Some Fundamental Properties of β-Open Sets in Ideal Bitopological Spaces

M. Caldas ${ }^{1}$, S. Jafari ${ }^{2}$ and N. Rajesh ${ }^{3, *}$
${ }^{1}$ Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, S/n, 24020-140, Niteroi, RJ Brasil
${ }^{2}$ College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark
${ }^{3}$ Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India

Abstract

In this paper we introduce and characterize the concepts of β-open sets and their related notions in ideal bitopological spaces.

2010 Mathematics Subject Classifications: 54D10
Key Words and Phrases: Ideal bitopological spaces, $(i, j)-\beta-\mathscr{I}$-open sets, $(i, j)-\beta-\mathscr{I}$-closed sets.

1. Introduction

Kuratowski [7] and Vaidyanathasamy [9] introduced and investigated the concept of ideals in topological spaces. An ideal \mathscr{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathscr{I}$ and $B \subset A$ implies $B \in \mathscr{I}$ and (ii) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ implies $A \cup B \in \mathscr{I}$. Given a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ with an ideal \mathscr{I} on X and if $\mathscr{P}(X)$ is the set of all subsets of X, a set operator $(.)_{i}^{*}: \mathscr{P}(X) \rightarrow \mathscr{P}(X)$, called the local function [9] of A with respect to τ_{i} and \mathscr{I}, is defined as follows: for $A \subset X, A_{i}^{*}\left(\tau_{i}, \mathscr{I}\right)=\{x \in X \mid U \cap A \notin \mathscr{I}$ for every $\left.U \in \tau_{i}(x)\right\}$, where $\tau_{i}(x)=\left\{U \in \tau_{i} \mid x \in U\right\}$. For every ideal topological space (X, τ, \mathscr{I}), there exists a topology $\tau^{*}(\mathscr{I})$, finer than τ, generated by the base $\beta(\mathscr{I}, \tau)=\{U \backslash I \mid U \in \tau$ and $I \in \mathscr{I}\}$, but in general $\beta(\mathscr{I}, \tau)$ is not always a topology [4]. Observe additionally that $\tau_{i}-\mathrm{Cl}^{*}(A)=A \cup A_{i}^{*}\left(\tau_{i}, \mathscr{I}\right)$ defines a Kuratowski closure operator for $\tau^{*}(\mathscr{I})$, when there is no chance of confusion, $A_{i}^{*}(\mathscr{I})$ is denoted by A_{i}^{*} and $\tau_{i}-\operatorname{Int}^{*}(A)$ denotes the interior of A in $\tau_{i}^{*}(\mathscr{I})$. In this paper we introduce and characterize the concepts of β-open sets and their related notions in ideal bitopological spaces.

[^0]
2. Preiliminaries

For a subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, we denote the closure of A and the interior of A with respect to τ_{i} by $\tau_{i}-\operatorname{Cl}(A)$ and $\tau_{i}-\operatorname{Int}(A)$, respectively.

Definition 1. A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be (i, j)-semiopen [5] (resp. (i, j)-preopen [5], (i, j)-semi-preopen [6]) if $A \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}(A)\right)$ (resp. $\left.A \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}(A)\right), A \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}(A)\right)\right)\right)$, where $i, j=1,2$ and $i \neq j$.

Definition 2. A subset A of an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ is said to be
(i) (i, j)-semi- \mathscr{G}-open $[3]$ if $A \subset \tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}(A)\right)$.
(ii) (i,j)-pre- \mathscr{I}-open $[2]$ if $A \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)$.
(iii) $(i, j)-b-\mathscr{I}$-open [3] if $A \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right) \cup \tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}(A)\right)$.
(iv) $(i, j)-\alpha-\mathscr{I}$-open [3] if $A \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}(A)\right)\right)$.

Definition 3. A function $f:\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is said to be
(i) (i,j)-pre- \mathscr{I}-continuous [2] if the inverse image of every σ_{i}-open set of Y is (i, j)-pre- \mathscr{I} open in X, where $i \neq j, i, j=1,2$.
(ii) (i, j)-semi- \mathscr{I}-continuous [3] if the inverse image of every σ_{i}-open set of Y is (i, j)-semi- \mathscr{I} open in X, where $i \neq j, i, j=1,2$.
(iii) $(i, j)-b-\mathscr{I}$-continuous [3] if the inverse image of every σ_{i}-open set of Y is $(i, j)-b-\mathscr{I}$ open in X, where $i \neq j, i, j=1,2$.
(iv) $(i, j)-\alpha-\mathscr{I}$-continuous [3] if the inverse image of every σ_{i}-open set of Y is $(i, j)-\alpha-\mathscr{I}$ open in X, where $i \neq j, i, j=1,2$.
(v) pairwise semi-precontinuous [6] if the inverse image of every σ_{i}-open set in $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is (i, j)-semi-preopen in $\left(X, \tau_{1}, \tau_{2}\right)$, where $i \neq j, i, j=1,2$.

