PROPERTIES OF IDEAL BITOPOLOGICAL α -OPEN SETS

A. I. EL-MAGHRABI, M. CALDAS, S. JAFARI, R. M. LATIF, A. NASEF, N. RAJESH AND S. SHANTHI

Dedicated to Professor Valeriu Popa on the Occasion of His 80th Birthday

ABSTRACT. The aim of this paper is to introduced and characterized the concepts of α -open sets and their related notions in ideal bitopological spaces.

1. Introduction

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [10] and Vaidyanathasamy [11]. An ideal \mathcal{I} on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a bitopological space (X, τ_1, τ_2) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)_i^* \colon \mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [11] of A with respect to τ_i and \mathcal{I} , is defined as follows: for $A \subset X$, $A_i^*(\tau_i, \mathcal{I}) =$ $\{x \in X | U \cap A \notin \mathcal{I} \text{ for every } U \in \tau_i(x)\}, \text{ where } \tau_i(x) = 1\}$ $\{U \in \tau_i | x \in U\}$. For every ideal topological space (X, τ, \mathcal{I}) , there exists topology $\tau^*(I)$, finer than τ , generated by the base $\beta(\mathcal{I},\tau) =$ $\{U \setminus I \mid U \in \tau \text{ and } I \in \mathcal{I}\}$, but in general $\beta(\mathcal{I}, \tau)$ is not always a topology [7]. Observe additionally that τ_i -Cl*(A) = A \cup A_i*(τ_i , \mathcal{I}) defines a Kuratowski closure operator for $\tau^*(\mathcal{I})$, when there is no chance of confusion, $A_i^*(\mathcal{I})$ is denoted by A_i^* and τ_i -Int*(A) denotes the interior of A in $\tau_i^*(\mathcal{I})$. The aim of this paper is to introduced and characterized the concepts of α -open sets and their related notions in ideal bitopological spaces.

2. Preiliminaries

Let A be a subset of a bitopological space (X, τ_1, τ_2) . We denote the closure of A and the interior of A with respect to τ_i by τ_i -Cl(A) and τ_i -Int(A), respectively.

²⁰⁰⁰ Mathematics Subject Classification. 54D10.

Key words and phrases. Ideal bitopological spaces, (1,2)- α - \mathcal{I} -open sets, (1,2)- α - \mathcal{I} -closed sets.

Definition 2.1. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)- α -open [9] if $A \subset \tau_i$ -Int $(\tau_j$ -Cl $(\tau_i$ -Int(A))), where i, j = 1, 2 and $i \neq j$.

Definition 2.2. A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be α - \mathcal{I} -open [8] if $S \subset \operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(S)))$. The family of all α - \mathcal{I} -open sets of (X, τ, \mathcal{I}) is denoted by $\alpha \mathcal{I}O(X, \tau)$.

Definition 2.3. A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to be (i,j)- α -continuous [9] if the inverse image of every σ_j -open set in (Y,σ_1,σ_2) is (i,j)- α -open in $(X,\tau_1,\tau_2,\mathcal{I})$, where $i \neq j$, i,j=1, 2.

Definition 2.4. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be

- (i) (i, j)-R- \mathcal{I} -open [1] if $A = \tau_i$ -Int $(\tau_i$ -Cl*(A)).
- (ii) (i, j)-semi- \mathcal{I} -open [3] if $A \subset \tau_i$ -Cl* $(\tau_i$ -Int(A)).
- (iii) (i, j)-pre- \mathcal{I} -open [2] if $A \subset \tau_i$ -Int $(\tau_i$ -Cl*(A)).
- (iv) (i,j)-b- \mathcal{I} -open [4] if $A \subset \tau_i$ -Int $(\tau_i$ -Cl*(A)) $\cup \tau_i$ -Cl* $(\tau_i$ -Int(A)).
- (v) (i, j)- β - \mathcal{I} -open [5] if $A \subset \tau_i$ - $\mathrm{Cl}(\tau_i$ - $\mathrm{Int}(\tau_i$ - $\mathrm{Cl}^*(A))$).
- (vi) (i, j)- δ - \mathcal{I} -open [1] if τ_i -Int $(\tau_i$ -Cl* $(A) \subset \tau_i$ -Cl* $(\tau_i$ -Int(A)).

The complement of an (i, j)-pre- \mathcal{I} -open (resp. (i, j)- β - \mathcal{I} -open) set is called an (i, j)-pre- \mathcal{I} -closed (resp. (i, j)- β - \mathcal{I} -closed) set.

Lemma 2.5. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space. Then

- (i) A subset A is (i, j)-pre- \mathcal{I} -closed if and only if τ_i -Cl $(\tau_j$ -Int*(A)) \subset A [2];
- (i) A subset A is (i, j)- β - \mathcal{I} -closed if and only if τ_j -Int $(\tau_i$ -Cl $(\tau_j$ -Int*(A))) $\subset A$ [5].

Definition 2.6. A function $f:(X,\tau_1,\tau_2,\mathcal{I})\to (Y,\sigma_1,\sigma_2)$ is said to be

- (i) pairwise pre- \mathcal{I} -continuous [2] if the inverse image of every σ_i open set of Y is (i,j)-pre- \mathcal{I} -open in X, where $i \neq j$, i,j=1, 2.
- (i) pairwise semi- \mathcal{I} -continuous [3] if the inverse image of every σ_i open set of Y is (i,j)-semi- \mathcal{I} -open in X, where $i \neq j$, i,j=1, 2.
- (i) pairwise b- \mathcal{I} -continuous [4] if the inverse image of every σ_i -open set of Y is (i, j)-b- \mathcal{I} -open in X, where $i \neq j$, i, j=1, 2.
- (i) pairwise β - \mathcal{I} -continuous [5] if the inverse image of every σ_i -open set of Y is (i, j)- β - \mathcal{I} -open in X, where $i \neq j$, i, j=1, 2.
- (i) pairwise δ - \mathcal{I} -continuous [3] if the inverse image of every σ_i -open set of Y is (i, j)- δ - \mathcal{I} -open in X, where $i \neq j$, i, j = 1, 2.
- (i) pairwise strongly β - \mathcal{I} -continuous [5] if the inverse image of every σ_i -open set of Y is strongly (i,j)- β - \mathcal{I} -open in X, where $i \neq j, i, j=1, 2$.

3.
$$(i, j)$$
- α - \mathcal{I} -OPEN SETS

Definition 3.1. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be (i, j)- α - \mathcal{I} -open if and only if $A \subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int(A))), where i, j = 1, 2 and $i \neq j$.

The family of all (i, j)- α - \mathcal{I} -open sets of $(X, \tau_1, \tau_2, \mathcal{I})$ is denoted by $\alpha \mathcal{I}O(X, \tau_1, \tau_2)$ or (i, j)- $\alpha \mathcal{I}O(X)$. Also, The family of all (i, j)- α - \mathcal{I} -open sets of $(X, \tau_1, \tau_2, \mathcal{I})$ containing x is denoted by (i, j)- $\alpha \mathcal{I}O(X, x)$.

Remark 3.2. Let \mathcal{I} and \mathcal{J} be two ideals on (X, τ_1, τ_2) . If $\mathcal{I} \subset \mathcal{J}$, then $\alpha \mathcal{J} O(X, \tau_1, \tau_2) \subset \alpha \mathcal{I} O(X, \tau_1, \tau_2)$.

Proposition 3.3. (i) Every (i, j)- α - \mathcal{I} -open set is (i, j)-semi- \mathcal{I} -open.

- (ii) Every (i, j)- α - \mathcal{I} -open set is (i, j)- α -open.
- (iii) Every (i, j)- α - \mathcal{I} -open set is (i, j)-pre- \mathcal{I} -open.
- (iv) Every (i, j)- α - \mathcal{I} -open set is (i, j)-b- \mathcal{I} -open.
- (v) Every (i, j)- α - \mathcal{I} -open set is (i, j)- β - \mathcal{I} -open.

Proof. The proof follows from the definitions.

The following example show that the converses of Proposition 3.3 is not true in general.

Example 3.4. Let $X = \{a, b, c\}$ $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\emptyset, \{a\}, X\} \text{ and } \mathcal{I} = \{\emptyset, \{a\}\}.$ Then the set $\{a, c\}$ is (i, j)-b- \mathcal{I} -open but not (i, j)- α - \mathcal{I} -open. Also, the set $\{b, c\}$ is (i, j)-semi- \mathcal{I} -open but not (i, j)- α - \mathcal{I} -open and the set $\{a, c\}$ is (i, j)-pre- \mathcal{I} -open and (i, j)- α -open but not (i, j)- α - \mathcal{I} -open.

Proposition 3.5. For an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ and $A \subset X$ we have:

- (i) If $\mathcal{I} = \{\emptyset\}$, then A is (i, j)- α - \mathcal{I} -open if and only if A is (i, j)- α -open.
- (ii) If $\mathcal{I} = \mathcal{P}(X)$, then A is (i, j)- α - \mathcal{I} -open if and only if A is τ_i -open.

Proof. The proof follows from the fact that

- (i) If $\mathcal{I} = {\emptyset}$, then $A^* = \text{Cl}(A)$.
- (ii) If $\mathcal{I} = \mathcal{P}(X)$, then $A^* = \emptyset$ for every subset A of X.

Proposition 3.6. Let A be a subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$. If B is an (i, j)-semi- \mathcal{I} -open set of X such that $B \subset A \subset \tau_i$ -Int $(\tau_i$ -Cl*(B)), then A is an (i, j)- α - \mathcal{I} -open set of X.

Proof. Since B is an (i, j)-semi- \mathcal{I} -open set of X, we have $B \subset \tau_j$ - $\mathrm{Cl}^*(\tau_i\text{-Int}(B))$. Thus, $A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(B)) \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(B))) = \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(B))) \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(A)))$, and so A is an (i, j)- α - \mathcal{I} -open set of X.

Proposition 3.7. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space. Then a subset of X is (i, j)- α - \mathcal{I} -open if and only if it is both δ - \mathcal{I} -open and pre- \mathcal{I} -open.

