}{4} e^{2 \Omega} V\left(1+20 \frac{\Omega^{\prime}}{\phi^{\prime}}\right) \tag{5.45}
\end{equation*}
$$

For the (1.2) and $\mathrm{T}=1$, we obtain:
$\exp (-5 / 2 * 0.9981360456)$

Input interpretation:

$\exp \left(-\frac{5}{2} \times 0.9981360456\right)$

Result:

0.08246839796...
0.08246839796...

From the (5.45), we obtain:
7/4* ${ }^{\wedge}$ ^(Pi*sqrt22) * 0.08246839796 (1+20*(Pi/0.9981360456))

Input interpretation:

$$
\frac{7}{4} e^{\pi \sqrt{22}} \times 0.08246839796\left(1+20 \times \frac{\pi}{0.9981360456}\right)
$$

Result:

$2.315543744 \ldots \times 10^{7}$
$2.315543744 \ldots{ }^{*} 10^{7}$

Series representations:

$\left.\frac{1}{4} e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)=0.14432 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k(1 / 2} \begin{array}{c}k\end{array}\right)(1+20.0373 \pi)$

$$
\begin{aligned}
& \frac{1}{4} e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)= \\
& 0.14432 e^{\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)}{k!k}(1+20.0373 \pi)} \\
& \frac{1}{4} e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)= \\
& 0.14432 \exp \left(\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)(1+20.0373 \pi)
\end{aligned}
$$

$\left(\left(\left(\left(1 / 64^{\wedge} 2\left(\left(\left(7 / 4^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*}\right.\right.\right.\right.\right.\right.\right.\right.$ sqrt22) * $\left.\left.\left.\left.\left.\left.\left.0.08246839796\left(1+20^{*}(\mathrm{Pi} / 0.9981360456)\right)\right)\right)\right)\right)\right)\right)\right)$

Input interpretation:

$\frac{1}{64^{2}}\left(\frac{7}{4} e^{\pi \sqrt{22}} \times 0.08246839796\left(1+20 \times \frac{\pi}{0.9981360456}\right)\right)$

Result:

5653.182970...
5653.18297...

Series representations:

$$
\begin{aligned}
& \frac{e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)}{4 \times 64^{2}}= \\
& 0.0000352343 e^{\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}(1+20.0373 \pi) \\
& \frac{e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.908136}\right)}{4 \times 64^{2}}= \\
& 0.0000352343 e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}(1+20.0373 \pi) \\
& \frac{e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)}{4 \times 64^{2}}= \\
& 0.0000352343 \exp \left(\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)(1+20.0373 \pi)
\end{aligned}
$$

$\left(\left(\left(\left(1 / 64^{\wedge} 2\left(\left(\left(7 / 4^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt22)}\right.\right.\right.\right.\right.\right.\right.\right.$ * 0.08246839796
$\left.\left.\left.\left.\left.\left.\left.\left(1+20^{*}(\mathrm{Pi} / 0.9981360456)\right)\right)\right)\right)\right)\right)\right)\right)+123+11$

Input interpretation:

$\frac{1}{64^{2}}\left(\frac{7}{4} e^{\pi \sqrt{22}} \times 0.08246839796\left(1+20 \times \frac{\pi}{0.9981360456}\right)\right)+123+11$

Result:

5787.182970...
5787.18297... result practically equal to the rest mass of bottom Xi baryon 5787.8

Series representations:

$$
\begin{aligned}
& \frac{e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)}{4 \times 64^{2}}+123+11= \\
& 134+e^{\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}(0.0000352343+0.000706002 \pi)} \\
& \frac{e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)}{4 \times 64^{2}}+123+11= \\
& 134+e^{\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}(0.0000352343+0.000706002 \pi)} \\
& \frac{e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)}{4 \times 64^{2}}+123+11= \\
& 134+\exp \left(\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)(0.0000352343+0.000706002 \pi)
\end{aligned}
$$

$(29+2) / 10^{\wedge} 2^{*} 1 /(64)^{\wedge} 2\left(\left(\left(7 / 4^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt22)} * 0.08246839796\right.\right.\right.\right.$
$\left.\left.\left.\left(1+20^{*}(\mathrm{Pi} / 0.9981360456)\right)\right)\right)\right)-24$
Input interpretation:
$\frac{29+2}{10^{2}} \times \frac{1}{64^{2}}\left(\frac{7}{4} e^{\pi \sqrt{22}} \times 0.08246839796\left(1+20 \times \frac{\pi}{0.9981360456}\right)\right)-24$

Result:

1728.486721...
1728.486721...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Series representations:

$$
\begin{aligned}
& \frac{\left(e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)\right)(29+2)}{\left(64^{2} \times 4\right) 10^{2}}-24= \\
& -24+e^{\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}(0.0000109226+0.000218861 \pi) \\
& \frac{\left(e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)\right)(29+2)}{\left(64^{2} \times 4\right) 10^{2}}-24= \\
& -24+e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}(0.0000109226+0.000218861 \pi)
\end{aligned}
$$

$$
\frac{\left(e^{\pi \sqrt{22}} 7 \times 0.0824684\left(1+\frac{20 \pi}{0.998136}\right)\right)(29+2)}{\left(64^{2} \times 4\right) 10^{2}}-24=
$$

$$
-24+\exp \left(\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)(0.0000109226+0.000218861 \pi)
$$

Now, we have that:
$A d S_{3} \times S^{7}$ background. In addition, the zeroth-order dilaton equation gives

$$
\begin{equation*}
V_{0}^{\prime}=\frac{\beta}{2} \widetilde{h}^{2} e^{\beta \phi_{0}}, \tag{3.5}
\end{equation*}
$$

which links the three-form flux, sized by \widetilde{h}, to the derivative of the scalar potential. Notice that the allowed signs of V_{0}^{\prime} and β must coincide, a condition that holds for the perturbative orientifold vacuum, where $\beta=1$. The Einstein equations translate into

$$
\begin{align*}
& \frac{21}{R^{2}}-\frac{1}{R_{A d S}^{2}}=\frac{1}{4} e^{\beta \phi_{0}} \widetilde{h}^{2}+\frac{1}{2} V_{0}, \tag{3.6}\\
& \frac{15}{R^{2}}-\frac{3}{R_{A d S}^{2}}=-\frac{1}{4} e^{\beta \phi_{0}} \widetilde{h}^{2}+\frac{1}{2} V_{0}, \tag{3.7}
\end{align*}
$$

and it is convenient to define the two variables

$$
\begin{equation*}
\sigma_{3}=\frac{R_{A d S}^{2}}{2 \beta} V_{0}^{\prime}=1+3 \frac{R_{A d S}^{2}}{R^{2}}, \quad \tau_{3}=R_{A d S}^{2} V_{0}^{\prime \prime}, \tag{3.8}
\end{equation*}
$$

which will often appear in the next section. Notice that $\sigma_{3} \geq 1$ and

$$
\begin{equation*}
R_{A d S}^{2} V_{0}=12\left(\sigma_{3}-\frac{4}{3}\right), \tag{3.9}
\end{equation*}
$$

so that the value $\sigma_{3}=\frac{4}{3}$ separates negative and positive values of V_{0} for these generalized $\operatorname{AdS} S_{3} \times S^{7}$ vacua, and for the (projective)disk-level orientifold potential

$$
\begin{equation*}
\sigma_{3}=\frac{3}{2}, \quad \tau_{3}=\frac{9}{2} \tag{3.10}
\end{equation*}
$$