3. Properties of $(i, j)-\beta-\mathscr{I}$-open Sets

Definition 4. A subset A of an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ is said to be $(i, j)-\beta-\mathscr{I}$ open if $A \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)\right)$, where $i, j=1,2$ and $i \neq j$.
The family of all $(i, j)-\beta-\mathscr{I}$-open sets of $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ is denoted by $\beta \mathscr{I} O\left(X, \tau_{1}, \tau_{2}\right)$ or $(i, j)-\beta \mathscr{I} O(X)$. Also, The family of all $(i, j)-\beta-\mathscr{I}$-open sets of $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ containing x is denoted by $(i, j)-\beta \mathscr{I} O(X, x)$.

Remark 1. Let \mathscr{I} and \mathscr{J} be two ideals on $\left(X, \tau_{1}, \tau_{2}\right)$. If $\mathscr{I} \subset \mathscr{J}$, then $\beta \mathscr{J} O\left(X, \tau_{1}, \tau_{2}\right) \subset \beta \mathscr{I} O\left(X, \tau_{1}, \tau_{2}\right)$.

Proposition 1. (i) Every $(i, j)-b-\mathscr{I}$-open set is $(i, j)-\beta-\mathscr{I}$-open.
(ii) Every $(i, j)-\beta-\mathscr{I}$-open set is (i, j)-semi-preopen.

Proof. The proof follows from the definitions.
The following example shows that the converses of Proposition 1 is not true in general.
Example 1. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\}, X\}, \tau_{2}=\{\emptyset,\{a\},\{a, b\}, X\}$ and $\mathscr{I}=\{\emptyset,\{a\}\}$. Then the set $\{a, c\}$ is $(i, j)-\beta-\mathscr{I}$-open but not $(i, j)-b-\mathscr{I}$-open.

Corollary 1. (i) Every $(i, j)-\alpha-\mathscr{I}$-open set is $(i, j)-\beta-\mathscr{I}$-open.
(ii) Every (i, j)-semi- \mathscr{I}-open set is $(i, j)-\beta-\mathscr{I}$-open.
(iii) Every (i, j)-pre- \mathscr{I}-open set is $(i, j)-\beta-\mathscr{I}$-open.

Proposition 2. For an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ and $A \subset X$, we have:
(i) If $\mathscr{I}=\{\emptyset\}$, then A is $(i, j)-\beta-\mathscr{I}$-open if and only if A is (i, j)-semi-preopen.
(ii) If $\mathscr{I}=\mathscr{P}(X)$, then A is $(i, j)-\beta-\mathscr{I}$-open if and only if A is (i, j)-semiopen.

Proof. The proof follows from the fact that
(i) If $\mathscr{I}=\{\emptyset\}$, then $A^{*}=\operatorname{Cl}(A)$.
(ii) If $\mathscr{I}=\mathscr{P}(X)$, then $A^{*}=\emptyset$ for every subset A of X.

Remark 2. The intersection of any two $(i, j)-\beta-\mathscr{I}$-open sets is not an $(i, j)-\beta-\mathscr{I}$-open set as it can be seen from the following example.

Example 2. Let $X=\{a, b, c, d\}, \tau_{1}=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, b, c\}, X\}, \tau_{2}=\{\varnothing, X\}$ and $\mathscr{I}=\{\varnothing,\{c\},\{d\},\{c, d\}\}$. Then the sets $\{a, c\}$ and $\{b, c\}$ are $(1,2)-\beta-\mathscr{I}$-open sets of $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ but their intersection $\{c\}$ is not an $(1,2)-\beta-\mathscr{I}$-open set of $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$.

Theorem 1. If $\left\{A_{\alpha}\right\}_{\alpha \in \Omega}$ is a family of $(i, j)-\beta-\mathscr{I}$-open sets in $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$, then $\bigcup_{\alpha \in \Omega} A_{\alpha}$ is $(i, j)-\beta-\mathscr{I}$-open in $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$.