Proof. Let A be an (i, j)- α - \mathcal{I} -open set. Since every (i, j)- α - \mathcal{I} -open set is (i, j)-semi- \mathcal{I} -open, by Proposition 3.3 A is an (i, j)- δ - \mathcal{I} -open. Now we prove that $A \subset \tau_i$ -Int $(\tau_j$ -Cl*(A)). Since A is an (i, j)- α - \mathcal{I} -open, we have $A \subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int(A))) $\subset \tau_i$ -Int $(\tau_j$ -Cl*(A)). Hence A is (i, j)-pre- \mathcal{I} -open. Conversely, let A be an (i, j)- δ - \mathcal{I} -open and (i, j)-pre- \mathcal{I} -open set. Then we have τ_i -Int $(\tau_j$ -Cl*(A)) $\subset \tau_j$ -Cl* $(\tau_i$ -Int(A)) and hence τ_i -Int $(\tau_j$ -Cl*(A)) $\subset \tau_i$ -Int $(\tau_j$ -Cl*(A)). Since A is (i, j)-pre- \mathcal{I} -open, we have $A \subset \tau_i$ -Int $(\tau_j$ -Cl*(A)). Therefore, we obtain that $A \subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int(A))); hence A is (i, j)- α - \mathcal{I} -open.

Lemma 3.8. A subset A is (i, j)- α - \mathcal{I} -open if and only if (i, j)-semi- \mathcal{I} -open and (i, j)-pre- \mathcal{I} -open.

Proof. Let A be (i, j)-semi- \mathcal{I} -open and (i, j)-pre- \mathcal{I} -open. Then, $A \subset \tau_i$ -Int $(\tau_j$ -Cl*(A)) $\subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_j$ -Cl* $(\tau_i$ -Int(A))). This shows that A is (i, j)- α - \mathcal{I} -open. The converse is obvious.

Corollary 3.9. The following properties are equivalent for subsets of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$:

- (i) Every (i, j)-pre- \mathcal{I} -open set is (i, j)-semi- \mathcal{I} -open.
- (ii) A subset A of X is (i, j)- α - \mathcal{I} -open if and only if it is (i, j)-pre- \mathcal{I} -open.

Corollary 3.10. The following properties are equivalent for subsets of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$:

- (i) Every (i, j)-semi- \mathcal{I} -open set is (i, j)-pre- \mathcal{I} -open.
- (ii) A subset A of X is (i, j)- α - \mathcal{I} -open if and only if it is (i, j)-semi- \mathcal{I} -open.

Proposition 3.11. Let A be a subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$. If A is (i, j)-pre- \mathcal{I} -closed and (i, j)- α - \mathcal{I} -open, then it is τ_i -open.

Proof. Suppose A is (i, j)-pre- \mathcal{I} -closed and (i, j)- α - \mathcal{I} -open. Then by Lemma 2.5 τ_i -Cl(τ_j -Int*(A)) $\subset A$ and $A \subset \tau_i$ -Int(τ_j -Cl*(τ_i -Int(A)). Now τ_i -Cl(τ_i -Int(A)) $\subset \tau_i$ -Cl(τ_i -Int(A)) $\subset A$ and so $A \subset \tau_i$ -Int(τ_i -Cl*($tau_i - Int(A)$) $\subset A \subset \tau_i$ -Int(A). Therefore, A is τ_i -open.

Lemma 3.12. [1] If A is any subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$, then τ_i -Int $(\tau_i$ -Cl*(A)) is (i, j)-R- \mathcal{I} -open.

Proposition 3.13. Let A be a subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$. If A is (i, j)- α - \mathcal{I} -open and (i, j)- β - \mathcal{I} -closed, then it is (i, j)-R- \mathcal{I} -open.

Proof. Let A be (i, j)- α - \mathcal{I} -open and (i, j)- β - \mathcal{I} -closed. We have by Lemma 2.5, $A \subset \tau_j$ -Int $(\tau_i$ -Cl* $(\tau_j$ -Int(A))) and τ_j -Int $(\tau_i$ -Cl* $(\tau_j$ -Int(A))) $\subset \tau_j$ -Int $(\tau_i$ -Cl $(\tau_j$ -Int*(A))) $\subset A$; hence $A = \tau_j$ -Int $(\tau_i$ -Cl* $(\tau_j$ -Int(A))). Thus, by Lemma 3.12, A is (i, j)-R- \mathcal{I} -open.

An ideal bitopological space is said to satisfy the condition (\mathcal{A}) if $U \cap \tau_j$ -Cl* $(A) \subset \tau_j$ -Cl* $(U \cap A)$ for every $U \in \tau_i$.

Theorem 3.14. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space that satisfies the condition (\mathcal{A}) . Then we have the following

- (i) If $V \in (i, j)$ - $\alpha \mathcal{I}O(X)$ and $A \in (i, j)$ - $\alpha \mathcal{I}O(X)$, then $V \cap A \in (i, j)$ - $\alpha \mathcal{I}O(X)$.
- (ii) If $V \in (i, j)$ - $\alpha \mathcal{I}O(X)$ and $A \in (i, j)$ - $\alpha \mathcal{I}O(X)$, then $V \cap A \in (i, j)$ - $\alpha \mathcal{I}O(X)$.
- Proof. (i). Let $V \in (i, j) \alpha \mathcal{I}O(X)$ and $A \in (i, j) \alpha \mathcal{I}O(X)$. Then $V \cap A \subset \tau_j \operatorname{Cl}^*(\tau_i \operatorname{Int}(V)) \cap \tau_i \operatorname{Int}(\tau_j \operatorname{Cl}^*(\tau_i \operatorname{Int}(A))) \subset \tau_j \operatorname{Cl}^*(\tau_i \operatorname{Int}(V)) \cap \tau_i \operatorname{Int}(\tau_j \operatorname{Cl}^*(\tau_i \operatorname{Int}(A))) \subset \tau_j \operatorname{Cl}^*(\tau_i \operatorname{Int}(V)) \cap \tau_j \operatorname{Cl}^*(\tau_i \operatorname{Int}(V)) \cap \tau_i \operatorname{Int}(A)) \subset \tau_j \operatorname{Cl}^*(\tau_i \operatorname{Int}(V)) \cap \tau_i \operatorname{Int}(A)) \subset \tau_j \operatorname{Cl}^*(\tau_i \operatorname{Int}(V))$. This shows that $V \cap A \in (i, j) \alpha \mathcal{I}O(X)$.
- (ii). Let $V \in (i, j)$ -PIO(X) and $A \in (i, j)$ - $\alpha IO(X)$. Then $V \cap A \subset \tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(A)) \cap \tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(\tau_i$ - $\operatorname{Int}(A))) = \tau_i$ - $\operatorname{Int}(\tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(V)) \cap \tau_j$ - $\operatorname{Cl}^*(\tau_i$ - $\operatorname{Int}(A)) \subset \tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(V)) \cap \tau_i$ - $\operatorname{Int}(A)) \subset \tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(\tau_j$ - $\operatorname{Cl}^*(V) \cap \tau_i$ - $\operatorname{Int}(A))) \subset \tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(\tau_j$ - $\operatorname{Cl}^*(V) \cap \tau_i$ - $\operatorname{Int}(A))) \subset \tau_i$ - $\operatorname{Int}(\tau_i$ - $\operatorname{Cl}^*(V) \cap \tau_i$ - $\operatorname{Int}(A)$). \square

Remark 3.15. The intersection of two (i, j)- α - \mathcal{I} -open sets need not be (i, j)- α - \mathcal{I} -open as it can be seen from the following example.

Example 3.16. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$, $\tau_2 = \{\emptyset, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Then the sets $\{a, c\}$ and $\{b, c\}$ are (1, 2)- α - \mathcal{I} -open sets of $(X, \tau_1, \tau_2, \mathcal{I})$ but their intersection $\{c\}$ is not an (1, 2)- α - \mathcal{I} -open set of $(X, \tau_1, \tau_2, \mathcal{I})$.

Theorem 3.17. If $\{A_{\alpha}\}_{{\alpha}\in\Omega}$ be a family of (i,j)- α - \mathcal{I} -open sets in $(X, \tau_1, \tau_2, \mathcal{I})$, then $\bigcup_{{\alpha}\in\Omega}A_{\alpha}$ is (i,j)- α - \mathcal{I} -open in $(X, \tau_1, \tau_2, \mathcal{I})$.

Proof. Since $\{A_{\alpha}: \alpha \in \Omega\} \subset (i,j)\text{-}\alpha\mathcal{I}O(X)$, then $A_{\alpha} \subset \tau_{i}\text{-}\operatorname{Int}(\tau_{j}\text{-}\operatorname{Cl}^{*}(\tau_{i}\text{-}\operatorname{Int}(A_{\alpha})))$ for every $\alpha \in \Omega$. Thus, $\bigcup_{\alpha \in \Omega} A_{\alpha} \subset \bigcup_{\alpha \in \Omega} \tau_{i}\text{-}\operatorname{Int}(\tau_{j}\text{-}\operatorname{Cl}^{*}(\tau_{i}\text{-}\operatorname{Int}(A_{\alpha}))) \subset \tau_{i}\text{-}\operatorname{Int}(\tau_{j}\text{-}\operatorname{Cl}^{*}(\bigcup_{\alpha \in \Omega} \tau_{i}\text{-}\operatorname{Int}(A_{\alpha}))) = \tau_{i}\text{-}\operatorname{Int}(\tau_{j}\text{-}\operatorname{Cl}^{*}(\tau_{i}\text{-}\operatorname{Int}(\bigcup_{\alpha \in \Omega} A_{\alpha})))$. Therefore, we obtain $\bigcup_{\alpha \in \Omega} A_{\alpha} \subset \tau_{i}\text{-}\operatorname{Int}(\tau_{j}\text{-}\operatorname{Cl}^{*}(\tau_{i}\text{-}\operatorname{Int}(\bigcup_{\alpha \in \Omega} A_{\alpha})))$. Hence any union of (i,j)- α - \mathcal{I} -open sets is (i,j)- α - \mathcal{I} -open. \square

If (X, τ, \mathcal{I}) is an ideal topological space and A is a subset of X, we denote by $\tau_{|A}$, the relative topology on A and $\mathcal{I}_{|A} = \{A \cap I \in \mathcal{I}\}$ is obviously an ideal on A.

Theorem 3.18. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space satisfies the condition (\mathcal{A}) . If $A \in (i, j)$ - $\alpha \mathcal{I}O(X)$ and $A \subset B \in (i, j)$ - $\alpha \mathcal{I}O(X)$, Then $A \in (i, j)$ - $\alpha \mathcal{I}_{|B}O(B)$.

Proof. By definition, $A \subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int $(A \cap B))) \cap B = \tau_i$ -Int $_B(\tau_i$ -Int $(\tau_j$ -Cl* $(A \cap B))) \cap B) \subset \tau_i$ -Int $_B(\tau_j$ -Cl* $(A \cap B)) \cap B) = \tau_i$ -Int $_B(\tau_j$ -Cl* $(\tau_i$ -Int $(A) \cap \tau_i$ -Int $(B))) \subset \tau_i$ -Int $_B(\tau_j$ -Cl* $(\tau_i$ -Int $(A) \cap B)) = \tau_i$ -Int $_B(\tau_i$ -Cl* $(\tau_i$ -Int $(A) \cap B)) \subset \tau_i$ -Int $_B(\tau_j$ -Cl* $(\tau_i$ -Int $(A) \cap B)) \subset \tau_i$ -Int $_B(\tau_j$ -Cl* $(\tau_i$ -Int $(A) \cap B))$. This shows that $A \in (i, j)$ - $\alpha \mathcal{I}_{|B}O(B)$.

