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Abstract. The purpose of this paper is to introduce and characterize
the concept of α-open set and several related notions in ideal minimal
spaces.
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1. Introduction and preliminaries

Popa and Noiri [10] introduced the notion of minimal structures which
is a generalization of a topology on a given nonempty set. They also
introduced the notion of m-continuous functions as a function defined
between an m-space and a topological space. They showed that the
m-continuous functions have properties similar to those of continuous
functions between topological spaces. Let X be a topological space
and A ⊂ X.
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The closure of A and the interior of A are denoted by Cl(A) and Int(A),
respectively. A subfamily m of the power set P (X) of a nonempty set
X is called a minimal structure [10] on X if ∅ and X belong to m.
By (X,m), we denote a nonempty set X with a minimal structure m
on X. The members of the minimal structure m are called m-open
sets [10], and the pair (X,m) is called an m-space. The complement
of an m-open set is said to be m-closed [10]. The concept of ideals in
topological spaces has been introduced and studied by Kuratowski [6]
and Vaidyanathas[12]. An ideal I on a nonempty set X is a nonempty
collection of subsets of X which satisfies (i) A ∈ I and B ⊂ A implies
B ∈ I and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given an
m-space (X,m) with an ideal I on X and if P(X) is the set of all
subsets of X, a set operator (.)∗m: P(X) → P(X) called the local
minimal function [11] of A with respect to m and I, is defined as
follows: for A ⊂ X, A∗m(I,m) = {x ∈ X|U ∩ A /∈ I for every U
∈ m(x)}, where m(x) = {U ∈ m|x ∈ U}. The set operator mCl∗(.),
called a minimal ∗-closure, is defined as mCl∗(A) = A∪A∗m for A ⊂ X.
The minimal structurem∗(I,m), generated by m∗(I,m) = {U ⊂ X |
mCl∗(X \U) = X \U}, is called a ∗-minimal structure, which is finer
than m. And m Int∗(A) denotes the interior of A in m∗(I,m) (see
[11]).

Definition 1.1. [10] Let (X,m) be an m-space. For a subset A of X,
the m-interior of A and the m-closure of A are defined by m Int(A)=
∪{W/W ∈ m,W ⊆ A} and mCl(A) = ∩{F/A ⊆ F,X \ F ∈ m},
respectively.

Theorem 1.2. [10] Let (X,m) be an m-space, and A, B subsets of
X. Then x ∈ mCl(A) if and only if U ∩ A 66= ∅ for every U ∈ m
containing x. Further, the following properties hold:

(i) mCl(mCl(A)) = mCl(A).
(ii) m Int(m Int(A)) = m Int(A).

(iii) m Int(X \ A) = X \mCl(A).
(iv) mCl(X \ A) = X \m Int(A).
(v) If A ⊂ B then mCl(A) ⊂ mCl(B).

(vi) mCl(A ∪B) ⊂ mCl(A) ∪mCl(B).
(vii) A ⊂ mCl(A) and m Int(A) ⊂ A.

Observe that any collection ∅ 6= J ⊂ P (X) is always contained in an
m-structure that have the property B [7]: A minimal structure mX is
said to have property B if the union of any family of subsets belonging
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to mX belongs to mX , that is, m(J )={∅, X}∪ {
⋃
M∈JM : ∅ 6= J ⊂

J }.

Theorem 1.3. [10] Let (X,m) be an m-space and m satisfy the prop-
erty B. For a subset A of X, the following properties hold:

(i) A ∈ m if and only if m Int(A)=A.
(ii) A is m-closed if and only if mCl(A)=A.

(iii) m Int(A) ∈ m and mCl(A) is m-closed.

Definition 1.4. A subset A of an m-space (X,m) is said to be αm-
open [8] if A ⊂ m Int(mCl(m Int(A))).
The complement of an αm-open set is called an αm-closed set.

Definition 1.5. [8] Let (X,m) be an m-space and A ⊂ X.

(i) The intersection of all αm-closed sets containing A is called
the αm-closure of A and is denoted by αmCl(S).

(ii) The union of all αm-open sets contained in A is called the
αm-interior of A and is denoted by αm Int(S).

Definition 1.6. A function f : (X,m) → (Y, τ) is said to be αm-
continuous [8] if the inverse image of every open set of Y is αm-open
in (X,m).

An m-space (X,m) with an ideal I on X is called an ideal minimal
space and is denoted by (X,m, I).

Definition 1.7. A subset A of an ideal minimal space (X,m, I) is
said to be

(i) m-R-I-open [2] if A = m Int(mCl∗(A)).
(ii) m-semi-I-open [3] if A ⊂ mCl∗(m Int(A)).