Proof. Since $\left\{A_{\alpha}: \alpha \in \Omega\right\} \subset(i, j)-\beta \mathscr{I} O(X)$, then $A_{\alpha} \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}\left(A_{\alpha}\right)\right)\right)$ for every $\alpha \in \Omega$. Thus,

$$
\begin{aligned}
& \cup_{\alpha \in \Omega} A_{\alpha} \subset \cup_{\alpha \in \Omega} \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}\left(A_{\alpha}\right)\right)\right) \subset \tau_{j}-\mathrm{Cl}\left(\tau_{i}-\operatorname{Int}\left(\cup_{\alpha \in \Omega} \tau_{j}-\mathrm{Cl}^{*}\left(A_{\alpha}\right)\right)\right) \\
&=\tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}\left(\cup_{\alpha \in \Omega} A_{\alpha}\right)\right)\right)
\end{aligned}
$$

Therefore, we obtain $\underset{\alpha \in \Omega}{\cup} A_{\alpha} \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}\left(\cup_{\alpha \in \Omega} A_{\alpha}\right)\right)\right)$. Hence any union of $(i, j)-$ $\beta-\mathscr{I}$-open sets is $(i, j)-\beta-\mathscr{I}$-open.

Theorem 2. A subset A of an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ is $(i, j)-\beta-\mathscr{I}$-open if and only if $\tau_{j}-\operatorname{Cl}(A)=\tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)\right)$.

Proof. Let A be an $(i, j)-\beta-\mathscr{I}$-open subset of X. Then, we have $A \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}^{*}(A)\right)\right)$ and hence

$$
\tau_{j}-\operatorname{Cl}(A) \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)\right) \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}(A)\right)\right) \subset \tau_{j}-\operatorname{Cl}(A)
$$

Therefore, $\tau_{j}-\operatorname{Cl}(A)=\tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)\right)$. The converse is obvious.
Definition 5. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be pairwise extremally disconnected [1] if $\tau_{j}-\mathrm{Cl}(A) \in \tau_{i}$ for every $A \in \tau_{i}$.

Proposition 3. Let $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ be a pairwise extremally disconnected space. If A is $(i, j)-\beta-$ \mathscr{I}-open, then it is (i, j)-preopen in X.

Proof. Let A be $(i, j)-\beta-\mathscr{I}$-open set of X, we have $A \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}^{*}(A)\right)\right)$. Since X is pairwise extremally disconnected, for $\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right) \in \tau_{i}$, we have $\tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}^{*}(A)\right)\right) \in \tau_{i}$. So, we have

$$
\begin{aligned}
& A \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)\right) \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)\right)\right) \\
& \quad \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)\right) \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}\left(A \cup A^{*}\right)\right) \\
& \quad=\tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}(A) \cup \tau_{j}-\operatorname{Cl}\left(A^{*}\right)\right) \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}(A)\right)
\end{aligned}
$$

hence A is (i, j)-preopen in X.
An ideal bitopological space is said to satisfy the condition (\mathscr{A}) if $U \cap \tau_{j}-\mathrm{Cl}^{*}(A) \subset \tau_{j}-\mathrm{Cl}^{*}(U \cap A)$ for every $U \in \tau_{i}$.

Theorem 3. Let $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ be a pairwise extremally disconnected space which satisfies the condition \mathscr{A}. If A is (i, j)-semi- \mathscr{I}-open and B is (i, j)-pre- \mathscr{I}-open, then $A \cap B$ is $(i, j)-\beta-\mathscr{I}$ open.

Proof. Let A be (i, j)-semi- \mathscr{I}-open and B an (i, j)-pre- \mathscr{I}-open set of X. Then

$$
\begin{aligned}
A \cap B & \subset \tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}(A)\right) \cap \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(B)\right) \subset \tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}(A) \cap \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(B)\right)\right. \\
& \left.=\tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}\left(\tau_{i}-\operatorname{Int}(A)\right) \cap \tau_{j}-\mathrm{Cl}^{*}(B)\right)\right) \subset \tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}(A) \cap B\right)\right)\right) \\
& \subset \tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A \cap B)\right)\right) \subset \tau_{j}-\operatorname{Cl}\left(\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A \cap B)\right)\right)
\end{aligned}
$$

Thus, $A \cap B$ is $(i, j)-\beta-\mathscr{I}$-open in X.