Definition 3.19. In an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$, $A \subset X$ is said to be (i, j)- α - \mathcal{I} -closed if $X \setminus A$ is (i, j)- α - \mathcal{I} -open in X, i, j = 1, 2 and $i \neq j$.

Theorem 3.20. If A is an (i, j)- α - \mathcal{I} -closed set in an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ if and only if τ_i - $\mathrm{Cl}(\tau_i$ - $\mathrm{Int}^*(\tau_i$ - $\mathrm{Cl}(A))) \subset A$.

Proof. The proof follows from the definitions. \Box

Theorem 3.21. If A is an (i, j)- α - \mathcal{I} -closed set in an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$, then τ_i - $\mathrm{Cl}(\tau_i$ - $\mathrm{Int}(\tau_i$ - $\mathrm{Cl}^*(A))) \subset A$.

Proof. Since $A \in (i, j)$ - $\alpha \mathcal{I}C(X)$, $X \setminus A \in (i, j)$ - $\alpha \mathcal{I}O(X)$. Hence, $X \setminus A \subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int $(X \setminus A)) \subset \tau_i$ -Int $(\tau_j$ -Cl $(\tau_i$ -Int $(X \setminus A)) = X \setminus \tau_i$ -Cl $(\tau_j$ -Int $(\tau_i$ -Cl $(A)) \subset X \setminus (\tau_i$ -Cl $(\tau_j$ -Int $(\tau_i$ -Cl*(A)). Therefore, we obtain τ_i -Cl $(\tau_i$ -Int $(\tau_i$ -Cl* $(A)) \subset A$.

Proposition 3.22. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space. If a subset of X is (i, j)- β - \mathcal{I} -closed and (i, j)- δ - \mathcal{I} -open, then it is (i, j)- α - \mathcal{I} -closed.

Proof. The proof follows from the definitions. \Box

Theorem 3.23. Arbitrary intersection of (i, j)- α - \mathcal{I} -closed sets is always (i, j)- α - \mathcal{I} -closed.

Proof. Follows from Theorems 3.17 and 3.21. \square

Definition 3.24. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space, S a subset of X and x be a point of X. Then

- (i) x is called an (i, j)- α - \mathcal{I} -interior point of S if there exists $V \in (i, j)$ - $\alpha \mathcal{I}O(X, \tau_1, \tau_2)$ such that $x \in V \subset S$.
- ii) the set of all (i, j)- α - \mathcal{I} -interior points of S is called (i, j)- α - \mathcal{I} -interior of S and is denoted by (i, j)- $\alpha \mathcal{I}$ Int(S).

Theorem 3.25. Let A and B be subsets of $(X, \tau_1, \tau_2, \mathcal{I})$. Then the following properties hold:

- (i) (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) = \bigcup \{T : T \subset A \text{ and } A \in (i, j) \alpha \mathcal{I}O(X)\}.$
- (ii) (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A)$ is the largest (i, j)- α - \mathcal{I} -open subset of X contained in A.
- (iii) A is (i, j)- α - \mathcal{I} -open if and only if A = (i, j)- $\alpha \mathcal{I}$ Int(A).

- (iv) (i, j)- $\alpha \mathcal{I} \operatorname{Int}((i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(A)) = (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(A)$.
- (v) If $A \subset B$, then (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) \subset (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(B)$.
- (vi) $(i, j) \alpha \mathcal{I} \operatorname{Int}(A \cap B) = (i, j) \alpha \mathcal{I} \operatorname{Int}(A) \cap (i, j) \alpha \mathcal{I} \operatorname{Int}(B)$.
- (vii) (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A \cup B) \subset (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(A) \cup (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(B)$.
- Proof. (i). Let $x \in \bigcup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\alpha\mathcal{I}O(X)\}$. Then, there exists $T \in (i,j)\text{-}\alpha\mathcal{I}O(X,x)$ such that $x \in T \subset A$ and hence $x \in (i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(A)$. This shows that $\bigcup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\alpha\mathcal{I}O(X)\}$ $\subset (i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(A)$. For the reverse inclusion, let $x \in (i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(A)$. Then there exists $T \in (i,j)\text{-}\alpha\mathcal{I}O(X,x)$ such that $x \in T \subset A$. we obtain $x \in \bigcup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\alpha\mathcal{I}O(X)\}$. This shows that $(i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(A) \subset \bigcup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\alpha\mathcal{I}O(X)\}$. Therefore, we obtain $(i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(A) = \bigcup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\alpha\mathcal{I}O(X)\}$. The proof of (ii) (v) are obvious.
- (vi). By (v), we have (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) \subset (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(A \cup B)$ and (i, j)- $\alpha \mathcal{I} \operatorname{Int}(B) \subset (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(A \cup B)$. Then we obtain (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) \cup (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(B) \subset (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(A \cup B)$ Since (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) \subset A$ and (i, j)- $\alpha \mathcal{I} \operatorname{Int}(B) \subset B$, we obtain (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A \cup B) \subset (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(A) \cup (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(B)$. It follows that (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A \cap B) = (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(A) \cap (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(B)$.
- (vii). Since $A \cap B \subset A$ and $A \cap B \subset B$, by (v), we have $(i, j) \alpha \mathcal{I} \operatorname{Int}(A \cap B) \subset (i, j) \alpha \mathcal{I} \operatorname{Int}(A)$ and $(i, j) \alpha \mathcal{I} \operatorname{Int}(A \cap B) \subset (i, j) \alpha \mathcal{I} \operatorname{Int}(B)$. Therefore, $(i, j) - \alpha \mathcal{I} \operatorname{Int}(A) \cup (i, j) - \alpha \mathcal{I} \operatorname{Int}(B) \subset (i, j) - \alpha \mathcal{I} \operatorname{Int}(A \cap B)$. \square
- **Theorem 3.26.** If $(X, \tau_1, \tau_2, \mathcal{I})$ is an ideal bitopological space satisfying the condition (\mathcal{A}) , then (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) = A \cap \tau_i \operatorname{-Int}(\tau_j \operatorname{-Cl}^*(\tau_i \operatorname{-Int}(A)))$ holds for every subset A of X.
- Proof. Since $A \cap \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int $(A))) \subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int $(A))) = \tau_i$ -Int $(\tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int $(A))) \cap (\tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int $(A))) \subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int $(A)) \cap (\tau_i$ -Int $(A)) \cap (\tau_i$ -Int(A)-Cl* $(\tau_i$ -Int(A)-Cl* $(\tau_i$ -Int(A)-Cl* $(\tau_i$ -Int(A)-Cl* $(\tau_i$ -Int(A)-Cl* $(\tau_i$ -Int(A)-Cl* $(\tau_i$ -Int(A))) is an (i, j)- α - \mathcal{I} -open set contained in A and so $A \cap \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int(A))) $\subset (i, j)$ - $\alpha \mathcal{I}$ Int(A). Since (i, j)- $\alpha \mathcal{I}$ Int(A) is (i, j)- α - \mathcal{I} -open, (i, j)- $\alpha \mathcal{I}$ Int $(A) \subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int(A))) $\subset \tau_i$ -Int $(\tau_j$ -Cl* $(\tau_i$ -Int(A))) and so (i, j)- $\alpha \mathcal{I}$ Int $(A) \subset A \cap \tau_i$ -Int $(\tau_j$ -Cl*(Int(A))). Hence (i, j)- $\alpha \mathcal{I}$ Int $(A) = A \cap$ Int $(\tau_j$ -Cl* $(\tau_i$ -Int(A))).
- **Definition 3.27.** The union of all (i, j)-pre- \mathcal{I} -open sets of $(X, \tau_1, \tau_2, \mathcal{I})$ containing A is called the (i, j)-pre- \mathcal{I} -interior of A and is denote by (i, j)-p \mathcal{I} Int(A).
- **Lemma 3.28.** If $(X, \tau_1, \tau_2, \mathcal{I})$ is an ideal bitopological space satisfies the condition (\mathcal{A}) , then (i, j)- $p\mathcal{I}\operatorname{Int}(A) = A \cap \tau_i\operatorname{-Int}(\tau_j\operatorname{-Cl}^*(A))$ holds for every subset A of X.
- **Theorem 3.29.** If $(X, \tau_1, \tau_2, \mathcal{I})$ is an ideal bitopological space satisfies the condition (\mathcal{A}) , then (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) = (i, j)$ - $p \mathcal{I} \operatorname{Int}(A)$ holds for every (i, j)- $\delta \mathcal{I}$ -open subset A of X.

Proof. Since every (i, j)- α - \mathcal{I} -open set is (i, j)-pre- \mathcal{I} -open, (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) \subset (i, j)$ - $p\mathcal{I} \operatorname{Int}(A)$. By Theorem 3.26, $\alpha \mathcal{I} \operatorname{Int}(A) = A \cap \tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(\tau_i$ - $\operatorname{Int}(A))$). Since A is (i, j)- δ - \mathcal{I} -open, (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) \supset A \cap \tau_i$ - $\operatorname{Int}(\tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(A)) = A \cap \tau_i$ - $\operatorname{Int}(\tau_j$ - $\operatorname{Cl}^*(A)) = (i, j)$ - $p\mathcal{I} \operatorname{Int}(A)$ by Lemma 3.28 and so (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) \supset (i, j)$ - $p\mathcal{I} \operatorname{Int}(A)$. Therefore, (i, j)- $\alpha \mathcal{I} \operatorname{Int}(A) = (i, j)$ - $p\mathcal{I} \operatorname{Int}(A)$. \square

Definition 3.30. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space, S a subset of X and x be a point of X. Then

- (i) x is called an (i, j)- α - \mathcal{I} -cluster point of S if $V \cap S \neq \emptyset$ for every $V \in (i, j)$ - $\alpha \mathcal{I}O(X, x)$.
- (ii) the set of all (i, j)- α - \mathcal{I} -cluster points of S is called (i, j)- α - \mathcal{I} closure of S and is denoted by (i, j)- $\alpha \mathcal{I}$ Cl(S).