From eq. (3.9), we have:
12(3/2-4/3)
$12\left(\frac{3}{2}-\frac{4}{3}\right)$

2

Thence $V_{0}=2$

From eq. (3.6), we obtain:

$$
\frac{21}{R^{2}}-\frac{1}{R_{A d S}^{2}}=\frac{1}{4} e^{\beta \phi_{0}} \widetilde{h}^{2}+\frac{1}{2} V_{0}
$$

For $\mathrm{R}^{2}{ }_{\mathrm{ADS}}=1 ; \mathrm{R}^{2}=1$, and $e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots$
we obtain:
$(21-1) \mathrm{x}=1 / 4 * \mathrm{e}^{\wedge}-\left(\mathrm{Pi}^{*}\right.$ sqrt22) $* 276^{\wedge} 2+1$

Input:

$(21-1) x=\frac{1}{4} e^{-(\pi \sqrt{22})} \times 276^{2}+1$

Exact result:

$20 x=1+19044 e^{-\sqrt{22} \pi}$

Plot:

Alternate forms:

$20 x-19044 e^{-\sqrt{22} \pi}-1=0$
$20 x=e^{-\sqrt{22} \pi}\left(19044+e^{\sqrt{22} \pi}\right)$

Solution:

$x=\frac{1}{20}+\frac{4761}{5} e^{-\sqrt{22} \pi}$

Input:

$\frac{1}{20}+\frac{4761}{5} e^{-\sqrt{22} \pi}$

Decimal approximation:

0.050379521011426820452806179207043538442700769978101013002...
$0.050379521 \ldots$

Property:

$\frac{1}{20}+\frac{4761}{5} e^{-\sqrt{22} \pi}$ is a transcendental number

Alternate forms:

$\frac{1}{20}\left(1+19044 e^{-\sqrt{22} \pi}\right)$
$\frac{1}{20} e^{-\sqrt{22} \pi}\left(19044+e^{\sqrt{22} \pi}\right)$

Series representations:

$\frac{1}{20}+\frac{1}{5} e^{-\sqrt{22} \pi} 4761=\frac{1}{20}+\frac{4761}{5} e^{-\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}$
$\frac{1}{20}+\frac{1}{5} e^{-\sqrt{22} \pi} 4761=\frac{1}{20}+\frac{4761}{5} \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$\frac{1}{20}+\frac{1}{5} e^{-\sqrt{22} \pi} 4761=\frac{1}{20}+\frac{4761}{5} \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)$
$7 /\left(\left(\left(1 / 20+4761 / 5 \mathrm{e}^{\wedge}(-\operatorname{sqrt}(22) \pi)\right)\right)\right)+1 /$ golden ratio

Input:

$$
\frac{7}{\frac{1}{20}+\frac{4761}{5} e^{-\sqrt{22} \pi}}+\frac{1}{\phi}
$$

Decimal approximation:

139.5633804205330885306347895826403715652757127044088743680
$139.56338042 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$\frac{7}{\frac{1}{20}+\frac{4761}{5} e^{-\sqrt{22} \pi}}+\frac{1}{\phi}$ is a transcendental number

Alternate forms:

$\frac{1}{\phi}+\frac{140}{1+19044 e^{-\sqrt{22} \pi}}$
$\frac{1}{2}(\sqrt{5}-1)+\frac{7}{\frac{1}{20}+\frac{4761}{5} e^{-\sqrt{22} \pi}}$

$$
\frac{140 \phi+1+19044 e^{-\sqrt{22} \pi}}{\left(1+19044 e^{-\sqrt{22} \pi}\right) \phi}
$$

Series representations:

$$
\begin{aligned}
& \frac{7}{\frac{1}{20}+\frac{1}{5} e^{-\sqrt{22} \pi} 4761}+\frac{1}{\phi}=\frac{7}{\left.\frac{1}{20}+\frac{4761}{5} e^{-\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k(1 / 2} \begin{array}{l}
k \\
k
\end{array}\right)}+\frac{1}{\phi} \\
& \frac{7}{\frac{1}{20}+\frac{1}{5} e^{-\sqrt{22} \pi} 4761}+\frac{1}{\phi}=\frac{7}{\frac{1}{20}+\frac{4761}{5} \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}+\frac{1}{\phi} \\
& \left.\frac{7}{\frac{1}{20}+\frac{1}{5} e^{-\sqrt{22} \pi} 4761}+\frac{1}{\phi}=\frac{7}{\frac{1}{20}+\frac{4761}{5} \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-} \frac{1}{2}+j}{21^{2-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)}+\frac{1}{\phi}\right)
\end{aligned}
$$

From eq. (3.7), we obtain:
$(15-3) \mathrm{x}=-1 / 4 * \mathrm{e}^{\wedge}-(\mathrm{Pi} * \mathrm{sqrt22}) * 276^{\wedge} 2+1$
Input:
$(15-3) x=-\frac{1}{4} e^{-(\pi \sqrt{22})} \times 276^{2}+1$

Exact result:

$12 x=1-19044 e^{-\sqrt{22} \pi}$

Plot:

$-12 x$
$-1-19044 e^{-\sqrt{22} \pi}$
Alternate forms:
$12\left(x+1587 e^{-\sqrt{22} \pi}\right)=1$
$12 x+19044 e^{-\sqrt{22} \pi}-1=0$
$12 x=e^{-\sqrt{22} \pi}\left(e^{\sqrt{22} \pi}-19044\right)$

Solution:

$x=\frac{1}{12}-1587 e^{-\sqrt{22} \pi}$
$1 / 12-1587 \mathrm{e}^{\wedge}(-\mathrm{sqrt}(22) \pi)$

Input:

$\frac{1}{12}-1587 e^{-\sqrt{22} \pi}$
Decimal approximation:
0.082700798314288632578656367988260769262165383369831644995
0.0827007983...