(iii) m-pre-I-open [1] if A ⊂ m Int(mCl∗(A)).
(iv) m-β-I-open [4] if A ⊂ mCl(m Int(mCl∗(A))).
(v) m-δ-I-open [2] if m Int(mCl∗(A) ⊂ mCl∗(m Int(A)).

The complement of an m-pre-I-open (resp. m-β-I-open) set is called
an m-pre-I-closed (resp. m-β-I-closed) set.

Lemma 1.8. Let (X,m, I) be an ideal minimal space and A ⊂ X.
Then

(i) A subset A is m-pre-I-closed if and only if mCl(m Int∗(A)) ⊂
A [1];

(ii) A subset A is m-β-I-closed if and only if
m Int(mCl(m Int∗(A)))
⊂ A [4].
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Definition 1.9. A function f : (X,m, I)→ (Y, τ) is said to be

(i) m-pre-I-continuous [1] if the inverse image of every open set
of Y is m-pre-I-open in X.

(ii) m-semi-I-continuous [3] if the inverse image of every open set
of Y is m-semi-I-open in X.

(iii) m-β-I-continuous [4] if the inverse image of every open set of
Y is m-β-I-open in X.

(iv) m-δ-I-continuous [3] if the inverse image of every open set of
Y is m-δ-I-open in X.

2. m-α-I-open sets

Definition 2.1. A subset A of an ideal minimal space (X,m, I) is
said to be m-α-I-open if and only if A ⊂ m Int(mCl∗(m Int(A))).
The family of all m-α-I-open sets of (X,m, I) is denoted by
αIO(X,m). Also, the family of all m-α-I-open sets of (X,m, I) con-
taining x is denoted by mαIO(X, x).

Proposition 2.2. (i) Every m-open set is m-α-I-open.
(ii) Every m-α-I-open set is m-semi-I-open.

(iii) Every m-α-I-open set is αm-open.
(iv) Every m-α-I-open set is m-pre-I-open.

Proof. The proof follows from the definitions. �

The following examples show that the converses of Proposition 2.2 are
not true in general.

Example 2.3. Let X = {a, b, c} m = {∅, {a}, {b}, X} and I =
{∅, {a}}. Then the set {a, b} is m-α-I-open but not m-open, the set
{b, c} is m-semi-I-open but not m-α-I-open.

Example 2.4. Let X = {a, b, c} m = {∅, {a, b}, {a, c}, X} and I =
{∅, {a}}. Then the set {b, c} is m-pre-I-open but not m-α-I-open.

Example 2.5. Let X = {a, b, c} m = {∅, {b}, {a, b}, {a, c}, X} and
I = {∅, {a}}. Then the set {a, b} is αm-I-open but not m-α-I-open.

Proposition 2.6. Let (X,m, {∅}) be an ideal minimal space and A ⊂
X. Then A is m-α-I-open if and only if it is αm-open.

Proof. The proof follows from the fact that, if I = {∅}, then A∗m =
mCl(A) and mCl∗(A) = mCl(A) by Remark 2.3 of [11]. �

Proposition 2.7. Let A be a subset of an ideal minimal space
(X,m, I). If B is an m-semi-I-open set of X such that B ⊂ A ⊂
m Int(mCl∗(B)), then A is an m-α-I-open set of X.
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Proof. Since B is an m-semi-I-open set of X, B ⊂ mCl∗(m Int(B)).
Thus, A ⊂ m Int(mCl∗(B)) ⊂ m Int(mCl∗(mCl∗(m Int(B)))) =
m Int(mCl∗(m Int(B))) ⊂ m Int(mCl∗(m Int(A))), and so A is an m-
α-I-open set of X. �

Proposition 2.8. Let (X,m, I) be an ideal minimal space. Then a
subset of X is m-α-I-open if and only if it is both m-δ-I-open and
m-pre-I-open.

Proof. Let A be an m-α-I-open set. By Proposition 2.2, every m-
α-I-open set is m-semi-I-open and m-pre-I-open. Hence, we have
m Int(mCl∗(A)) ⊂ m Int(mCl∗(mCl∗(Int(A)))) ⊂ mCl∗(Int(A)).
Hence A is an m-δ-I-open. Conversely, let A be an m-δ-I-open and
m-pre-I-open set. Then we have m Int(mCl∗(A)) ⊂ mCl∗(m Int(A))
and hence m Int(mCl∗(A)) ⊂ m Int(mCl∗(m Int(A))). Since A is m-
pre-I-open, A ⊂ m Int(mCl∗(A)). Therefore, we obtain that A ⊂
m Int(mCl∗(m Int(A))); hence A is m-α-I-open. �

Lemma 2.9. A subset A is m-α-I-open if and only if m-semi-I-open
and m-pre-I-open.