Theorem 3.31. Let A and B be subsets of $(X, \tau_1, \tau_2, \mathcal{I})$. Then the following properties hold:

- (i) (i, j)- $\alpha \mathcal{I} \operatorname{Cl}(A) = \bigcap \{ F : A \subset F \text{ and } F \in (i, j) \alpha \mathcal{I} C(X) \}.$
- (ii) (i, j)- $\alpha \mathcal{I} \operatorname{Cl}(A)$ is the smallest (i, j)- α - \mathcal{I} -closed subset of X containing A.
- (iii) A is (i, j)- α - \mathcal{I} -closed if and only if A = (i, j)- $\alpha \mathcal{I} \operatorname{Cl}(A)$.
- (iv) (i, j)- $\alpha \mathcal{I} \operatorname{Cl}((i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A) = (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A)$.
- (v) If $A \subset B$, then $(i, j) \alpha \mathcal{I} \operatorname{Cl}(A) \subset (i, j) \alpha \mathcal{I} \operatorname{Cl}(B)$.
- (vi) $(i, j) \alpha \mathcal{I} \operatorname{Cl}(A \cup B) = (i, j) \alpha \mathcal{I} \operatorname{Cl}(A) \cup (i, j) \alpha \mathcal{I} \operatorname{Cl}(B)$.
- (vii) (i,j)- $\alpha \mathcal{I} \operatorname{Cl}(A \cap B) \subset (i,j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A) \cap (i,j)$ - $\alpha \mathcal{I} \operatorname{Cl}(B)$.

Proof. (i). Suppose that $x \notin (i,j)$ - $\alpha \mathcal{I}\operatorname{Cl}(A)$. Then there exists $F \in (i,j)$ - $\alpha \mathcal{I}O(X)$ } such that $V \cap S \neq \emptyset$. Since $X \setminus V$ is (i,j)- α - \mathcal{I} -closed set containing A and $x \notin X \setminus V$, we obtain $x \notin \cap \{F : A \subset F \text{ and } F \in (i,j)$ - $\alpha \mathcal{I}C(X)\}$. Then there exists $F \in (i,j)$ - $\alpha \mathcal{I}C(X)$ such that $A \subset F$ and $x \notin F$. Since $X \setminus V$ is (i,j)- α - \mathcal{I} -closed set containing x, we obtain $(X \setminus F) \cap A = \emptyset$. This shows that $x \notin (i,j)$ - $\alpha \mathcal{I}\operatorname{Cl}(A)$. Therefore, we obtain (i,j)- $\alpha \mathcal{I}\operatorname{Cl}(A) = \cap \{F : A \subset F \text{ and } F \in (i,j)$ - $\alpha \mathcal{I}\operatorname{Cl}(X)\}$. The other proofs are obvious.

Theorem 3.32. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space and $A \subset X$. A point $x \in (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in (i, j)$ - $\alpha \mathcal{I} O(X, x)$.

Proof. Suppose that $x \in (i,j)$ - $\alpha \mathcal{I}\operatorname{Cl}(A)$. We shall show that $U \cap A \neq \emptyset$ for every $U \in (i,j)$ - $\alpha \mathcal{I}O(X,x)$. Suppose that there exists $U \in (i,j)$ - $\alpha \mathcal{I}O(X,x)$ such that $U \cap A = \emptyset$. Then $A \subset X \setminus U$ and $X \setminus U$ is (i,j)- $\alpha \mathcal{I}$ -closed. since $A \subset X \setminus U$, (i,j)- $\alpha \mathcal{I}\operatorname{Cl}(A) \subset (i,j)$ - $\alpha \mathcal{I}\operatorname{Cl}(X \setminus U)$. Since $x \in (i,j)$ - $\alpha \mathcal{I}\operatorname{Cl}(A)$, we have $x \in (i,j)$ - $\alpha \mathcal{I}\operatorname{Cl}(X \setminus U)$. Since $X \setminus U$ is (i,j)- α - \mathcal{I} -closed, we have $x \in X \setminus U$; hence $x \notin U$, which is a contradiction that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in (i,j)$ - $\alpha \mathcal{I}O(X,x)$. We shall show that

 $x \in (i, j) - \alpha \mathcal{I} \operatorname{Cl}(A)$. Suppose that $x \notin (i, j) - \alpha \mathcal{I} \operatorname{Cl}(A)$. Then there exists $U \in (i, j) - \alpha \mathcal{I} O(X, x)$ such that $U \cap A = \emptyset$. This is a contradicition to $U \cap A \neq \emptyset$; hence $x \in (i, j) - \alpha \mathcal{I} \operatorname{Cl}(A)$.

Theorem 3.33. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space and $A \subset X$. Then the following properties hold:

- (i) $(i, j) \alpha \mathcal{I} \operatorname{Int}(X \backslash A) = X \backslash (i, j) \alpha \mathcal{I} \operatorname{Cl}(A);$
- (i) $(i, j) \alpha \mathcal{I} \operatorname{Cl}(X \backslash A) = X \backslash (i, j) \alpha \mathcal{I} \operatorname{Int}(A)$.

Proof. (i). Let $x \in (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A)$. Since $x \notin (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A)$, there exists $V \in (i, j)$ - $\alpha \mathcal{I} \operatorname{O}(X, x)$ such that $V \cap A \neq \emptyset$; hence we obtain $x \in (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(X \setminus A)$. This shows that $X \setminus (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A) \subset (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(X \setminus A)$. Let $x \in (i, j)$ - $\alpha \mathcal{I} \operatorname{Int}(X \setminus A)$. Since (i, j)- $\alpha \mathcal{I} \operatorname{Int}(X \setminus A) \cap A = \emptyset$, we obtain $x \notin (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A)$; hence $x \in X \setminus (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A)$. Therefore, we obtain (i, j)- $\alpha \mathcal{I} \operatorname{Int}(X \setminus A) = X \setminus (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(A)$. (ii). Follows from (i).

Theorem 3.34. If $(X, \tau_1, \tau_2, \mathcal{I})$ is an ideal bitopological space satisfies the condition (\mathcal{A}) , then (i, j)- $\alpha \mathcal{I} \operatorname{Cl}(A) = A \cup \tau_i \operatorname{-Cl}(\tau_j \operatorname{-Int}^*(\tau_i \operatorname{-Cl}(A)))$ holds for every subset A of X.

Proof. The proof follows from the definitions.

Definition 3.35. A subset B_x of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be an (i, j)- α - \mathcal{I} -neighbourhood of a point $x \in X$ if there exists an (i, j)- α - \mathcal{I} -open set U such that $x \in U \subset B_x$.

Theorem 3.36. A subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is (i, j)- α - \mathcal{I} -open if and only if it is an (i, j)- α - \mathcal{I} -neighbourhood of each of its points.

Proof. Let G be an (i, j)- α - \mathcal{I} -open set of X. Then by definition, it is clear that G is an (i, j)- α - \mathcal{I} -neighbourhood of each of its points, since for every $x \in G$, $x \in G \subset G$ and G is (i, j)- α - \mathcal{I} -open. Conversely, suppose G is an (i, j)- α - \mathcal{I} -neighbourhood of each of its points. Then for each $x \in G$, there exists $S_x \in (i, j)$ - $\alpha\mathcal{I}O(X)$ such that $S_x \subset G$. Then $G = \bigcup \{S_x : x \in G\}$. Since each S_x is (i, j)- α - \mathcal{I} -open, G is (i, j)- α - \mathcal{I} -open in $(X, \tau_1, \tau_2, \mathcal{I})$.

Proposition 3.37. The product of two (i, j)- α - \mathcal{I} -open sets is (i, j)- α - \mathcal{I} -open.

Proof. The proof follows from Lemma 3.3 of [12]. \Box

4. Pairwise α - \mathcal{I} -continuous functions

Definition 4.1. A function $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- α - \mathcal{I} -continuous if the inverse image of every σ_i -open set of Y is (i, j)- α - \mathcal{I} -open in X, where $i \neq j$, i, j=1, 2.

Proposition 4.2. (i) Every (i, j)- α - \mathcal{I} -continuous function is (i, j)semi- \mathcal{I} -continuous but not conversely.

- (ii) Every (i, j)- α - \mathcal{I} -continuous function is (i, j)- α -continuous but not conversely.
- (iii) Every (i, j)- α - \mathcal{I} -continuous function is (i, j)-pre- \mathcal{I} -continuous but not conversely.
- (iv) Every (i, j)- α - \mathcal{I} -continuous function is (i, j)-b- \mathcal{I} -continuous but not conversely.
- (v) Every (i, j)- α - \mathcal{I} -continuous function is (i, j)- β - \mathcal{I} -continuous but not conversely.

Proof. The proof follows from Proposition 3.3 and Example 3.4. \Box

Theorem 4.3. A function $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is (i, j)- α - \mathcal{I} -continuous if and only if it is (i, j)-semi- \mathcal{I} -continuous and (i, j)-pre- \mathcal{I} -continuous.

Proof. This is an immediate consequence of Lemma 3.8. \square

Theorem 4.4. For a function $f:(X,\tau_1,\tau_2,\mathcal{I})\to (Y,\sigma_1,\sigma_2)$, the following statements are equivalent:

- (i) f is pairwise α - \mathcal{I} -continuous;
- (ii) For each point x in X and each σ_i -open set F in Y such that $f(x) \in F$, there is a (i, j)- α - \mathcal{I} -open set A in X such that $x \in A$, $f(A) \subset F$;
- (iii) The inverse image of each σ_i -closed set in Y is (i, j)- α - \mathcal{I} -closed in X;
- (iv) For each subset A of X, $f((i, j) \alpha \mathcal{I} \operatorname{Cl}(A)) \subset \sigma_i \operatorname{Cl}(f(A))$;
- (v) For each subset B of Y, (i, j)- $\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i \operatorname{Cl}(B))$;
- (vi) For each subset C of Y, $f^{-1}(\sigma_i\text{-Int}(C)) \subset (i,j)$ - $\alpha \mathcal{I} \text{Int}(f^{-1}(C))$.
- (vii) τ_i -Cl $(\tau_j$ -Int* $(\tau_i$ -Cl $(f^{-1}(B)))) \subset f^{-1}(\tau_i$ -Cl(B)) for each subset B of Y.
- (viii) $f(\tau_i\text{-Cl}(\tau_j\text{-Int}^*(\tau_i\text{-Cl}(A)))) \subset \tau_i\text{-Cl}(f(A))$ for each subset A of

Proof. (i) \Rightarrow (ii): Let $x \in X$ and F be a σ_j -open set of Y containing f(x). By (i), $f^{-1}(F)$ is (i, j)- α - \mathcal{I} -open in X. Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$.