Property:

$\frac{1}{12}-1587 e^{-\sqrt{22} \pi}$ is a transcendental number

Alternate forms:

$\frac{1}{12}\left(1-19044 e^{-\sqrt{22} \pi}\right)$
$\frac{1}{12} e^{-\sqrt{22} \pi}\left(e^{\sqrt{22} \pi}-19044\right)$

Series representations:

$$
\begin{aligned}
& \frac{1}{12}-1587 e^{-\sqrt{22} \pi}=\frac{1}{12}-1587 e^{-\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}} \\
& \frac{1}{12}-1587 e^{-\sqrt{22} \pi}=\frac{1}{12}-1587 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \frac{1}{12}-1587 e^{-\sqrt{22} \pi}=\frac{1}{12}-1587 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
\end{aligned}
$$

$11 /\left(\left(\left(1 / 12-1587 \mathrm{e}^{\wedge}(-\operatorname{sqrt}(22) \pi)\right)\right)\right)+5+$ golden ratio

Input:

$\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}+5+\phi$

Decimal approximation:

$139.6276327376833100900013364247870846143606714913243368267 \ldots$
$139.6276327 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$5+\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}+\phi$ is a transcendental number

Alternate forms:

$\phi+5-\frac{132}{19044 e^{-\sqrt{22} \pi}-1}$
$\frac{1}{2}(275+\sqrt{5})+\frac{2513808}{e^{\sqrt{22} \pi}-19044}$
$\frac{1}{2}(11+\sqrt{5})+\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}$

Series representations:

$$
\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}+5+\phi=5+\frac{11}{\frac{1}{12}-1587 e^{-\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}+\phi
$$

$$
\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}+5+\phi=5+\frac{11}{\frac{1}{12}-1587 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}+\phi
$$

$$
\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}+5+\phi=5+\frac{11}{\frac{1}{12}-1587 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \mathrm{Res}_{s=-\frac{1}{2}+j}^{21^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma \Gamma(s)}}{2 \sqrt{\pi}}\right)}+\phi
$$

$\binom{n}{m}$ is the binomial coefficient
n ! is the factorial function $(a)_{n}$ is the Pochhammer symbol (rising factorial)
$\Gamma(x)$ is the gamma function
Res f is a complex residue
$\mathbb{v}=2_{0}$
$11 /\left(\left(\left(1 / 12-1587 \mathrm{e}^{\wedge}(-\operatorname{sqrt}(22) \pi)\right)\right)\right)-7-1 /$ golden ratio

Input:

$$
\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-7-\frac{1}{\phi}
$$

Decimal approximation:

125.3915647601835203935921627560558083789200531317128111024...
125.39156476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Property:

$-7+\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-\frac{1}{\phi}$ is a transcendental number

Alternate forms:

$-\frac{1}{\phi}-7-\frac{132}{19044 e^{-\sqrt{22} \pi}-1}$
$-7-\frac{2}{1+\sqrt{5}}+\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}$
$\frac{1}{2}(-13-\sqrt{5})+\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}$

Series representations:

$$
\begin{aligned}
& \frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}-7-\frac{1}{\phi}=-7+\frac{11}{\left.\frac{1}{12}-1587 e^{-\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k(1 / 2} \begin{array}{c}
k
\end{array}\right)}-\frac{1}{\phi}} \\
& \frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-7-\frac{1}{\phi}=-7+\frac{11}{\frac{1}{12}-1587 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left.\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)}-\frac{1}{\phi} \\
& \left.\frac{11}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-7-\frac{1}{\phi}=-7+\frac{11}{\frac{1}{12}-1587 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-} \frac{1}{2}+j}{21^{-5} r\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)}-\frac{1}{\phi}\right)
\end{aligned}
$$

$\Gamma(x)$ is the gamma function
Res f is a complex residue $v=z_{0}$
$64 /\left(\left(\left(1 / 12-1587 \mathrm{e}^{\wedge}(-\mathrm{sqrt}(22) \pi)\right)\right)\right)-7-1 /$ golden ratio +16

Input:

$\frac{64}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-7-\frac{1}{\phi}+16$

Exact result:

$$
-\frac{1}{\phi}+9+\frac{64}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}
$$

Decimal approximation:

$782.2559950959536120131583198735409596809145260872113947502 \ldots$
$782.25599509 \ldots$ result practically equal to the rest mass of Omega meson 782.65

Property:

$9+\frac{64}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-\frac{1}{\phi}$ is a transcendental number

Alternate forms:

$-\frac{1}{\phi}+9-\frac{768}{19044 e^{-\sqrt{22} \pi}-1}$
$9-\frac{2}{1+\sqrt{5}}+\frac{64}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}$
$\frac{1}{2}(19-\sqrt{5})+\frac{64}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}$

Series representations:

$$
\begin{aligned}
& \frac{64}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-7-\frac{1}{\phi}+16=9+\frac{64}{\frac{1}{12}-1587 e^{-\pi \sqrt{21}} \sum_{k=0}^{\infty} 2^{21-k}(1 / 2)}-\frac{1}{\phi} \\
& \frac{64}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-7-\frac{1}{\phi}+16=9+\frac{64}{\frac{1}{12}-1587 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\frac{1}{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{64}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-7-\frac{1}{\phi}+16= \\
& 9+\frac{64}{\frac{1}{12}-1587 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \mathrm{Res}_{s=-\frac{1}{2}+j}^{21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}}{2 \sqrt{\pi}}\right)}-\frac{1}{\phi}
\end{aligned}
$$

$\binom{n}{m}$ is the binomial coefficient
n ! is the factorial function

$144 /\left(\left(\left(1 / 12-1587 \mathrm{e}^{\wedge}(-\operatorname{sqrt}(22) \pi)\right)\right)\right)$-11-golden ratio

Input:
 $$
\frac{144}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-11-\phi
$$

Decimal approximation:

1728.598531451832995589861953258424206929208070170982841765
1728.5985314...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Property:

$-11+\frac{144}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-\phi$ is a transcendental number

Alternate forms:

$-\phi-11-\frac{1728}{19044 e^{-\sqrt{22} \pi}-1}$
$\frac{1}{2}(3433-\sqrt{5})+\frac{32908032}{e^{\sqrt{22} \pi}-19044}$
$\frac{1}{2}(-23-\sqrt{5})+\frac{144}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}$

Series representations:

$\frac{144}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-11-\phi=-11+\frac{144}{\left.\frac{1}{12}-1587 e^{-\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k(1 / 2} \begin{array}{l}k\end{array}\right)}-\phi$
$\frac{144}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-11-\phi=-11+\frac{144}{\frac{1}{12}-1587 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}-\phi$
$\frac{144}{\frac{1}{12}-1587 e^{-\sqrt{22} \pi}}-11-\phi=-11+\frac{144}{\frac{1}{12}-1587 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-} \frac{1}{2}+j_{21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}^{2 \sqrt{\pi}}}{2}\right)}-\phi$
$\binom{n}{m}$ is the binomial coefficient
n ! is the factorial function
$\Gamma(x)$ is the gamma function

Res f is a complex residue $x=20$

From (3.5), we obtain:
$1 / 2 * 276^{\wedge} 2 * e^{\wedge}-($ Pi*sqrt22 $)$

Input:

$\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}$

Exact result:

$38088 e^{-\sqrt{22} \pi}$

Decimal approximation:

0.015180840457072818112247168281741537708030799124040520108...
0.01518084...