Proof. Let A be m-semi-I-open and m-pre-I-open subset of (X,m, I).
Then, A ⊂ m Int(mCl∗(A)) ⊂ m Int(mCl∗(mCl∗(m Int(A)))) =
m Int(mCl∗(m Int(A))). Hence A is m-α-I-open. The converse is
obvious. �

Corollary 2.10. The following properties are equivalent for subsets
of an ideal minimal space (X,m, I):

(i) Every m-pre-I-open set is m-semi-I-open.
(ii) A subset A of X is m-α-I-open if and only if it is m-pre-I-

open.

Corollary 2.11. The following properties are equivalent for subsets
of an ideal minimal space (X,m, I):

(i) Every m-semi-I-open set is m-pre-I-open.
(ii) A subset A of X is m-α-I-open if and only if it is m-semi-I-

open.

Proposition 2.12. Let A be a subset of an ideal minimal space
(X,m, I) and m satisfy the property of B. If A is m-pre-I-closed
and m-α-I-open, then it is m-open.

Proof. Suppose A is m-pre-I-closed and m-α-I-open. Then by Lemma
1.8 mCl(m Int∗(A)) ⊂ A and A ⊂ m Int(mCl∗(m Int(A))). Now
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mCl∗(m Int(A)) ⊂ mCl(m Int(A)) ⊂ mCl(m Int∗(A)) ⊂ A and so
A ⊂ m Int(mCl∗(m Int(A)) ⊂ m Int(A). Therefore, A is m-open. �

Lemma 2.13. [2] If A is any subset of an ideal minimal space
(X,m, I), then m Int(mCl∗(A)) is m-R-I-open.

Proposition 2.14. Let A be a subset of an ideal minimal space
(X,m, I). If A is m-α-I-open and m-β-I-closed, then it is m-R-
I-open.

Proof. Let A be an m-α-I-open and m-β-I-closed subset of
(X,m, I). By Lemma 1.8, A ⊂ m Int(mCl∗(m Int(A))) and
m Int(mCl∗(m Int(A))) ⊂ m Int(mCl(m Int∗(A))) ⊂ A; hence A =
m Int(mCl∗(m Int(A))). Thus, by Lemma 2.13, A is m-R-I-open. �

Remark 2.15. The intersection of two m-α-I-open sets need not be
m-α-I-open as it can be seen from the following example.

Example 2.16. Let X = {a, b, c}, m = {∅, {a, b}, {a, c}, X} and
I = {∅, {a}}. Then the sets {a, b} and {a, c} are m-α-I-open sets
of (X,m, I) but their intersection {a} is not an m-α-I-open set of
(X,m, I).

Theorem 2.17. If {Aα}α∈Ω be a family of m-α-I-open sets in
(X,m, I), then

⋃
α∈Ω

Aα is m-α-I-open in (X,m, I).

Proof. Since {Aα : α ∈ Ω} ⊂ mαIO(X), Aα ⊂
m Int(mCl∗(m Int(Aα))) for every α ∈ Ω. Thus, ∪

α∈Ω
Aα

⊂ ∪
α∈Ω

m Int(mCl∗(m Int(Aα))) ⊂ m Int(mCl∗(m Int( ∪
α∈Ω

Aα))) and

∪
α∈Ω

Aα ⊂ m Int(mCl∗(m Int( ∪
α∈Ω

Aα)). Hence any union of m-α-I-

open sets is m-α-I-open. �

Definition 2.18. In an ideal minimal space (X,m, I), A ⊂ X is said
to be m-α-I-closed if X\A is m-α-I-open in X.
The family of all m-α-I-closed sets of (X,m, I) is denoted by
αIC(X,m).

Theorem 2.19. Let (X,m, I) be an ideal minimal space. Then, A is
m-α-I-closed if and only if mCl(m Int∗(mCl(A))) ⊂ A.

Proof. The proof follows from the definitions. �

Theorem 2.20. If A is an m-α-I-closed set in an ideal minimal space
(X,m, I), then mCl(m Int(mCl∗(A))) ⊂ A.
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Proof. It follows from Theorem 2.19 that mCl(m Int(mCl∗(A))) ⊂
mCl(m Int∗(mCl(A))) ⊂ A. �

Theorem 2.21. Arbitrary intersection of m-α-I-closed sets is always
m-α-I-closed.

Proof. This follows from Theorems 2.17. �

Definition 2.22. Let (X,m, I) be an ideal minimal space, S a subset
of X and x be a point of X. Then

(i) x is called an m-α-I-interior point of S if there exists V ∈
αIO(X,m) such that x ∈ V ⊂ S.

(ii) the set of all m-α-I-interior points of S is called the m-α-I-
interior of S and is denoted by mαI Int(S).