- $(ii) \Rightarrow (i)$: Let F be σ_j -open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an (i,j)- α - \mathcal{I} -open set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$. Then $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is (i,j)- α - \mathcal{I} -open in X.
- (i) \Leftrightarrow (iii): This follows due to the fact that for any subset B of Y, $f^{-1}(Y \backslash B) = X \backslash f^{-1}(B)$.
- $(iii) \Rightarrow (iv)$: Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}(\sigma_j\text{-Cl}(f(A)))$. Now, (i,j)- $\alpha\mathcal{I}$ Cl(f(A)) is σ_j -closed in Y and hence $f^{-1}(\sigma_j\text{-Cl}(A)) \subset f^{-1}(\sigma_j\text{-Cl}(f(A)))$, for (i,j)- $\alpha\mathcal{I}$ Cl(A) is the smallest (i,j)- $\alpha\mathcal{I}$ -closed set containing A. Then f((i,j)- $\alpha\mathcal{I}$ Cl(A)) $\subset \sigma_j$ -Cl(f(A)).

```
(iv) \Rightarrow (iii): Let F be any (i,j)-\alpha-\mathcal{I}-closed subset of Y. Then f((i,j)-\alpha \mathcal{I}\operatorname{Cl}(f^{-1}(F))) \subset (i,j)-\sigma_i-\operatorname{Cl}(f(f^{-1}(F))) = (i,j)-\sigma_i-\operatorname{Cl}(F) = F. Therefore, (i,j)-\alpha \mathcal{I}\operatorname{Cl}(f^{-1}(F)) \subset f^{-1}(F). Consequently, f^{-1}(F) is (i,j)-\alpha-\mathcal{I}-closed in X.
```

- $(iv) \Rightarrow (v)$: Let B be any subset of Y. Now, $f((i, j) \alpha \mathcal{I} \operatorname{Cl}(f^{-1}(B))) \subset (i, j) \sigma_i \operatorname{Cl}(f(f^{-1}(B))) \subset \sigma_i \operatorname{Cl}(B)$. Consequently, $(i, j) \alpha \mathcal{I} \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i \operatorname{Cl}(B))$.
- $(v) \Rightarrow (iv)$: Let B = f(A) where A is a subset of X. Then, (i, j)- $\alpha \mathcal{I} \operatorname{Cl}(A) \subset (i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i \operatorname{-Cl}(B)) = f^{-1}(\sigma_i \operatorname{-Cl}(f(A)))$. This shows that $f((i, j) \operatorname{-} \alpha \mathcal{I} \operatorname{Cl}(A)) \subset \sigma_i \operatorname{-Cl}(f(A))$.
- $(i) \Rightarrow (vi)$: Let B be a σ_j -open set in Y. Clearly, $f^{-1}(\sigma_i\text{-Int}(B))$ is (i, j)- α - \mathcal{I} -open and we have $f^{-1}(\sigma_i\text{-Int}(B)) \subset (i, j)$ - $\alpha \mathcal{I}$ Int $(f^{-1}\sigma_i\text{-Int}(B)) \subset (i, j)$ - $\alpha \mathcal{I}$ Int $(f^{-1}B)$.
- $(vi) \Rightarrow (i)$: Let B be a σ_j -open set in Y. Then σ_i -Int(B) = B and $f^{-1}(B) \setminus f^{-1}(\sigma_i$ -Int $(B)) \subset (i,j)$ - $\alpha \mathcal{I}$ Int $(f^{-1}(B))$. Hence we have $f^{-1}(B) = (i,j)$ - $\alpha \mathcal{I}$ Int $(f^{-1}(B))$. This shows that $f^{-1}(B)$ is (i,j)- α - \mathcal{I} -open in X.
- $(iii) \Rightarrow (vii)$: Let B be any subset os Y. Since τ_i -Cl(B) is τ_i -closed in Y, by (iii), $f^{-1}(\tau_i$ -Cl(B)) is α - \mathcal{I} -closed and $X \setminus f^{-1}(\tau_i$ -Cl(B)) is α - \mathcal{I} -open. Then $X \setminus f^{-1}(\tau_i$ -Cl(B)) $\subset \tau_i$ -Int(τ_j -Cl*(τ_i -Int($f^{-1}(\tau_i$ -Cl(B))))) $= X \setminus \tau_i$ -Cl(τ_j -Int*(τ_i -Cl($f^{-1}(\tau_i$ -Cl(B)))). Hence we obtain τ_i -Cl(τ_j -Int*(τ_i -Cl($f^{-1}(B$)))) $\subset f^{-1}(\tau_i$ -Cl(B)).
- $(vii) \Rightarrow (viii)$: Let A be any ubset of X. By(iv), we have $Cl(\tau_j-Int^*(\tau_i-Cl(A))) \subset \tau_i-Cl(\tau_j-Int^*(\tau_i-Cl(f(A))))) \subset f^{-1}(\tau_i-Cl(f(A)))$ and hence $f(\tau_i-Cl(\tau_j-Int^*(\tau_i-Cl(A)))) \subset \tau_i-Cl(f(A))$.
- $(viii) \Rightarrow (i)$: Let V be any open set of Y. Then by (v), $f(\tau_i\text{-Cl}(\tau_j\text{-Int}^*(\tau_i\text{-Cl}(f^{-1}(Y\backslash V)))) \subset \tau_i\text{-Cl}(f(f^{-1}(Y\backslash V))) \subset \tau_i\text{-Cl}(Y\backslash V) = Y\backslash V$. Therefore, we have $\tau_i\text{-Cl}(\tau_j\text{-Int}^*(\tau_i\text{-Cl}(f^{-1}(Y\backslash V)))) \subset f^{-1}(Y\backslash V) \subset X\backslash f^{-1}(V)$. Consequently, we obtain $f^{-1}(V) \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(f^{-1}(V))))$. This shows that $f^{-1}(V)$ is α - \mathcal{I} -open. Thus, f is α - \mathcal{I} -continuous. \square

Corollary 4.5. Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be an (i, j)- α - \mathcal{I} -continuous function, then

- (i) $f(\tau_j \text{Cl}^*(U)) \subset \tau_j \text{Cl}(f(U))$ for every (i, j)-pre- \mathcal{I} -open set U of X,
- (ii) τ_j -Cl* $(f^{-1}(V)) \subset f^{-1}(\tau_j$ -Cl(V)) for every (i,j)-pre- \mathcal{I} -open set V of Y.

Proof. (1). Let U be any (i, j)-pre- \mathcal{I} -open set of X, then $U \subset \tau_i$ -Int $(\tau_j$ -Cl*(U)). Therefore, by Theorem 4.4, we have $f(\tau_j$ -Cl* $(U)) \subset f(\tau_j$ -Cl(U)) $\subset f(\tau_j$ -Cl (U_j) -Int $(\tau_j$ -Cl*(U))) $\subset f(\tau_j$ -Cl (U_j) -Int* $(\tau_j$ -Cl (U_j))) $\subset \tau_j$ -Cl (U_j) -C

(2). Let V be any (i, j) -pre- \mathcal{I} -open set of Y. By Theorem 4.4, τ_j -
$\operatorname{Cl}^*(f^{-1}(V)) \subset \tau_j \operatorname{-Cl}(f^{-1}(V)) \subset \tau_j \operatorname{-Cl}(f^-(\tau_j \operatorname{-Int}(\tau_j \operatorname{-Cl}^*(V)))) \subset \tau_j \operatorname{-Cl}(f^{-1}(V)) \subset \tau_j -$
$\operatorname{Cl}(\tau_{j}\operatorname{-Int}(\tau_{j}\operatorname{-Cl}^{*}(\tau_{j}\operatorname{-Int}(f^{-1}(\tau_{j}\operatorname{-Int}(\tau_{j}\operatorname{-Cl}^{(}(V)))))))) \subset \tau_{j}\operatorname{-Cl}(\tau_{j}\operatorname{-Int}^{*}(\tau_{j}\operatorname{-Cl}(f^{-1}(\tau_{j}\operatorname{-Int}(\tau_{j}\operatorname{-Cl}(V)))))))))) \subset \tau_{j}\operatorname{-Cl}(\tau_{j}\operatorname{-Int}(\tau_{j}\operatorname{-Cl}(f^{-1}(\tau_{j}\operatorname{-Cl}(V))))))))))))))))))))))))))))))))))))$
$\operatorname{Int}(\tau_{j}\operatorname{-Cl}^{(}(V)))))) \subset f^{-1}(\tau_{j}\operatorname{-Int}(\tau_{j}\operatorname{-Cl}^{(}V)))) \subset f^{-1}(\tau_{j}\operatorname{-Cl}(V)).$

Theorem 4.6. Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ be a pairwise α - \mathcal{I} -continuous function. Then for each subset V of Y, $f^{-1}(\sigma_i\text{-Int}(V)) \subset \tau_j\text{-Cl}^*(f^{-1}(V))$.

Proof. Let V be any subset of Y. Then σ_i -Int(V) is σ_i -open in Y and so $f^{-1}(\sigma_i$ -Int(V)) is (i,j)- α - \mathcal{I} -open in X. Hence $f^{-1}(\sigma_i$ -Int(V)) $\subset \tau_i$ -Int $(\tau_i$ -Cl* $(\tau_i$ -Int $(f^{-1}(\sigma_i$ -Int(V)))) $\subset \tau_i$ -Cl* $(f^{-1}(V))$.

Theorem 4.7. Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ be a bijective. Then f is pairwise α - \mathcal{I} -continuous if and only if σ_i -Int $(f(U)) \subset f((i, j) - \alpha \mathcal{I} \operatorname{Int}(U))$ for each subset U of X.

Proof. Let U be any subset of X. Then by Theorem 4.4, $f^{-1}(\sigma_{i}-\operatorname{Int}(f(U))) \subset (i,j)-\alpha\mathcal{I}\operatorname{Int}(f^{-1}(f(U)))$. Since f is bijection, $\sigma_{i}-\operatorname{Int}(f(U)) = f(f^{-1}(\sigma_{i}-\operatorname{Int}(f(U))) \subset f((i,j)-\alpha\mathcal{I}\operatorname{Int}(U))$. Conversely, let V be any subset of Y. Then $\sigma_{i}-\operatorname{Int}(f(f^{-1}(V))) \subset f((i,j)-\alpha\mathcal{I}\operatorname{Int}(f^{-1}(V)))$. Since f is bijection, $\sigma_{i}-\operatorname{Int}(V) = \sigma_{i}-\operatorname{Int}(f(f^{-1}(V))) \subset f((i,j)-\alpha\mathcal{I}\operatorname{Int}(f^{-1}(V)))$; hence $f^{-1}(\sigma_{i}-\operatorname{Int}(V)) \subset (i,j)-\alpha\mathcal{I}\operatorname{Int}(f^{-1}(V))$. Therefore, by Theorem 4.4, f is pairwise α - \mathcal{I} -continuous. \square

Theorem 4.8. Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ be a function. If $g:(X, \tau_1, \tau_2, \mathcal{I}) \to (X \times Y, \sigma_1 \times \sigma_2)$ defined by g(x) = (x, f(x)) is a pairwise α - \mathcal{I} -continuous function, then f is pairwise α - \mathcal{I} -continuous.