Property:

$38088 e^{-\sqrt{22} \pi}$ is a transcendental number

Series representations:

$$
\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}=38088 e^{-\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}
$$

$\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}=38088 \exp \left(-\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}=38088 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \mathrm{Res}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)$
$\binom{n}{m}$ is the binomial coefficient
$n!$ is the factorial function
$2 /\left(1 / 2 * 276^{\wedge} 2 * \mathrm{e}^{\wedge}-(\mathrm{Pi} * \mathrm{sqr} t 22)\right)+8$

Input:

$\frac{2}{\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}}+8$

Exact result:

$8+\frac{e^{\sqrt{22} \pi}}{19044}$

Decimal approximation:

139.7450114606923160662428688364675048559341910768854461105...
139.74501146... result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$8+\frac{e^{\sqrt{22} \pi}}{19044}$ is a transcendental number

Alternate form:

$$
\frac{152352+e^{\sqrt{22} \pi}}{19044}
$$

Series representations:

$$
\begin{aligned}
& \frac{2}{\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}}+8=8+\frac{e^{\pi \sqrt{21} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}}{19044} \\
& \frac{2}{\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}}+8=8+\frac{e^{\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{19044} \\
& \frac{2}{\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}}+8=8+\frac{\exp \left(\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j}^{21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}}{2 \sqrt{\pi}}\right.}{19044}
\end{aligned}
$$

$2 /\left(1 / 2 * 276^{\wedge} 2 * \mathrm{e}^{\wedge}-\left(\mathrm{Pi}^{*}\right.\right.$ sqrt22 $\left.)\right)-7+1 /$ golden ratio

Input:
 $\frac{2}{\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}}-7+\frac{1}{\phi}$

Exact result:

$\frac{1}{\phi}-7+\frac{e^{\sqrt{22} \pi}}{19044}$

Decimal approximation:

125.3630454494422109144474556708331429736545002566912089727...
125.36304544... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Property:

$-7+\frac{e^{\sqrt{22} \pi}}{19044}+\frac{1}{\phi}$ is a transcendental number

Alternate forms:

$\frac{1}{2}(\sqrt{5}-15)+\frac{e^{\sqrt{22} \pi}}{19044}$
$\frac{19044(1-7 \phi)+e^{\sqrt{22} \pi} \phi}{19044 \phi}$
$-7+\frac{2}{1+\sqrt{5}}+\frac{e^{\sqrt{22} \pi}}{19044}$

Series representations:

$\frac{2}{\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}}-7+\frac{1}{\phi}=-7+\frac{e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}}{19044}+\frac{1}{\phi}$

$$
\begin{aligned}
& \frac{2}{\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}}-7+\frac{1}{\phi}=-7+\frac{e^{\pi \sqrt{21} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{19044}+\frac{1}{\phi} \\
& \frac{2}{\frac{1}{2} \times 276^{2} e^{-(\pi \sqrt{22})}}-7+\frac{1}{\phi}=-7+\frac{\exp \left(\frac{\left(\pi \sum_{j=0}^{\infty} \mathrm{Rec}_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right.}{2 \sqrt{\pi}}\right)}{19044}+\frac{1}{\phi}
\end{aligned}
$$

$\binom{n}{m}$ is the binomial coefficient
n ! is the factorial function

Now, we have that:

$$
\sigma_{3}=\frac{3}{2}, \quad \tau_{3}=\frac{9}{2} . \quad(\ell \geq 2)
$$

The cigenvalues of the mass matrix are thus

$$
\begin{equation*}
\left(\sigma_{3}-1\right) \frac{\ell(\ell+6)+5}{3} \pm 2 \sqrt{1+\sigma_{3}\left(\sigma_{3}-1\right) \frac{\ell(\ell+6)+5}{3}} . \tag{3.28}
\end{equation*}
$$

$(3 / 2-1) * 1 / 3((2(2+6)+5))+2 \operatorname{sqrt}(((1+3 / 2(3 / 2-1) * 1 / 3((2(2+6)+5))))$

Input:

$\left(\frac{3}{2}-1\right) \times \frac{1}{3}(2(2+6)+5)+2 \sqrt{1+\frac{3}{2}\left(\frac{3}{2}-1\right) \times \frac{1}{3}(2(2+6)+5)}$

Exact result:

$\frac{17}{2}$

Decimal form:

8.5
8.5

And:
$(3 / 2-1) * 1 / 3((2(2+6)+5))-2 \operatorname{sqrt}((((1+3 / 2(3 / 2-1) * 1 / 3((2(2+6)+5))))))$
Input:
$\left(\frac{3}{2}-1\right) \times \frac{1}{3}(2(2+6)+5)-2 \sqrt{1+\frac{3}{2}\left(\frac{3}{2}-1\right) \times \frac{1}{3}(2(2+6)+5)}$

Exact result:

$-\frac{3}{2}$

Decimal form:

-1.5
-1.5

For $\ell=11$, we obtain:
$(3 / 2-1) * 1 / 3((11(11+6)+5))+2 \operatorname{sqrt}((((1+3 / 2(3 / 2-1) * 1 / 3((11(11+6)+5))))))$

Input:

$\left(\frac{3}{2}-1\right) \times \frac{1}{3}(11(11+6)+5)+2 \sqrt{1+\frac{3}{2}\left(\frac{3}{2}-1\right) \times \frac{1}{3}(11(11+6)+5)}$

Exact result:

46
46
From which:
$3 *((((3 / 2-1) * 1 / 3((11(11+6)+5))+2 \operatorname{sqrt}((((1+3 / 2(3 / 2-$
1)*1/3((11(11+6)+5))))))))))+golden ratio

Input:

$3\left(\left(\frac{3}{2}-1\right) \times \frac{1}{3}(11(11+6)+5)+2 \sqrt{1+\frac{3}{2}\left(\frac{3}{2}-1\right) \times \frac{1}{3}(11(11+6)+5)}\right)+\phi$

Result:

$\phi+138$

Decimal approximation:

139.6180339887498948482045868343656381177203091798057628621...
139.6180339887... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$\frac{1}{2}(277+\sqrt{5})$

$$
\frac{277}{2}+\frac{\sqrt{5}}{2}
$$

$$
138+\frac{1}{2}(1+\sqrt{5})
$$

Series representations:

$$
\begin{aligned}
& 3\left(\frac{1}{3}\left(\frac{3}{2}-1\right)(11(11+6)+5)+2 \sqrt{1+\frac{\left(\frac{3}{2}-1\right) 3(11(11+6)+5)}{2 \times 3}}\right)+\phi= \\
& 96+\phi+6 \sqrt{48} \sum_{k=0}^{\infty} 48^{-k}\binom{\frac{1}{2}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& 3\left(\frac{1}{3}\left(\frac{3}{2}-1\right)(11(11+6)+5)+2 \sqrt{1+\frac{\left(\frac{3}{2}-1\right) 3(11(11+6)+5)}{2 \times 3}}\right)+\phi= \\
& 96+\phi+6 \sqrt{48} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{48}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}
\end{aligned}
$$

$3\left(\frac{1}{3}\left(\frac{3}{2}-1\right)(11(11+6)+5)+2 \sqrt{1+\frac{\left(\frac{3}{2}-1\right) 3(11(11+6)+5)}{2 \times 3}}\right)+\phi=$

$$
96+\phi+\frac{3 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 48^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}
$$

$3 *(((((3 / 2-1) * 1 / 3((11(11+6)+5))+2 \operatorname{sqrt}((((1+3 / 2(3 / 2-1) * 1 / 3((11(11+6)+5)))))))))))-$ $13+1 /$ golden ratio

Input:

$$
3\left(\left(\frac{3}{2}-1\right) \times \frac{1}{3}(11(11+6)+5)+2 \sqrt{1+\frac{3}{2}\left(\frac{3}{2}-1\right) \times \frac{1}{3}(11(11+6)+5)}\right)-13+\frac{1}{\phi}
$$