Definition 6. In an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right), A \subset X$ is said to be $(i, j)-\beta-\mathscr{I}$ closed if $X \backslash A$ is $(i, j)-\beta-\mathscr{I}$-open in $X, i, j=1,2$ and $i \neq j$.

Theorem 4. If A is an $(i, j)-\beta-\mathscr{I}$-closed set in an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ if and only if $\tau_{j}-\operatorname{Int}\left(\tau_{i}-\operatorname{Cl}\left(\tau_{j}-\operatorname{Int}^{*}(A)\right)\right) \subset A$.

Proof. The proof follows from the definitions.

Theorem 5. A subset A of an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ is $(i, j)-\beta-\mathscr{I}$-closed, then $\tau_{j}-\operatorname{Int}\left(\tau_{i}-\mathrm{Cl}^{*}\left(\tau_{j}-\operatorname{Int}(A)\right)\right) \subset A$

Proof. The proof follows from the fact that $\mathrm{Cl}^{*}(A) \subset \mathrm{Cl}(A)$ for every subset A of X.
Theorem 6. Arbitrary intersection of $(i, j)-\beta-\mathscr{I}$-closed sets is always $(i, j)-\beta-\mathscr{I}$-closed.
Proof. Follows from Theorems 1 and 5.
Definition 7. Let $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ be an ideal bitopological space, S a subset of X and x be a point of X. Then
(i) x is called an $(i, j)-\beta-\mathscr{I}$-interior point of S if there exists $V \in(i, j)-\beta \mathscr{I} O\left(X, \tau_{1}, \tau_{2}\right)$ such that $x \in V \subset S$.
(ii) the set of all $(i, j)-\beta-\mathscr{I}$-interior points of S is called $(i, j)-\beta-\mathscr{I}$-interior of S and is denoted by $(i, j)-\beta \mathscr{I} \operatorname{Int}(S)$.

Theorem 7. Let A and B be subsets of $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$. Then the following properties hold:
(i) $(i, j)-\beta \mathscr{I} \operatorname{Int}(A)=\cup\{T: T \subset A$ and $T \in(i, j)-\beta \mathscr{I} O(X)\}$.
(ii) $(i, j)-\beta \mathscr{I} \operatorname{Int}(A)$ is the largest $(i, j)-\beta-\mathscr{I}$-open subset of X contained in A.
(iii) A is $(i, j)-\beta-\mathscr{I}$-open if and only if $A=(i, j)-\beta \mathscr{I} \operatorname{Int}(A)$.
(iv) $(i, j)-\beta \mathscr{I} \operatorname{Int}((i, j)-\beta \mathscr{I} \operatorname{Int}(A))=(i, j)-\beta \mathscr{I} \operatorname{Int}(A)$.
(v) If $A \subset B$, then $(i, j)-\beta \mathscr{I} \operatorname{Int}(A) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(B)$.
(vi) $(i, j)-\beta \mathscr{I} \operatorname{Int}(A \cap B) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(A) \cap(i, j)-\beta \mathscr{I} \operatorname{Int}(B)$.
(vii) $(i, j)-\beta \mathscr{I} \operatorname{Int}(A \cup B) \supset(i, j)-\beta \mathscr{I} \operatorname{Int}(A) \cup(i, j)-\beta \mathscr{I} \operatorname{Int}(B)$.

Proof. (vi). Since $A \cap B \subset A$ and $A \cap B \subset B$, by (iv), we have
$(i, j)-\beta \mathscr{I} \operatorname{Int}(A \cap B) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(A)$ and $(i, j)-\beta \mathscr{I} \operatorname{Int}(A \cap B) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(B)$. Therefore, $(i, j)-\beta \mathscr{I} \operatorname{Int}(A \cap B) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(A) \cap(i, j)-\beta \mathscr{I} \operatorname{Int}(B)$.
(vii). We have $(i, j)-\beta \mathscr{I} \operatorname{Int}(A) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(A \cup B)$ and $(i, j)-\beta \mathscr{I} \operatorname{Int}(B) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(A \cup B)$. Then we obtain $(i, j)-\beta \mathscr{I} \operatorname{Int}(A) \cup(i, j)-\beta \mathscr{I} \operatorname{Int}(B) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(A \cup B)$.
The other proofs are obvious.