Proof. Let V be a σ_i -open set of Y. Then $f^{-1}(V) = X \cap f^{-1}(V) = g^{-1}(X \times V)$. Since g is a pairwise α - \mathcal{I} -continuous function and $X \times V$ is a $\tau_i \times \sigma_i$ -open set of $X \times Y$, $f^{-1}(V)$ is a (i, j)- α - \mathcal{I} -open set of X. Hence f is pairwise α - \mathcal{I} -continuous.

Definition 4.9. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2,\mathcal{I})$ is said to be:

- (i) pairwise α - \mathcal{I} -open (resp. pairwise semi- \mathcal{I} -open [3], pairwise pre- \mathcal{I} -open [6]) if f(U) is a (i,j)- α - \mathcal{I} -open (resp. (i,j)-semi- \mathcal{I} -open, (i,j)-pre- \mathcal{I} -open) set of Y for every τ_i -open set U of X.
- (ii) pairwise α - \mathcal{I} -closed (resp. pairwise semi- \mathcal{I} -closed [3], pairwise pre- \mathcal{I} -closed [6]) if f(U) is a (i, j)- α - \mathcal{I} -closed set of Y for every τ_i -closed set U of X.

Theorem 4.10. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2,\mathcal{I})$ is (i,j)- α - \mathcal{I} -open if and only if it is (i,j)-semi- \mathcal{I} -open and (i,j)-pre- \mathcal{I} -open.

Proof. This is an immediate consequence of Lemma 3.8.

Theorem 4.11. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2,\mathcal{I})$, the following statements are equivalent:

- (i) f is pairwise α - \mathcal{I} -open;
- (ii) $f(\tau_i\text{-Int}(U)) \subset (i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(f(U))$ for each subset U of X;
- (iii) τ_i -Int $(f^{-1}(V)) \subset f^{-1}((i,j)-\alpha \mathcal{I} \operatorname{Int}(V))$ for each subset V of Y.
- *Proof.* $(i) \Rightarrow (ii)$: Let U be any subset of X. Then τ_i -Int(U) is a τ_i -open set of X. Then $f(\tau_i$ -Int(U)) is a (i,j)- α - \mathcal{I} -open set of Y. Since $f(\tau_i$ -Int $(U)) \subset f(U)$, $f(\tau_i$ -Int(U)) = (i,j)- $\alpha \mathcal{I}$ Int $(f(\tau_i$ -Int $(U)) \subset (i,j)$ - $\alpha \mathcal{I}$ Int(f(U)).
- $(ii) \Rightarrow (iii)$: Let V be any subset of Y. Then $f^{-1}(V)$ is a subset of X. Hence $f(\tau_i\text{-Int}(f^{-1}(V))) \subset (i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(f(f^{-1}(V))) \subset (i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(V)$. Then $\tau_i\text{-Int}(f^{-1}(V)) \subset f^{-1}(f(\tau_i\text{-Int}(f^{-1}(V)))) \subset f^{-1}((i,j)\text{-}\alpha\mathcal{I}\operatorname{Int}(V))$.
- $(iii) \Rightarrow (i)$: Let U be any τ_i -open set of X. Then τ_i -Int(U) = U and f(U) is a subset of Y. Now, $V = \tau_i$ -Int $(V) \subset \tau_i$ -Int $(f^{-1}(f(V))) \subset f^{-1}((i,j)-\alpha\mathcal{I}\operatorname{Int}(f(V)))$. Then $f(V) \subset f(f^{-1}((i,j)-\alpha\mathcal{I}\operatorname{Int}(f(V)))) \subset (i,j)-\alpha\mathcal{I}\operatorname{Int}(f(V))$ and $(i,j)-\alpha\mathcal{I}\operatorname{Int}(f(V)) \subset f(V)$. Hence f(V) is a $(i,j)-\alpha\mathcal{I}\operatorname{Int}(f(V))$ open set of Y; hence f is pairwise $\alpha\mathcal{I}$ -open.
- **Theorem 4.12.** Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a function. Then f is a pairwise α - \mathcal{I} -closed function if and only if for each subset V of X, (i, j)- $\alpha \mathcal{I} \operatorname{Cl}(f(V)) \subset f(\tau_i \operatorname{-Cl}(V))$.
- Proof. Let f be a pairwise α - \mathcal{I} -closed function and V any subset of X. Then $f(V) \subset f(\tau_i\text{-Cl}(V))$ and $f(\tau_i\text{-Cl}(V))$ is a (i,j)- α - \mathcal{I} -closed set of Y. We have (i,j)- $\alpha\mathcal{I}$ Cl $(f(V)) \subset (i,j)$ - $\alpha\mathcal{I}$ Cl $(f(\tau_i\text{-Cl}(V))) = f(\tau_i\text{-Cl}(V))$. Conversely, let V be a τ_i -open set of X. Then $f(V) \subset (i,j)$ - $\alpha\mathcal{I}$ Cl $(f(V)) \subset f(\tau_i\text{-Cl}(V)) = f(V)$; hence f(V) is a (i,j)- α - \mathcal{I} -closed subset of Y. Therefore, f is a pairwise α - \mathcal{I} -closed function. \square
- **Theorem 4.13.** Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a function. Then f is a pairwise α - \mathcal{I} -closed function if and only if for each subset V of Y, $f^{-1}((i, j) \alpha \mathcal{I} \operatorname{Cl}(V)) \subset \tau_i \operatorname{Cl}(f^{-1}(V))$.
- Proof. Let V be any subset of Y. Then by Theorem 4.12, (i, j)- $\alpha \mathcal{I}\operatorname{Cl}(V) \subset f(\tau_i\operatorname{-Cl}(f^{-1}(V)))$. Since f is bijection, $f^{-1}((i, j)\operatorname{-}\alpha \mathcal{I}\operatorname{Cl}(V)) = f^{-1}((i, j)\operatorname{-}\alpha \mathcal{I}\operatorname{Cl}(f(f^{-1}(V)))) \subset f^{-1}(f(\tau_i\operatorname{-Cl}(f^{-1}(V)))) = \tau_i\operatorname{-Cl}(f^{-1}(V))$. Conversely, let U be any subset of X. Since f is bijection, $(i, j)\operatorname{-}\alpha \mathcal{I}\operatorname{Cl}(f(U)) = f(f^{-1}((i, j)\operatorname{-}\alpha \mathcal{I}\operatorname{Cl}(f(U))) \subset f(\tau_i\operatorname{-Cl}(f^{-1}(f(U)))) = f(\tau_i\operatorname{-Cl}(U))$. Therefore, by Theorem 4.12, f is a pairwise $\alpha\operatorname{-}\mathcal{I}\operatorname{-closed}$ function.
- **Theorem 4.14.** Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a pairwise α - \mathcal{I} -open function. If V is a subset of Y and U is a τ_i -closed subset of X containing $f^{-1}(V)$, then there exists a (i, j)- α - \mathcal{I} -closed set F of Y containing V such that $f^{-1}(F) \subset U$.

Proof. Let V be any subset of Y and U a τ_i -closed subset of X containing $f^{-1}(V)$, and let $F = Y \setminus (f(X \setminus V))$. Then $f(X \setminus V) \subset f(f^{-1}(X \setminus V)) \subset X \setminus V$ and $X \setminus U$ is a τ_i -open set of X. Since f is pairwise α - \mathcal{I} -open, $f(X \setminus U)$ is a (i, j)- α - \mathcal{I} -open set of Y. Hence F is an (i, j)- α - \mathcal{I} -closed set of Y and $f^{-1}(F) = f^{-1}(Y \setminus (f(X \setminus U)) \subset U$.

Theorem 4.15. Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2,\mathcal{I})$ be a pairwise α - \mathcal{I} -closed function. If V is a subset of Y and U is a open subset of X containing $f^{-1}(V)$, then there exists (i,j)- α - \mathcal{I} -open set F of Y containing V such that $f^{-1}(F)\subset U$.

Proof. The proof is similar to the Theorem 4.14.

Theorem 4.16. Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a pairwise α - \mathcal{I} -open function. Then for each subset V of Y, $f^{-1}(\tau_i\text{-Cl}(\tau_j\text{-Int}^*(\tau_i\text{-Cl}(V))) \subset \tau_i\text{-Cl}(f^{-1}(V))$.

Proof. Let V be any subset of Y. Then τ_i -Cl $(f^{-1}(V))$ is a τ_i -closed set of X. Then by Theorem 4.14, there exists an (i, j)- α - \mathcal{I} -closed set F of Y containing V such that $f^{-1}(F) \subset \tau_i$ -Cl $(f^{-1}(V))$. Since $Y \setminus F$ is (i, j)- α - \mathcal{I} -open, $f^{-1}(Y \setminus F) \subset f^{-1}(\tau_j$ -Int $(\tau_i$ -Cl $(\tau_j$ -Int $(Y \setminus F))$) and $X \setminus f^{-1}(F) \subset f^{-1}(Y \setminus (\tau_i$ -Cl $(\tau_j$ -Int $(\tau_i$ -Cl(F)))). Thus we obtain that $f^{-1}(\tau_i$ -Cl $(\tau_j$ -Int $(\tau_i$ -Cl(V)))) $\subset \tau_i$ -Cl $(\tau_j$ -Int $(\tau_i$ -Cl(F))) $\subset f^{-1}(F) \subset \tau_i$ -Cl $(f^{-1}(V))$. Therefore, we have $f^{-1}(\tau_i$ -Cl $(\tau_j$ -Int $(\tau_i$ -Cl(V))) $\subset \tau_i$ -Cl $(f^{-1}(V))$.

Definition 4.17. A function $f:(X,\tau_1,\tau_2,\mathcal{I})\to (Y,\sigma_1,\sigma_2,\mathcal{J})$ is said to be:

- (i) pairwise α - $(\mathcal{I}, \mathcal{J})$ -open if f(U) is a (i, j)- α - \mathcal{J} -open set of Y for every (i, j)- α - \mathcal{I} -open set U of X.
- (ii) pairwise α -(\mathcal{I} , \mathcal{J})-closed if f(U) is a (i, j)- α - \mathcal{J} -closed set of Y for every (i, j)- α - \mathcal{I} -closed set U of X.

It is clear that every pairwise α - $(\mathcal{I}, \mathcal{J})$ -open (resp. pairwise α - $(\mathcal{I}, \mathcal{J})$ -closed) function is pairwise α - \mathcal{J} -open (resp. pairwise α - \mathcal{J} -closed) function. But the converse is not true in general.