Result:

$\frac{1}{\phi}+125$

Decimal approximation:

125.6180339887498948482045868343656381177203091798057628621...
125.6180339887... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{1}{2}(249+\sqrt{5})$
$\frac{125 \phi+1}{\phi}$
$\frac{\sqrt{5}}{2}+\frac{249}{2}$

Series representations:

$$
\begin{aligned}
& 3\left(\frac{1}{3}\left(\frac{3}{2}-1\right)(11(11+6)+5)+2 \sqrt{1+\frac{\left(\frac{3}{2}-1\right) 3(11(11+6)+5)}{2 \times 3}}\right)-13+\frac{1}{\phi}= \\
& 83+\frac{1}{\phi}+6 \sqrt{48} \sum_{k=0}^{\infty} 48^{-k}\binom{\frac{1}{2}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& 3\left(\frac{1}{3}\left(\frac{3}{2}-1\right)(11(11+6)+5)+2 \sqrt{1+\frac{\left(\frac{3}{2}-1\right) 3(11(11+6)+5)}{2 \times 3}}\right)-13+\frac{1}{\phi}= \\
& 83+\frac{1}{\phi}+6 \sqrt{48} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{48}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& 3\left(\frac{1}{3}\left(\frac{3}{2}-1\right)(11(11+6)+5)+2 \sqrt{\left.1+\frac{\left(\frac{3}{2}-1\right) 3(11(11+6)+5)}{2 \times 3}\right)}-13+\frac{1}{\phi}=\right. \\
& 83+\frac{1}{\phi}+\frac{3 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 48^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}
\end{aligned}
$$

$\Gamma(x)$ is the gamma function
Res f is a complex residue $v=20$

Now, we have that:
which changes sign at $\sigma_{7}=12$, and finally for the torus-level heterotic potential

$$
\begin{gather*}
\sigma_{7}=15, \quad \tau_{7}=75 \tag{4.9}\\
(\ell+1)^{2}\left(\sigma_{7}-3\right) \pm 2 \sqrt{\sigma_{7}\left(\sigma_{7}-3\right)(\ell+1)^{2}+9} \tag{4.18}
\end{gather*}
$$

$(3+1)^{\wedge} 2(15-3)+2 \operatorname{sqrt}\left(\left(\left(\left(15(15-3)(3+1)^{\wedge} 2+9\right)\right)\right)\right)$

Input:

$(3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}$

Result:

$192+6 \sqrt{321}$

Decimal approximation:

299.4988372030135031078778906039125523416602879422205287241...
299.498837203...

Alternate form:

$6(32+\sqrt{321})$
Minimal polynomial:
$x^{2}-384 x+25308$
$1 / 2\left(\left(\left((3+1)^{\wedge} 2(15-3)+2 \operatorname{sqrt}\left(\left(\left(\left(15(15-3)(3+1)^{\wedge} 2+9\right)\right)\right)\right)\right)\right)\right)-11+1 /$ golden ratio

Input:

$\frac{1}{2}\left((3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}\right)-11+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}-11+\frac{1}{2}(192+6 \sqrt{321})$

Decimal approximation:

139.3674525902566464021435321363219142885504531509160272242...
139.36745259... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$\frac{1}{2}(169+\sqrt{5}+6 \sqrt{321})$
$\frac{1}{\phi}+85+3 \sqrt{321}$
$\frac{(85+3 \sqrt{321}) \phi+1}{\phi}$
Minimal polynomial:
$x^{4}-338 x^{3}+37061 x^{2}-1436500 x+18048055$

Series representations:

$$
\begin{aligned}
& \frac{1}{2}\left((3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}\right)-11+\frac{1}{\phi}= \\
& 85+\frac{1}{\phi}+\sqrt{2888} \sum_{k=0}^{\infty} 2888^{-k}\binom{\frac{1}{2}}{k} \\
& \frac{1}{2}\left((3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}\right)-11+\frac{1}{\phi}= \\
& 85+\frac{1}{\phi}+\sqrt{2888} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2888}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{1}{2}\left((3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}\right)-11+\frac{1}{\phi}= \\
& 85+\frac{1}{\phi}+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2888^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}
\end{aligned}
$$

$\binom{n}{m}$ is the binomial coefficient
n ! is the factorial function
$1 / 2\left(\left(\left((3+1)^{\wedge} 2(15-3)+2 \operatorname{sqrt}\left(\left(\left(\left(15(15-3)(3+1)^{\wedge} 2+9\right)\right)\right)\right)\right)\right)\right)-29+$ Pi + golden ratio

Input:

$\frac{1}{2}\left((3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}\right)-29+\pi+\phi$

Result:

$\phi-29+\frac{1}{2}(192+6 \sqrt{321})+\pi$

Decimal approximation:

125.5090452438464396406061755196014171727476225502911330451...
$125.5090452 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Property:

$-29+\frac{1}{2}(192+6 \sqrt{321})+\phi+\pi$ is a transcendental number

Alternate forms:

$\frac{1}{2}(135+\sqrt{5}+6 \sqrt{321}+2 \pi)$
$\phi+67+3 \sqrt{321}+\pi$
$\frac{135}{2}+\frac{\sqrt{5}}{2}+3 \sqrt{321}+\pi$

Series representations:

$$
\begin{aligned}
& \frac{1}{2}\left((3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}\right)-29+\pi+\phi= \\
& 67+\phi+\pi+\sqrt{2888} \sum_{k=0}^{\infty} 2888^{-k}\binom{\frac{1}{2}}{k} \\
& \frac{1}{2}\left((3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}\right)-29+\pi+\phi= \\
& 67+\phi+\pi+\sqrt{2888} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2888}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{1}{2}\left((3+1)^{2}(15-3)+2 \sqrt{15(15-3)(3+1)^{2}+9}\right)-29+\pi+\phi= \\
& 67+\phi+\pi+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j}^{2888^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}}{2 \sqrt{\pi}}
\end{aligned}
$$

$\binom{n}{m}$ is the binomial coefficient

Now, we have that:
with $\alpha>0$ for $d>10$ and $\alpha<0$ for $d<10$.

$$
\begin{align*}
\varphi & =-\frac{(d-2)^{2}}{8 \phi^{\prime}}\left[A^{\prime}+(d-3) A \Omega^{\prime}\right] \tag{6.11}\\
A^{\prime \prime} & +A^{\prime}\left[3(d-2) \Omega^{\prime}-\frac{(d-2)}{4 \phi^{\prime}} e^{2 \Omega} V_{\phi}\right] \\
& +A\left[m^{2}-\frac{2(d-3)}{(d-2)} e^{2 \Omega} V-\frac{(d-2)(d-3)}{4} e^{2 \Omega} \Omega^{\prime} \frac{V_{\phi}}{\psi^{\prime}}\right]=0 \tag{6.10}
\end{align*}
$$

For ϕ^{\prime} equal to the following Rogers-Ramanujan continued fraction, with minus sign:
$\frac{1}{1+\frac{\mathbf{e}^{-2 \pi}}{1+\frac{\mathbf{e}^{-4 \pi}}{1+\frac{\mathbf{e}^{-6 \pi}}{1+\cdots}}}}=\mathbf{e}^{2 \pi / 5}(\sqrt{ }(\sqrt{5}-\Phi)=0,9981360456 \ldots$
$V_{\phi}=138, \mathrm{~V}=0.57142857, \Omega^{\prime}=\pi$ and $\mathrm{d}=7$, we obtain:
$-(7-2)^{\wedge} 2 /\left(8^{*}-0.9981360456\right) *(1+(7-3) * \mathrm{Pi})$

Input interpretation:

$-\frac{(7-2)^{2}}{8 \times(-0.9981360456)}(1+(7-3) \pi)$

Result:

42.47407791...
42.47407791...