Definition 8. Let $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ be an ideal bitopological space, S a subset of X and x be a point of X. Then
(i) x is called an $(i, j)-\beta-\mathscr{I}$-cluster point of S if $V \cap S \neq \emptyset$ for every $V \in(i, j)-\beta \mathscr{I} O(X, x)$.
(ii) the set of all $(i, j)-\beta-\mathscr{I}$-cluster points of S is called $(i, j)-\beta-\mathscr{I}$-closure of S and is denoted by $(i, j)-\beta \mathscr{I} \mathrm{Cl}(S)$.

Theorem 8. Let A and B be subsets of $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$. Then the following properties hold:
(i) $(i, j)-\beta \mathscr{I} \mathrm{Cl}(A)=\cap\{F: A \subset F$ and $F \in(i, j)-\beta \mathscr{I} C(X)\}$.
(ii) $(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$ is the smallest $(i, j)-\beta-\mathscr{I}$-closed subset of X containing A.
(iii) A is $(i, j)-\beta-\mathscr{I}$-closed if and only if $A=(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$.
(iv) $(i, j)-\beta \mathscr{I} \operatorname{Cl}((i, j)-\beta \mathscr{I} \operatorname{Cl}(A)=(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$.
(v) If $A \subset B$, then $(i, j)-\beta \mathscr{I} \mathrm{Cl}(A) \subset(i, j)-\beta \mathscr{I} \mathrm{Cl}(B)$.
(vi) $(i, j)-\beta \mathscr{I} \mathrm{Cl}(A \cup B) \supset(i, j)-\beta \mathscr{I} \mathrm{Cl}(A) \cup(i, j)-\beta \mathscr{I} \mathrm{Cl}(B)$.
(vii)] $(i, j)-\beta \mathscr{I} \operatorname{Cl}(A \cap B) \subset(i, j)-\beta \mathscr{I} \operatorname{Cl}(A) \cap(i, j)-\beta \mathscr{I} \mathrm{Cl}(B)$.

Proof. The proofs follows from the definitions.
Theorem 9. Let $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ be an ideal bitopological space and $A \subset X$. A point $x \in(i, j)-\beta \mathscr{I} \mathrm{Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in(i, j)-\beta \mathscr{I} O(X, x)$.

Proof. Suppose that $x \in(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$. We shall show that $U \cap A \neq \emptyset$ for every $U \in(i, j)-\beta \mathscr{I} O(X, x)$. Suppose that there exists $U \in(i, j)-\beta \mathscr{I} O(X, x)$ such that $U \cap A=\emptyset$. Then $A \subset X \backslash U$ and $X \backslash U$ is $(i, j)-\beta-\mathscr{I}$-closed. Since $A \subset X \backslash U$, $(i, j)-\beta \mathscr{I} \operatorname{Cl}(A) \subset(i, j)-\beta \mathscr{I} \operatorname{Cl}(X \backslash U)$. Since $x \in(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$, we have $x \in(i, j)-\beta \mathscr{I} \operatorname{Cl}(X \backslash U)$. Since $X \backslash U$ is $(i, j)-\beta-\mathscr{I}$-closed, we have $x \in X \backslash U$; hence $x \notin U$, which is a contradiction that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in(i, j)-\beta \mathscr{I} O(X, x)$. We shall show that $x \in(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$. Suppose that $x \notin(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$. Then there exists $U \in(i, j)-\beta \mathscr{I} O(X, x)$ such that $U \cap A=$ emptyset. This is a contradiction to $U \cap A \neq \emptyset$; hence $x \in(i, j)-\beta \mathscr{I} \mathrm{Cl}(A)$.

Theorem 10. Let $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ be an ideal bitopological space and $A \subset X$. Then the following propeties hold:
(i) $(i, j)-\beta \mathscr{I} \operatorname{Int}(X \backslash A)=X \backslash(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$;
(ii) $(i, j)-\beta \mathscr{I} \mathrm{Cl}(X \backslash A)=X \backslash(i, j)-\beta \mathscr{I} \operatorname{Int}(A)$.