Example 4.18. Let $X = \{a, b, c\}$ $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, \tau_2 = \{\emptyset, \{a\}, X\} \text{ and } \mathcal{I} = \{\emptyset, \{a\}\}.$ Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (X, \tau_1, \tau_2, \mathcal{I})$ is pairwise α - \mathcal{J} -open but not pairwise α - $(\mathcal{I}, \mathcal{I})$ -open.

Theorem 4.19. For a function $f:(X,\tau_1,\tau_2,\mathcal{I})\to (Y,\sigma_1,\sigma_2,\mathcal{J})$, the following statements are equivalent:

- (i) f is pairwise α - $(\mathcal{I}, \mathcal{J})$ -open;
- (ii) $f((i, j) \alpha \mathcal{I} \operatorname{Int}(U)) \subset (i, j) \alpha \mathcal{J} \operatorname{Int}(f(U))$ for each subset U of X:
- (iii) (i,j)- $\alpha \mathcal{I} \operatorname{Int}(f^{-1}(V)) \subset f^{-1}((i,j)-\alpha \mathcal{J} \operatorname{Int}(V))$ for each subset V of Y.

- Proof. (i) \Rightarrow (ii): Let U be any subset of X. Then (i,j)- $\alpha\mathcal{I} \operatorname{Int}(U)$ is a (i,j)- α - \mathcal{I} -open set of X. Then f((i,j)- $\alpha\mathcal{I} \operatorname{Int}(U))$ is a (i,j)- α - \mathcal{I} -open set of Y. Since f((i,j)- $\alpha\mathcal{I} \operatorname{Int}(U)) \subset f(U)$, f((i,j)- $\alpha\mathcal{I} \operatorname{Int}(U)) = (i,j)$ - $\alpha\mathcal{I} \operatorname{Int}(f((i,j)$ - $\alpha\mathcal{I} \operatorname{Int}(U))) \subset (i,j)$ - $s\mathcal{J} \operatorname{Int}(f(U))$. (ii) \Rightarrow (iii): Let V be any subset of Y. Then $f^{-1}(V)$ is a subset of X. Hence f((i,j)- $\alpha\mathcal{I} \operatorname{Int}(f^{-1}(V))) \subset (i,j)$ - $\alpha\mathcal{I} \operatorname{Int}(f)$. Then (i,j)- $\alpha\mathcal{I} \operatorname{Int}(f)$. (iii) \Rightarrow (i): Let U be any (i,j)- α - \mathcal{I} -open set of X. Then (i,j)- $\alpha\mathcal{I} \operatorname{Int}(U) = U$ and f(U) is a subset of Y. Now, U = (i,j)- $\alpha\mathcal{I} \operatorname{Int}(U) \subset (i,j)$ - $\alpha\mathcal{I} \operatorname{Int}(f^{-1}(f(U))) \subset f^{-1}((i,j)$ - $\alpha\mathcal{I} \operatorname{Int}(f)$. Then $f(U) \subset f(f^{-1}((i,j)$ - $\alpha\mathcal{I} \operatorname{Int}(f(U))) \subset f^{-1}((i,j)$ - $\alpha\mathcal{I} \operatorname{Int}(f(U))$ and (i,j)- $\alpha\mathcal{I} \operatorname{Int}(f(U)) \subset f(U)$. Hence f(U) is a (i,j)- α - \mathcal{I} -closed set of Y; hence f is pairwise
- **Theorem 4.20.** Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ be a function. Then f is a pairwise α - $(\mathcal{I}, \mathcal{J})$ -closed function if and only if for each subset U of X, (i, j)- $\alpha \mathcal{J} \operatorname{Cl}(f(U)) \subset f((i, j)$ - $\alpha \mathcal{I} \operatorname{Cl}(U))$.

 α -(\mathcal{I}, \mathcal{J})-open.

- Proof. Let f be a pairwise α - $(\mathcal{I}, \mathcal{J})$ -closed function and U any subset of X. Then $f(U) \subset f((i,j)-\alpha\mathcal{I}\operatorname{Cl}(U))$ and $f((i,j)-\alpha\mathcal{I}\operatorname{Cl}(U))$ is a $(i,j)-\alpha\mathcal{J}\operatorname{Cl}(U)$ -closed set of Y. We have $(i,j)-\alpha\mathcal{J}\operatorname{Cl}(f(U)) \subset (i,j)-\alpha\mathcal{J}\operatorname{Cl}(f((i,j)-\alpha\mathcal{I}\operatorname{Cl}(U))) = f((i,j)-\alpha\mathcal{I}\operatorname{Cl}(U))$. Conversely, let U be a $(i,j)-\alpha\mathcal{I}\operatorname{Cl}(U)$ set of X. Then $f(U) \subset (i,j)-\alpha\mathcal{J}\operatorname{Cl}(f(U)) \subset f((i,j)-\alpha\mathcal{I}\operatorname{Cl}(U)) = f(U)$; hence f(U) α - \mathcal{J} -closed subset of Y. Therefore, f is a pairwise α - $(\mathcal{I},\mathcal{J})$ -closed function.
- **Theorem 4.21.** Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ be a function. Then f is a pairwise α - $(\mathcal{I}, \mathcal{J})$ -closed function if and only if for each subset V of Y, $f^{-1}((i, j) - \alpha \mathcal{J} \operatorname{Cl}(V)) \subset (i, j) - \alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V))$.
- Proof. Let V be any subset of Y. Then by Theorem 4.20, (i, j)- $\alpha \mathcal{J} \operatorname{Cl}(f(f^{-1}(V))) \subset f((i, j) \alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V)))$. Since f is bijection, $f^{-1}((i, j) \alpha \mathcal{J} \operatorname{Cl}(V)) \subset (i, j) \alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V))$. Conversely, let U be any subset of X. Then $f^{-1}((i, j) \alpha \mathcal{J} \operatorname{Cl}(f(U))) \subset (i, j) \alpha \mathcal{I} \operatorname{Cl}(f^{-1}(f(U)))$. Hence $(i, j) \alpha \mathcal{J} \operatorname{Cl}(f(U)) \subset f((i, j) \alpha \mathcal{I} \operatorname{Cl}(f^{-1}(f(U)))$. Therefore, by Theorem 4.20 f is a pairwise α - $(\mathcal{I}, \mathcal{J})$ -closed function.
- **Theorem 4.22.** Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ be a pairwise α - $(\mathcal{I}, \mathcal{J})$ -open function. If V is a subset of Y and U is a (i, j)- α - \mathcal{I} -closed subset of X containing $f^{-1}(V)$, then there exists (i, j)- α - \mathcal{I} -closed set F of Y containing V such that $f^{-1}(F) \subset V$.
- *Proof.* The proof is similar to the Theorem 4.14. \Box
- **Theorem 4.23.** Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ be a pairwise α - $(\mathcal{I}, \mathcal{J})$ -closed function. If V is a subset of Y and U is a (i, j)- α - \mathcal{I} -open subset of X containing $f^{-1}(V)$, then there exists (i, j)- α - \mathcal{J} -open set F of Y containing V such that $f^{-1}(F) \subset V$.

Proof. The proof is similar to the Theorem 4.14.

Theorem 4.24. For a bijective function $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$, the following statements are equivalent:

- (i) f is pairwise α -(\mathcal{I} , \mathcal{J})-closed;
- (ii) f is pairwise α - $(\mathcal{I}, \mathcal{J})$ -open.

Proof. The proof is clear.

5. Pairwise α - \mathcal{I} -irresolute functions

Definition 5.1. A function $f: (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ is said to be (i, j)- α - \mathcal{I} -irresolute if the inverse image of every (i, j)- α - \mathcal{I} -open set of Y is (i, j)- α - \mathcal{I} -open in X, where $i \neq j$, i, j=1, 2.

Proposition 5.2. Every pairwise α - \mathcal{I} -irresolute function is pairwise α - \mathcal{I} -continuous but not conversely.

Proof. Straigtforward.

Theorem 5.3. Let $f:(X,\tau_1,\tau_2,\mathcal{I})\to (Y,\sigma_1,\sigma_2,\mathcal{J})$ be a function, then

- (1) f is pairwise α - \mathcal{I} -irresolute;
- (2) the inverse image of each (i, j)- α - \mathcal{J} -closed subset of Y is (i, j)- α - \mathcal{I} -closed in X;
- (3) for each $x \in X$ and each $V \in S\mathcal{J}O(Y)$ containing f(x), there exists $U \in \alpha\mathcal{I}O(X)$ containing x such that $f(U) \subset V$.

Proof. The proof is obvious from that fact that the arbitrary union of (i, j)- α - \mathcal{I} -open subsets is (i, j)- α - \mathcal{I} -open.

Theorem 5.4. Let $f:(X,\tau_1,\tau_2,\mathcal{I})\to (Y,\sigma_1,\sigma_2,\mathcal{J})$ be a function, then

- (i) f is pairwise α - \mathcal{I} -irresolute;
- (ii) (i,j)- $\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}((i,j)-\alpha \mathcal{J} \operatorname{Cl}(V))$ for each subset V of Y;
- (iii) $f((i,j)-\alpha \mathcal{I}\operatorname{Cl}(U)\subset (i,j)-\alpha \mathcal{J}\operatorname{Cl}(f(U))$ for each subset U of X.

Proof. (i) \Rightarrow (ii): Let V be any subset of Y. Then $V \subset (i,j)-\alpha \mathcal{J}\operatorname{Cl}(V)$ and $f^{-1}(V) \subset f^{-1}((i,j)-\alpha \mathcal{I}\operatorname{Cl}(V))$. Since f is pairwisr α - \mathcal{I} -irresolute, $f^{-1}((i,j)-\alpha \mathcal{J}\operatorname{Cl}(V))$ is a $(i,j)-\alpha$ - \mathcal{I} -closed subset of X. Hence $(i,j)-\alpha \mathcal{I}\operatorname{Cl}(f^{-1}(V)) \subset (i,j)-\alpha \mathcal{I}\operatorname{Cl}(f^{-1}((i,j)-\alpha \mathcal{J}\operatorname{Cl}(V))) = f^{-1}((i,j)-\alpha \mathcal{J}\operatorname{Cl}(V))$. (ii) \Rightarrow (iii): Let U be any subset of X. Then $f(U) \subset (i,j)-\alpha \mathcal{J}\operatorname{Cl}(f(U))$ and $(i,j)-\alpha \mathcal{I}\operatorname{Cl}(U) \subset (i,j)-\alpha \mathcal{I}\operatorname{Cl}(f^{-1}(f(U))) \subset f^{-1}((i,j)-\alpha \mathcal{J}\operatorname{Cl}(f(U)))$. This implies that $f((i,j)-\alpha \mathcal{I}\operatorname{Cl}(U)) \subset f(f^{-1}((i,j)-\alpha \mathcal{J}\operatorname{Cl}(f(U))) \subset (i,j)-\alpha \mathcal{J}\operatorname{Cl}(f(U))$. (iii) \Rightarrow (i): Let V be a $(i,j)-\alpha$ - \mathcal{J} -closed subset of Y. Then $f((i,j)-\alpha \mathcal{I}\operatorname{Cl}(f(U))) \subset f(f^{-1}(f(U))) \subset f(f^{-1}(f(U)))$.