Alternative representations:

$$
\begin{aligned}
& \frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=\frac{-\left(1+720^{\circ}\right) 5^{2}}{-7.98509} \\
& \frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=\frac{-(1-4 i \log (-1)) 5^{2}}{-7.98509} \\
& \frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=\frac{-\left(1+4 \cos ^{-1}(-1)\right) 5^{2}}{-7.98509}
\end{aligned}
$$

Series representations:

$$
\frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=3.13084+50.0934 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
$$

$$
\frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=-21.9159+25.0467 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}
$$

$$
\frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=3.13084+12.5233 \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}
$$

Integral representations:

$$
\begin{aligned}
& \frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=3.13084+25.0467 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t \\
& \frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=3.13084+50.0934 \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{(1+(7-3) \pi)\left(-(7-2)^{2}\right)}{8(-0.998136)}=3.13084+25.0467 \int_{0}^{\infty} \frac{\sin (t)}{t} d t
\end{aligned}
$$

$3 *\left(\left(\left(-(7-2)^{\wedge} 2 /\left(8^{*}-0.9981360456\right) *(1+(7-3) * \mathrm{Pi})\right)\right)\right)$-golden ratio

Input interpretation:

$3\left(-\frac{(7-2)^{2}}{8 \times(-0.9981360456)}(1+(7-3) \pi)\right)-\phi$

Result:

125.8041998...
125.8041998... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=2 \cos \left(216^{\circ}\right)--\frac{3(1+4 \pi) 5^{2}}{7.98509}$
$\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=2 \cos \left(216^{\circ}\right)--\frac{3\left(1+720^{\circ}\right) 5^{2}}{7.98509}$
$\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=-2 \cos \left(\frac{\pi}{5}\right)--\frac{3(1+4 \pi) 5^{2}}{7.98509}$

Series representations:

$\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=9.39251-\phi+150.28 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$
$\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=-65.7476-\phi+75.1401 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}$
$\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=9.39251-\phi+37.57 \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}$

Integral representations:

$\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=9.39251-\phi+75.1401 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$

$$
\begin{aligned}
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=9.39251-\phi+150.28 \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}-\phi=9.39251-\phi+75.1401 \int_{0}^{\infty} \frac{\sin (t)}{t} d t
\end{aligned}
$$

$3 *\left(\left(\left(-(7-2)^{\wedge} 2 /\left(8^{*}-0.9981360456\right) *(1+(7-3) * \mathrm{Pi})\right)\right)\right)+11+3$-golden ratio

Input interpretation:

$3\left(-\frac{(7-2)^{2}}{8 \times(-0.9981360456)}(1+(7-3) \pi)\right)+11+3-\phi$

Result:

139.8041998...
139.8041998 result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{aligned}
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=14+2 \cos \left(216^{\circ}\right)--\frac{3(1+4 \pi) 5^{2}}{7.98509} \\
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=14+2 \cos \left(216^{\circ}\right)--\frac{3\left(1+720^{\circ}\right) 5^{2}}{7.98509} \\
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=14-2 \cos \left(\frac{\pi}{5}\right)--\frac{3(1+4 \pi) 5^{2}}{7.98509}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=23.3925-\phi+150.28 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \left.\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=-51.7476-\phi+75.1401 \sum_{k=1}^{\infty} \frac{2^{k}}{2 k} \begin{array}{c}
2 k \\
k
\end{array}\right)
\end{aligned}
$$

$\frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=23.3925-\phi+37.57 \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}$

Integral representations:

$$
\begin{aligned}
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=23.3925-\phi+75.1401 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t \\
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=23.3925-\phi+150.28 \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{3\left(-(7-2)^{2}\right)(1+(7-3) \pi)}{8(-0.998136)}+11+3-\phi=23.3925-\phi+75.1401 \int_{0}^{\infty} \frac{\sin (t)}{t} d t
\end{aligned}
$$

With regard

$$
\begin{align*}
A^{\prime \prime} & +A^{\prime}\left[3(d-2) \Omega^{\prime}-\frac{(d-2)}{4 \phi^{\prime}} e^{2 \Omega} V_{\phi}\right] \\
& +A\left[m^{2}-\frac{2(d-3)}{(d-2)} e^{2 \Omega} V-\frac{(d-2)(d-3)}{4} e^{2 \Omega} \Omega^{\prime} \frac{V_{\phi}}{\phi^{\prime}}\right]=0, \tag{6.10}
\end{align*}
$$

and

$$
m^{2}>\frac{(d-2)^{2} a^{2}}{4}
$$

For $\mathrm{a}=2, \mathrm{~m}^{2}>25 ; \mathrm{m}^{2}=34$

$$
V_{\phi}=138, \mathrm{~V}=0.57142857, \Omega^{\prime}=\pi, \mathrm{d}=7
$$

$$
\begin{aligned}
& -2\left(\left(\left(\left(\left(15 * \operatorname{Pi}-5 /(4 * 0.9981360456) * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right) * 138\right)\right)\right)+\left(\left(\left(\left(\left(34-8 / 5 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right)\right.\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.* 0.57142857-5 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt22}\right) * \mathrm{Pi} * 138 / 0.9981360456\right)\right)\right)\right)\right)
\end{aligned}
$$

Input interpretation:

$$
\begin{aligned}
& -2\left(\left(15 \pi-\frac{5}{4 \times 0.9981360456} e^{\pi \sqrt{22}} \times 138\right)+\right. \\
& \left.\quad\left(34+\frac{8}{5} e^{\pi \sqrt{22}} \times(-0.57142857)-5 e^{\pi \sqrt{22}} \pi \times \frac{138}{0.9981360456}\right)\right)
\end{aligned}
$$

Result:

$1.176941030 \ldots \times 10^{10}$
$1.176941030 \ldots * 10^{10}$
Series representations:

$$
\begin{aligned}
& -2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)= \\
& -68-30 \pi+e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 21^{-k}\binom{1 / 2}{k}(347.473+1382.58 \pi) \\
& -2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)= \\
& -68-30 \pi+e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{21}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}(347.473+1382.58 \pi) \\
& -2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)= \\
& -68-30 \pi+\exp \left(\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 21^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)(347.473+1382.58 \pi)
\end{aligned}
$$