Proof. (i). Let $x \in(i, j)-\beta \mathscr{I} \mathrm{Cl}(A)$. There exists $V \in(i, j)-\beta \mathscr{I} O(X, x)$ such that $V \cap A \neq \emptyset$; hence we obtain $x \in(i, j)-\beta \mathscr{I} \operatorname{Int}(X \backslash A)$. This shows that $X \backslash(i, j)-\beta \mathscr{I} \operatorname{Cl}(A) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}(X \backslash A)$. Let $x \in(i, j)-\beta \mathscr{I} \operatorname{Int}(X \backslash A)$. Since $(i, j)-\beta \mathscr{I} \operatorname{Int}(X \backslash A) \cap A=\emptyset$, we obtain $x \notin(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$; hence $x \in X \backslash(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$. Therefore, we obtain $(i, j)-\beta \mathscr{I} \operatorname{Int}(X \backslash A)=X \backslash(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$.
(ii). Follows from (i).

Proposition 4. The product of two $(i, j)-\beta-\mathscr{I}$-open sets is $(i, j)-\beta-\mathscr{I}$-open.
Proof. The proof follows from Lemma 3.3 of [10].

4. $(i, j)-\beta-\mathscr{I}$-continuous Functions

Definition 9. A function $f:\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is said to be $(i, j)-\beta-\mathscr{I}$-continuous if the inverse image of every σ_{i}-open set of Y is $(i, j)-\beta-\mathscr{I}$-open in X, where $i \neq j, i, j=1,2$.

Proposition 5. Every $(i, j)-b-\mathscr{I}$-continuous function is $(i, j)-\beta-\mathscr{I}$-continuous but not conversely.

Proof. The proof follows from Proposition 1.
The following example shows that the converse of Proposition 5 is not true, in general.
Example 3. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\}, X\}, \tau_{2}=\{\emptyset,\{a\},\{a, b\}, X\}, \sigma_{1}=\{\emptyset,\{a, c\}, X\}$, $\sigma_{2}=\{\emptyset,\{a\}, X\}$ and $\mathscr{I}=\{\emptyset,\{a\}\}$. Then the identity function $f:\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $(1,2)-\beta-\mathscr{I}$-continuous but not $(1,2)-b-\mathscr{I}$-continuous.

Corollary 2. (i) Every $(i, j)-\alpha-\mathscr{I}$-continuous function is $(i, j)-\beta-\mathscr{I}$-continuous but not conversely.
(ii) Every (i, j)-semi- \mathscr{I}-continuous function is $(i, j)-\beta$-continuous but not conversely.
(iii) Every (i, j)-pre- \mathscr{I}-continuous function is $(i, j)-\beta-\mathscr{I}$-continuous but not conversely.

Theorem 11. For a function $f:\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$, the following statements are equivalent:
(i) f is $(i, j)-\beta-\mathscr{I}$-continuous.
(ii) For each point x in X and each σ_{i}-open set F in Y such that $f(x) \in F$, there exists an $(i, j)-\beta-\mathscr{I}$-open set A in X such that $x \in A, f(A) \subset F$.
(iii) The inverse image of each σ_{i}-closed set in Y is $(i, j)-\beta-\mathscr{I}$-closed in X.
(iv) For each subset A of $X, f((i, j)-\beta \mathscr{I} \operatorname{Cl}(A)) \subset \sigma_{i}-\operatorname{Cl}(f(A))$.
(v) For each subset B of $Y,(i, j)-\beta \mathscr{I} \operatorname{Cl}\left(f^{-1}(B)\right) \subset f^{-1}\left(\sigma_{i}-\operatorname{Cl}(B)\right)$.
(vi) For each subset C of $Y, f^{-1}\left(\sigma_{i}-\operatorname{Int}(C)\right) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}\left(f^{-1}(C)\right)$.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and F be a σ_{i}-open set of Y containing $f(x)$. By (i), $f^{-1}(F)$ is $(i, j)-\beta-\mathscr{I}$-open in X. Let $A=f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$.
(ii) \Rightarrow (i): Let F be σ_{i}-open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an $(i, j)-\beta-\mathscr{I}$-open set U_{x} in X such that $x \in U_{x}$ and $f\left(U_{x}\right) \subset F$. Then $x \in U_{x} \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is $(i, j)-\beta-\mathscr{I}$-open in X.
(i) \Leftrightarrow (iii): This follows due to the fact that for any subset B of $Y, f^{-1}(Y \backslash B)=X \backslash f^{-1}(B)$.
(iii) \Rightarrow (iv): Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}\left(\sigma_{i}-\operatorname{Cl}(f(A))\right)$. Now, $\sigma_{i}-\operatorname{Cl}(f(A))$ is σ_{i}-closed in Y and hence $(i, j)-\beta \mathscr{I} \operatorname{Cl}(A) \subset f^{-1}\left(\sigma_{i}-\operatorname{Cl}(f(A))\right)$ for $(i, j)-\beta \mathscr{I} \operatorname{Cl}(A)$ is the smallest $(i, j)-\beta-\mathscr{I}$-closed set containing A. Then $f((i, j)-\beta \mathscr{I} \operatorname{Cl}(A)) \subset \sigma_{i}-\operatorname{Cl}(f(A))$.
(iv) \Rightarrow (iii): Let F be any $(i, j)-\beta-\mathscr{I}$-closed subset of Y. Then
$f\left((i, j)-\beta \mathscr{I} \operatorname{Cl}\left(f^{-1}(F)\right)\right) \subset \sigma_{i}-\operatorname{Cl}\left(f\left(f^{-1}(F)\right)\right)=\sigma_{i}-\mathrm{Cl}(F)=F$. Therefore,
$(i, j)-\beta \mathscr{I} \operatorname{Cl}\left(f^{-1}(F)\right) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is $(i, j)-\beta-\mathscr{I}$-closed in X.
(iv) $\Rightarrow(\mathrm{v})$: Let B be any subset of Y. Now,