 $(iii) \Rightarrow (i)$: Let V be a (i,j)- α - \mathcal{J} -closed subset of Y. Then f((i,j)- $\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V)) \subset (i,j)$ - $\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(f(V))) \subset (i,j)$ - $\alpha \mathcal{I} \operatorname{Cl}(V) = V$. This implies that (i,j)- $\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(f((i,j)-\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V)))) \subset f^{-1}(f((i,j)-\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V))))$

 $f^{-1}(V)$. Therefore, $f^{-1}(V)$ is a (i, j)- α - \mathcal{I} -closed subset of X and consequently f is a pairwise α - \mathcal{I} -irresolute function.

Theorem 5.5. A function $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ is a pairwise α - \mathcal{I} -irresolute if and only if $f^{-1}((i, j) - \alpha \mathcal{J} \operatorname{Int}(V)) \subset (i, j) - \alpha \mathcal{I} \operatorname{Int}(f^{-1}(V))$ for each subset V of Y.

Proof. Let V be any subset of Y. Then (i,j)- $\alpha \mathcal{J} \operatorname{Int}(V) \subset V$. Since f is pairwise α - \mathcal{I} -irresolute, $f^{-1}((i,j)$ - $\alpha \mathcal{J} \operatorname{Int}(V))$ is a (i,j)- α - \mathcal{I} -open subset of X. Hence $f^{-1}((i,j)$ - $\alpha \mathcal{J} \operatorname{Int}(V)) = (i,j)$ - $\alpha \mathcal{I} \operatorname{Int}(f^{-1}((i,j)$ - $\alpha \mathcal{J} \operatorname{Int}(V))) \subset (i,j)$ - $\alpha \mathcal{I} \operatorname{Int}(f^{-1}(V))$. Conversely, let V be a (i,j)- α - \mathcal{I} -open subset of Y. Then $f^{-1}(V) = f^{-1}((i,j)$ - $\alpha \mathcal{J} \operatorname{Int}(V)) \subset (i,j)$ - $\alpha \mathcal{I} \operatorname{Int}(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is a (i,j)- α - \mathcal{I} -open subset of X and consequently f is a pairwisr α - \mathcal{I} -irresolute function. \square

Corollary 5.6. Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ be a function. Then f is pairwise α - \mathcal{I} -closed and pairwise α - \mathcal{I} -irresolute if and only if $f((i, j) - \alpha \mathcal{I} \operatorname{Cl}(V)) = (i, j) - \alpha \mathcal{J} \operatorname{Cl}(f(V))$ for every subset V of X.

Definition 5.7. An ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is called pairwise α - \mathcal{I} -Hausdorff if for each two distinct points $x \neq y$, there exist disjoint (i, j)- α - \mathcal{I} -open sets U and V containing x and y, respectively.

Theorem 5.8. Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ be a pairwise α - \mathcal{I} -irresolute function. If Y is pairwise α - \mathcal{J} -Hausdorff, then X is pairwise α - \mathcal{I} -Hausdorff.

Proof. The proof is clear.

Corollary 5.9. Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ be a function. Then f is pairwise α - \mathcal{I} -open and pairwise α - \mathcal{I} -irresolute if and only if $f^{-1}(((i,j)-\alpha\mathcal{J}\operatorname{Cl}(V)))=(i,j)-\alpha\mathcal{I}\operatorname{Cl}(f^{-1}((V)))$ for every subset V of Y.

Definition 5.10. A function $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ is said to be pairwise α - \mathcal{I} -homeomorphism if f and f^{-1} are pairwise α - \mathcal{I} -irresolute.

Theorem 5.11. Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ be a bijection. Then the following statements are equivalent:

- (i) f is pairwise α - \mathcal{I} -homeomorphism;
- (ii) f^{-1} is pairwise α - \mathcal{I} -homeomorphism;
- (iii) f and f^{-1} are pairwise α - $(\mathcal{I}, \mathcal{J})$ -open (pairwise α - $(\mathcal{J}, \mathcal{I})$ -closed);
- (1) f is pairwise α - \mathcal{I} -irresolute and pairwise α - $(\mathcal{I}, \mathcal{J})$ -open (pairwise α - $(\mathcal{J}, \mathcal{I})$ -closed);
- (2) $f((i,j)-\alpha \mathcal{I}\operatorname{Cl}(V)) = (i,j)-\alpha \mathcal{J}\operatorname{Cl}(f(V))$ for each subset V of X:
- (3) $f((i,j)-\alpha \mathcal{I}\operatorname{Int}(V)) = (i,j)-\alpha \mathcal{J}\operatorname{Int}(f(V))$ for each subset V of X:

- (4) $f^{-1}((i,j)-\alpha \mathcal{J}\operatorname{Int}(V)) = (i,j)-\alpha \mathcal{I}\operatorname{Int}(f^{-1}(V))$ for each subset V of Y;
- (5) (i,j)- $\alpha \mathcal{I} \operatorname{Cl}(f^{-1}(V)) = f^{-1}((i,j)-\alpha \mathcal{J} \operatorname{Cl}(V))$ for each subset V of Y;

Proof. (1) \Rightarrow (2): It follows immediately from the definition of a pairwise α - \mathcal{I} -homeomorphism.

- $(2) \Rightarrow (3) \Rightarrow (4)$: It follows from Theorem 4.24.
- $(4) \Rightarrow (5)$: It follows from Theorem 4.21 and Corollary 5.6.
- (5) \Rightarrow (6): Let U be a subset of X. Then by Theorem 3.33, $f((i, j) \alpha \mathcal{I} \operatorname{Int}(U)) = X \setminus f((i, j) \alpha \mathcal{I} \operatorname{Cl}(X \setminus U)) = X \setminus (i, j) \alpha \mathcal{I} \operatorname{Cl}(f(X \setminus U)) = (i, j) \alpha \mathcal{I} \operatorname{Int}(f(U)).$
- (6) \Rightarrow (7): Let V be a subset of Y. Then $f((i,j)-\alpha\mathcal{I}\operatorname{Int}(f^{-1}(V)))=$
- $(i,j)-\alpha\mathcal{I}\operatorname{Int}(f(f^{-1}(V)))=(i,j)-\alpha\mathcal{I}\operatorname{Int}(f(V)).$ Hence $f^{-1}(f((i,j)-\alpha\mathcal{I}\operatorname{Int}(f^{-1}(V))))=f^{-1}((i,j)-\alpha\mathcal{I}\operatorname{Int}(V)).$ Therefore, $f^{-1}((i,j)-\alpha\mathcal{I}\operatorname{Int}(V))=(i,j)-\alpha\mathcal{I}\operatorname{Int}(f^{-1}(V)).$
- $(7) \Rightarrow (8)$: Let V be a subset of Y. Then by Theorem 3.33, (i, j)-
- $\alpha \mathcal{I}\operatorname{Cl}(f^{-1}(V)) = X \setminus (f^{-1}((i,j)-\alpha \mathcal{J}\operatorname{Int}(Y\setminus V))) = X \setminus ((i,j)-\alpha \mathcal{I}\operatorname{Int}(f^{-1}((X\setminus V)))) = f^{-1}((i,j)-\alpha \mathcal{I}\operatorname{Cl}(V)).$
- $(8) \Rightarrow (1)$: It follows from Theorem 4.21 and Corollary 5.9.

References

- [1] M. Caldas, S. Jafari and N. Rajesh, *Some subsets of ideal Bitopological spaces* (under preparation).
- [2] M. Caldas, S. Jafari and N. Rajesh, Preopen sets in ideal bitopological spaces, Bol. Soc. Parana. Mat., 29(3) (2011), no. 2, 61-68.
- [3] M. Caldas, S. Jafari and N. Rajesh, Semiopen sets in ideal bitopological spaces (submitted).
- [4] M. Caldas, S. Jafari and N. Rajesh, b-open sets in ideal bitopological spaces (under preparation).
- [5] M. Caldas, S. Jafari and N. Rajesh, Some fundamental properties of β -open sets in ideal bitopological spaces (submitted).
- [6] M. Caldas, S. Jafari and N. Rajesh, *Some functions on ideal bitopological spaces* (under preparation).
- [7] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, American Math. Monthly, 97(1990), 295-310.
- [8] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [9] M. Jelic, Feeble P-continuious mappings, Rend. Circ Math. Palermo, 24(1990), 387-.
- [10] K. Kuratowski, Topology, Academic press, New York, (1966).
- [11] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [12] S. Yuksel, A. H. kocaman and A. Acikgoz, On α-*I*-irresolute functions, Far East J. Math. Sci., 26(3)(2007), 673-684

DEPARTAMENT OF MATHEMATICS, FACULTY OF SCIENCE, TAIBAH UNIVERSITY, P. O. Box, 30002, code, 41477, Al-Madinah Al-Munawarah, K. S. A. *E-mail address*: amaghrabi@taibahu.edu.sa

Departamento de Matematica Aplicada, Universidade Federal Fluminense,, Rua Mario Santos Braga, S/n, 24020-140, Niteroi, RJ Brasil

E-mail address: gmamccs@vm.uff.br

College of Vestsjaelland South, Herrestraede, 11, 4200 Slagelse, Denmark

E-mail address: jafaripersia@gmail.com

Departament of Mathematics and Natural Sciences, Prince Mohammad bin Fahd University, P. O. Box 1664 Al Khobar, K. S. A. $E\text{-}mail\ address:}$ rlatif@pmu.edu.sa

Departament of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, Kafr El-sheikh 33516,, Egypt. $E\text{-}mail\ address:\ \texttt{nasefa50@yahoo.com}}$

DEPARTMENT OF MATHEMATICS, RAJAH SERFOJI GOVT. COLLEGE, THANJAVUR-613005, TAMILNADU, INDIA.

E-mail address: nrajesh_topology@yahoo.co.in

DEPARTMENT OF MATHEMATICS, ARIGNAR ANNA GOVT. ARTS COLLEGE, NAMAKKEL -637 001, TAMILNADU, INDIA.

E-mail address: shanthiwini2005@yahoo.co.in