$2 \mathrm{Pi}^{*} \ln \left[\left(\left(-2\left(\left(\left(() 5^{*} \operatorname{Pi}-5 /\left(4^{*} 0.9981360456\right)^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right) * 138\right)\right)\right)+(((((34-\right.\right.\right.$
$8 / 5^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt22}\right) * 0.57142857-5 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right) * \mathrm{Pi} *$
138/0.9981360456)))))))))) $]-7+1 /$ golden ratio

Input interpretation:

$$
\begin{aligned}
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5}{4 \times 0.9981360456} e^{\pi \sqrt{22}} \times 138\right)+\right.\right. \\
& \left.\left.\quad\left(34+\frac{8}{5} e^{\pi \sqrt{22}} \times(-0.57142857)-5 e^{\pi \sqrt{22}} \pi \times \frac{138}{0.9981360456}\right)\right)\right)-7+\frac{1}{\phi}
\end{aligned}
$$

Result:

139.31737078...
139.31737078... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{aligned}
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
& 7+\frac{1}{\phi}= \\
& -7+2 \pi \log _{e}\left(-2\left(34+15 \pi-\frac{690 \pi e^{\pi \sqrt{22}}}{0.998136}-\frac{690 e^{\pi \sqrt{22}}}{3.99254}-\frac{1}{5} \times 4.57143 e^{\pi \sqrt{22}}\right)\right)+\frac{1}{\phi}
\end{aligned}
$$

$$
2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)-
$$

$$
7+\frac{1}{\phi}=-7+2 \pi \log (a)
$$

$$
\log _{a}\left(-2\left(34+15 \pi-\frac{690 \pi e^{\pi \sqrt{22}}}{0.998136}-\frac{690 e^{\pi \sqrt{22}}}{3.99254}-\frac{1}{5} \times 4.57143 e^{\pi \sqrt{22}}\right)\right)+\frac{1}{\phi}
$$

$$
2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)-
$$

$$
7+\frac{1}{\phi}=
$$

$$
-7-2 \pi \operatorname{Li}_{1}\left(1+2\left(34+15 \pi-\frac{690 \pi e^{\pi \sqrt{22}}}{0.998136}-\frac{690 e^{\pi \sqrt{22}}}{3.99254}-\frac{1}{5} \times 4.57143 e^{\pi \sqrt{22}}\right)\right)+\frac{1}{\phi}
$$

Series representations:

$$
\begin{array}{r}
2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
7+\frac{1}{\phi}=-7+\frac{1}{\phi}+2 \pi \log \left(-68-30 \pi+e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 2^{21-k}\binom{1 / 2}{k}(347.473+1382.58 \pi)\right)
\end{array}
$$

$$
\begin{aligned}
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
& 7+\frac{1}{\phi}=-7+\frac{1}{\phi}+2 \pi \log \left(-69-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)\right)- \\
& 2 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-69-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)\right)^{-k}}{k}
\end{aligned}
$$

$$
2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)-
$$

$$
7+\frac{1}{\phi}=
$$

$$
-7+\frac{1}{\phi}+4 i \pi^{2}\left[\frac{\arg \left(-68-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)-x\right)}{2 \pi}\right]+2 \pi \log (x)-
$$

$$
2 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-68-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)-x\right)^{k} x^{-k}}{k} \text { for } x<0
$$

Integral representations:

$$
\begin{aligned}
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
& 7+\frac{1}{\phi}=-7+\frac{1}{\phi}+2 \pi \int_{1}^{-68-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)} \frac{1}{t} d t
\end{aligned}
$$

$$
2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)-
$$

$$
7+\frac{1}{\phi}=
$$

$$
-7+\frac{1}{\phi}+\frac{1}{i} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(-69-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s
$$

[^1]$2 \mathrm{Pi}^{*} \ln \left[\left(\left(-2\left(\left(\left(\left(\left(15^{*} \mathrm{Pi}-5 /\left(4^{*} 0.9981360456\right)^{*} \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt22)} * 138\right)\right)\right)+(((((34-\right.\right.\right.\right.\right.\right.$
$8 / 5 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt22}\right) * 0.57142857-5 * \mathrm{e}^{\wedge}\left(\mathrm{Pi}^{*} \mathrm{sqrt} 22\right) * \mathrm{Pi}^{*}$
138/0.9981360456))))))))))]-21+1/golden ratio

Input interpretation:

$$
\begin{aligned}
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5}{4 \times 0.9981360456} e^{\pi \sqrt{22}} \times 138\right)+\right.\right. \\
& \left.\left.\quad\left(34+\frac{8}{5} e^{\pi \sqrt{22}} \times(-0.57142857)-5 e^{\pi \sqrt{22}} \pi \times \frac{138}{0.9981360456}\right)\right)\right)-21+\frac{1}{\phi}
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Result:

125.31737078..
125.31737078... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\begin{aligned}
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
& 21+\frac{1}{\phi}= \\
& -21+2 \pi \log _{e}\left(-2\left(34+15 \pi-\frac{690 \pi e^{\pi \sqrt{22}}}{0.998136}-\frac{690 e^{\pi \sqrt{22}}}{3.99254}-\frac{1}{5} \times 4.57143 e^{\pi \sqrt{22}}\right)\right)+\frac{1}{\phi}
\end{aligned}
$$

$$
2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)-
$$

$$
21+\frac{1}{\phi}=-21+2 \pi \log (a)
$$

$$
\log _{a}\left(-2\left(34+15 \pi-\frac{690 \pi e^{\pi \sqrt{22}}}{0.998136}-\frac{690 e^{\pi \sqrt{22}}}{3.99254}-\frac{1}{5} \times 4.57143 e^{\pi \sqrt{22}}\right)\right)+\frac{1}{\phi}
$$

$$
\begin{aligned}
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
& 21+\frac{1}{\phi}= \\
& -21-2 \pi \operatorname{Li}_{1}\left(1+2\left(34+15 \pi-\frac{690 \pi e^{\pi \sqrt{22}}}{0.998136}-\frac{690 e^{\pi \sqrt{22}}}{3.99254}-\frac{1}{5} \times 4.57143 e^{\pi \sqrt{22}}\right)\right)+\frac{1}{\phi}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
& \left.21+\frac{1}{\phi}=-21+\frac{1}{\phi}+2 \pi \log \left(-68-30 \pi+e^{\pi \sqrt{21}} \sum_{k=0}^{\infty} 2^{21^{k}(1 / 2} k\right)(347.473+1382.58 \pi)\right) \\
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
& 21+\frac{1}{\phi}=-21+\frac{1}{\phi}+2 \pi \log \left(-69-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)\right)- \\
& 2 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-69-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)\right)^{-k}}{k} \\
& 2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
& 21+\frac{1}{\phi}= \\
& -21+\frac{1}{\phi}+4 i \pi^{2}\left(\frac{\arg \left(-68-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)-x\right)}{2 \pi}\right)+2 \pi \log (x)- \\
& 2 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-68-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

Integral representations:

$2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)-$

$$
21+\frac{1}{\phi}=-21+\frac{1}{\phi}+2 \pi \int_{1}^{-68-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)} \frac{1}{t} d t
$$

$$
\begin{gathered}
2 \pi \log \left(-2\left(\left(15 \pi-\frac{5 e^{\pi \sqrt{22}} 138}{4 \times 0.998136}\right)+\left(34-\frac{8}{5} e^{\pi \sqrt{22}} 0.571429-\frac{(138 \times 5) e^{\pi \sqrt{22}} \pi}{0.998136}\right)\right)\right)- \\
21+\frac{1}{\phi}=-21+\frac{1}{\phi}+ \\
\frac{1}{i} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(-69-30 \pi+e^{\pi \sqrt{22}}(347.473+1382.58 \pi)\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \\
\text { for }-1<\gamma<0
\end{gathered}
$$

Now, we have that:

$$
\begin{equation*}
h_{i j}=A_{i j}+B_{i j} \log \left[\tanh \left(\sqrt{\alpha_{O, H}} t \sqrt{\frac{d-1}{2(d-2)}} \sqrt{1-\left(\frac{\widetilde{\gamma}}{\gamma^{(c)}}\right)^{2}}\right)\right] \tag{8.20}
\end{equation*}
$$

with $\alpha>0$ for $d>10$ and $\alpha<0$ for $d<10$.
$\frac{\gamma_{d}}{\gamma^{(c)}}=\frac{1}{2}$
$\mathrm{A}=2, \quad \mathrm{~B}=3, \quad \alpha=5, \mathrm{~d}=11$
$2+3 \ln \left(\tanh \left(\left(\left(\operatorname{sqrt5}{ }^{*} \operatorname{sqrt}(10 / 18) * \operatorname{sqrt}(1-1 / 4)\right)\right)\right)\right)$

Input:

$2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)$

Exact result:

$2+3 \log \left(\tanh \left(\frac{5}{2 \sqrt{3}}\right)\right)$

Decimal approximation:

1.665110346842890765945420649301523907615803359459272966995
1.6651103468...

Alternate forms:

$2+3 \log \left(\frac{\sinh \left(\frac{5}{2 \sqrt{3}}\right)}{\cosh \left(\frac{5}{2 \sqrt{3}}\right)}\right)$
$2+3 \log \left(e^{5 / \sqrt{3}}-1\right)-3 \log \left(1+e^{5 / \sqrt{3}}\right)$
$2+3 \log \left(\frac{e^{5 /(2 \sqrt{3})}-e^{-5 /(2 \sqrt{3})}}{\left.e^{-5 /(2 \sqrt{3})}+e^{5 /(2 \sqrt{3})}\right)}\right.$

Alternative representations:

$2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)=2+3 \log _{e}\left(\tanh \left(\sqrt{5} \sqrt{1-\frac{1}{4}} \sqrt{\frac{10}{18}}\right)\right)$
$2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)=2+3 \log _{(a)} \log _{a}\left(\tanh \left(\sqrt{5} \sqrt{1-\frac{1}{4}} \sqrt{\frac{10}{18}}\right)\right)$
$2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)=2+3 \log \left(i \cot \left(\frac{\pi}{2}+i \sqrt{5} \sqrt{1-\frac{1}{4}} \sqrt{\frac{10}{18}}\right)\right)$

Series representation:

$2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)=2-3 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\tanh \left(\frac{5}{2 \sqrt{3}}\right)\right)^{k}}{k}$

Integral representations:

$$
\begin{aligned}
& 2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)=2+3 \int_{1}^{\tanh \left(\frac{5}{2 \sqrt{3}}\right) \frac{1}{t} d t} \\
& 2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)=2+3 \log \left(\int_{0}^{\frac{5}{2 \sqrt{3}}} \operatorname{sech}^{2}(t) d t\right)
\end{aligned}
$$

From which:
$(((2+3 \ln (\tanh (((\operatorname{sqrt} 5 * \operatorname{sqrt}(10 / 18) * \operatorname{sqrt}(1-1 / 4))))))))-47 / 10^{\wedge} 3$

Input:

$\left(2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)\right)-\frac{47}{10^{3}}$
$\tanh (x)$ is the hyperbolic tangent function
$\log (x)$ is the natural logarithm

Exact result:

$$
\frac{1953}{1000}+3 \log \left(\tanh \left(\frac{5}{2 \sqrt{3}}\right)\right)
$$

Decimal approximation:

1.618110346842890765945420649301523907615803359459272966995...
$1.61811034684 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$$
\begin{aligned}
& \frac{3\left(651+1000 \log \left(\tanh \left(\frac{5}{2 \sqrt{3}}\right)\right)\right)}{1000} \\
& \frac{1953}{1000}+3 \log \left(\frac{\sinh \left(\frac{5}{2 \sqrt{3}}\right)}{\cosh \left(\frac{5}{2 \sqrt{3}}\right)}\right) \\
& \frac{1953}{1000}+3 \log \left(e^{5 / \sqrt{3}}-1\right)-3 \log \left(1+e^{5 / \sqrt{3}}\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \left(2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)\right)-\frac{47}{10^{3}}= \\
& 2+3 \log _{e}\left(\tanh \left(\sqrt{5} \sqrt{1-\frac{1}{4}} \sqrt{\frac{10}{18}}\right)\right)-\frac{47}{10^{3}}
\end{aligned}
$$

$$
\left(2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)\right)-\frac{47}{10^{3}}=
$$

$$
2+3 \log (a) \log _{a}\left(\tanh \left(\sqrt{5} \sqrt{1-\frac{1}{4}} \sqrt{\frac{10}{18}}\right)\right)-\frac{47}{10^{3}}
$$

$$
\begin{aligned}
& \left(2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)\right)-\frac{47}{10^{3}}= \\
& 2+3 \log \left(i \cot \left(\frac{\pi}{2}+i \sqrt{5} \sqrt{1-\frac{1}{4}} \sqrt{\frac{10}{18}}\right)\right)-\frac{47}{10^{3}}
\end{aligned}
$$

Series representation:

$$
\left(2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)\right)-\frac{47}{10^{3}}=\frac{1953}{1000}-3 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\tanh \left(\frac{5}{2 \sqrt{3}}\right)\right)^{k}}{k}
$$

Integral representations:

$$
\begin{aligned}
& \left.\left(2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)\right)-\frac{47}{10^{3}}=\frac{1953}{1000}+3 \int_{1}^{\tanh \left(\frac{5}{2 \sqrt{3}}\right.}\right) \frac{1}{t} d t \\
& \left(2+3 \log \left(\tanh \left(\sqrt{5} \sqrt{\frac{10}{18}} \sqrt{1-\frac{1}{4}}\right)\right)\right)-\frac{47}{10^{3}}=\frac{1953}{1000}+3 \log \left(\int_{0}^{\frac{5}{2 \sqrt{3}}} \operatorname{sech}^{2}(t) d t\right)
\end{aligned}
$$

Observations

It should be highlighted how all the expressions has been developed using always parameters belonging to the Ramanujan's mathematics, the Lucas and / or Fibonacci sequences connected strictly to the golden ratio, in addition to π and the golden ratio itself.

Acknowledgments

We would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

References

On Classical Stability with Broken Supersymmetry
I. Basile, J. Mourad and A. Sagnotti - arXiv:1811.11448v2 [hep-th] 10 Jan 2019

Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLV, 1914, 350-372

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

[^1]: for $-1<\gamma<0$