$$
f\left((i, j)-\beta \mathscr{I} \operatorname{Cl}\left(f^{-1}(B)\right)\right) \subset \sigma_{i}-\operatorname{Cl}\left(f\left(f^{-1}(B)\right)\right) \subset \sigma_{i}-\operatorname{Cl}(B)
$$

Consequently, $(i, j)-\beta \mathscr{I} \operatorname{Cl}\left(f^{-1}(B)\right) \subset f^{-1}\left(\sigma_{i}-\operatorname{Cl}(B)\right)$.
(v) \Rightarrow (iv): Let $B=f(A)$, where A is a subset of X. Then,

$$
(i, j)-\beta \mathscr{I} \operatorname{Cl}(A) \subset(i, j)-\beta \mathscr{I} \operatorname{Cl}\left(f^{-1}(B)\right) \subset f^{-1}\left(\sigma_{i}-\operatorname{Cl}(B)\right)=f^{-1}\left(\sigma_{i}-\operatorname{Cl}(f(A))\right)
$$

This shows that $f((i, j)-\beta \mathscr{I} \operatorname{Cl}(A)) \subset \sigma_{i}-\operatorname{Cl}(f(A))$.
(i) \Rightarrow (vi): Let B be a σ_{i}-open set in Y. Clearly, $f^{-1}\left(\sigma_{i}-\operatorname{Int}(B)\right)$ is $(i, j)-\beta-\mathscr{I}$-open and we have $f^{-1}\left(\sigma_{i}-\operatorname{Int}(B)\right) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}\left(f^{-1}\left(\sigma_{i}-\operatorname{Int}(B)\right)\right) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}\left(f^{-1}(B)\right)$.
(vi) $\Rightarrow(\mathrm{i})$: Let B be a σ_{i}-open set in Y. Then $\sigma_{i}-\operatorname{Int}(B)=B$ and
$f^{-1}(B) \backslash f^{-1}\left(\sigma_{i}-\operatorname{Int}(B)\right) \subset(i, j)-\beta \mathscr{I} \operatorname{Int}\left(f^{-1}(B)\right)$. Hence we have $f^{-1}(B)=(i, j)-\beta \mathscr{I} \operatorname{Int}\left(f^{-1}(B)\right)$.
This shows that $f^{-1}(B)$ is $(i, j)-\beta-\mathscr{I}$-open in X.
If $\mathscr{I}=\{\emptyset\}$ in Theorem 11, we get the following
Corollary 3 ([6, Theorem 5.1]). For a function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$, the following statements are equivalent:
(i) f is pairwise semi-precontinuous;
(ii) For each point x in X and each σ_{i}-open set F in Y such that $f(x) \in F$, there is an (i, j) -semi-preopen set A in X such that $x \in A, f(A) \subset F$;
(iii) The inverse image of each σ_{i}-closed set in Y is (i, j)-semi-preclosed in X;
(iv) For each subset A of $X, f((i, j)-s p \operatorname{Cl}(A)) \subset \sigma_{i}-\operatorname{Cl}(f(A))$;
(v) For each subset B of $Y,(i, j)-s p \operatorname{Cl}\left(f^{-1}(B)\right) \subset f^{-1}\left(\sigma_{i}-\operatorname{Cl}(B)\right)$.

Theorem 12. Let $f:\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be a function. If $g:\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right) \rightarrow\left(X \times Y, \sigma_{1} \times \sigma_{2}\right)$ defined by $g(x)=(x, f(x))$ is an $(i, j)-\beta-\mathscr{I}$-continuous function, then f is $(i, j)-\beta-\mathscr{I}$-continuous.

Proof. Let V be a σ_{i}-open set of Y. Then $f^{-1}(V)=X \cap f^{-1}(V)=g^{-1}(X \times V)$. Since g is an $(i, j)-\beta-\mathscr{I}$-continuous function and $X \times V$ is a $\tau_{i} \times \sigma_{i}$-open set of $X \times Y, f^{-1}(V)$ is an $(i, j)-\beta-\mathscr{I}$-open set of X. Hence f is $(i, j)-\beta-\mathscr{I}$-continuous.

Definition 10. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be pairwise connected [8] if it cannot be expressed as the union of two nonempty disjoint sets U and V such that U is τ_{i}-open and V is τ_{j}-open, where $i, j=\{1,2\}$.

Definition 11. An ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ is said to be $(i, j)-\beta-\mathscr{I}$-connected if it cannot be expressed as the union of two nonempty disjoint sets U and V such that U is $(i, j)-\beta-\mathscr{I}$-open and V is $(i, j)-\beta-\mathscr{I}$-open.

Theorem 13. Let $f:\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $(i, j)-\beta-\mathscr{I}$-continuous surjection and $\left(X, \tau_{1}, \tau_{2}, \mathscr{I}\right)$ is $(i, j)-\beta-\mathscr{I}$-connected, then $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is pairwise connected.

Proof. Suppose Y is not pairwise connected, Then $Y=A \cup B$ where $A \cap B=\emptyset, A \neq \emptyset$, $B \neq \emptyset$ and $A \in \sigma_{i}, B \in \sigma_{j}$. Since f is $(i, j)-\beta-\mathscr{I}$-continuous $f^{-1}(A) \in(i, j)-\beta \mathscr{I} O(X)$ and $f^{-1}(B) \in(i, j)-\beta \mathscr{I} O(X)$, such that $f^{-1}(A) \neq \emptyset, f^{-1}(B) \neq \emptyset . f^{-1}(A) \cap f^{-1}(B)=\emptyset$ and $f^{-1}(A) \cup f^{-1}(B)=X$, which implies that X is not $(i, j)-\beta-\mathscr{I}$-connected.

References

[1] G. Balasubramanian. Extremally disconnected bitopological spaces, Bulletin of the Calcutta Mathematical Society, 83, 247-252. 1991.
[2] M. Caldas, S. Jafari and N. Rajesh. Preopen sets in ideal bitopological spaces, Bulletin of Parana's Mathematical Society, 29(2), 61-68. 2011.
[3] M. Caldas, S. Jafari and N. Rajesh. Semiopen sets in ideal bitopological spaces (to appear in CUBO Mathematics Journal).
[4] D. Jankovic and T. R. Hamlett. New topologies from old via ideals, American Mathematical Monthly, 97, 295-310. 1990.
[5] M. Jelic, Feeble P-continuous mappings. Rendicondi del Circolo Matematico di Palermo, 24, 387-395. 1990
[6] F. Khedr, S. Al-Areefi and T. Noiri. Precontinuity and semi-precontinuity in bitopological spaces, Indian Journal of Pure and Applied Mathematics 23(9), 624-633. 1992.
[7] K. Kuratowski. Topology, Academic press, New York. 1966.
[8] W. J. Pervine. Connectedness in bitopological spaces. Indagationes Mathematicae, 29, 369372. 1967.
[9] R. Vaidyanathaswamy. The localisation theory in set topology, Proceedings of the Indian Acadamic of Sciences, 20, 51-61. 1945.
[10] S. Yuksel, A. H. Kocaman and A. Acıkgoz. On $\beta-\mathscr{I}$-irresolute functions, Far East Journal of Mathematical Sciences. 26(3), 673-684. 2007.

[^0]: *Corresponding author.
 Email addresses: gmamccs@vm.uff.br (M. Caldas), jafari@stofanet.dk (S. Jafari), nrajesh_topology@yahoo.co.in (N. Rajesh)