Theorem 2.23. Let A and B be subsets of (X,m, I). Then the fol-
lowing properties hold:

(i) mαI Int(A) = ∪{T : T ⊂ A and T ∈ αIO(X,m)}.
(ii) mαI Int(A) is the largest m-α-I-open subset of X contained

in A.
(iii) A is m-α-I-open if and only if A = mαI Int(A).
(iv) mαI Int(mαI Int(A)) = mαI Int(A).
(v) If A ⊂ B, then mαI Int(A) ⊂ mαI Int(B).

(vi) mαI Int(A) ∪ mαI Int(B) ⊂ mαI Int(A ∪B).
(vii) mαI Int(A ∩B) ⊂ mαI Int(A) ∩ mαI Int(B).

Proof. (i). Let x ∈ ∪{T : T ⊂ A and T ∈ αIO(X,m)}. Then,
there exists T ∈ αIO(X, x) such that x ∈ T ⊂ A and hence x ∈
mαI Int(A). This shows that ∪{T : T ⊂ A and A ∈ αIO(X,m)}
⊂ mαI Int(A). For the reverse inclusion, let x ∈ mαI Int(A). Then
there exists T ∈ mαIO(X, x) such that x ∈ T ⊂ A. we obtain x ∈
∪{T : T ⊂ A and T ∈ αIO(X,m)}. This shows that mαI Int(A) ⊂
∪{T : T ⊂ A and T ∈ αIO(X,m)}. Therefore, we obtain mαI Int(A)
= ∪{T : T ⊂ A and T ∈ αIO(X,m)}.
The proofs of (ii)− (vii) are obvious.

�

Corollary 2.24 ([8], Theorem 3.8). Let A and B be subsets of (X,m).
Then the following properties hold:

(i) αm Int(A) ⊂ A.
(ii) A is αm-open if and only if A = αm Int(A).

(iii) αm Int(αm Int(A)) = αm Int(A).
(iv) If A ⊂ B, then αm Int(A) ⊂ αm Int(B).
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Proof. The proof follows from Theorem 2.23, if I = {∅}. �

Definition 2.25. Let (X,m, I) be an ideal minimal space, S a subset
of X and x be a point of X. Then

(i) x is called an m-α-I-cluster point of S if V ∩ S 6= ∅ for every
V ∈ mαIO(X, x).

(ii) the set of all m-α-I-cluster points of S is called the m-α-I-
closure of S and is denoted by mαI Cl(S).

Theorem 2.26. Let A and B be subsets of (X,m, I). Then the fol-
lowing properties hold:

(i) mαI Cl(A) = ∩{F : A ⊂ F and F ∈ αIC(X,m)}.
(ii) mαI Cl(A) is the smallest m-α-I-closed subset of X containing

A.
(iii) A is m-α-I-closed if and only if A = mαI Cl(A).
(iv) mαI Cl(mαI Cl(A) = mαI Cl(A).
(v) If A ⊂ B, then mαI Cl(A) ⊂ mαI Cl(B).

(vi) mαI Cl(A ∪B) = mαI Cl(A) ∪ mαI Cl(B).
(vii) mαI Cl(A ∩B) ⊂ mαI Cl(A) ∩ mαI Cl(B).

Proof. (i). Suppose that x /∈ mαI Cl(A). Then there exists V ∈
mαIO(X, x) such that V ∩A = ∅. Since X\V is an m-α-I-closed set
containing A and x /∈ X\V , we obtain x /∈ ∩{F : A ⊂ F and F ∈
αIC(X,m)}. Conversely, suppose that x /∈ ∩{F | A ⊂ F and F ∈
αIC(X,m)}. Then there exists F ∈ αIC(X,m) such that A ⊂ F
and x /∈ F . Since X\F is an m-α-I-open set containing x, we obtain
(X\F ) ∩ A = ∅. This shows that x /∈ mαI Cl(A). Therefore, we
obtain mαI Cl(A) = ∩{F : A ⊂ F and F ∈ αIC(X,m)}.
The other proofs are obvious. �

Corollary 2.27 ([8], Theorem 3.9). Let A and B be subsets of (X,m).
Then the following properties hold:

(i) A ⊂ αmCl(A).
(ii) A is αm-closed if and only if A = αmCl(A).

(iii) αmCl(αmCl(A) = αmCl(A).
(iv) If A ⊂ B, then αmCl(A) ⊂ αmCl(B).

Proof. The proof follows from Theorem 2.26, if I = {∅}. �

Theorem 2.28. Let (X,m, I) be an ideal minimal space and A ⊂ X.
Then a point x ∈ mαI Cl(A) if and only if U ∩ A 6= ∅ for every
U ∈ mαIO(X, x).

Proof. This follows immediately from Definition 2.25. �
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Corollary 2.29 ([8], Theorem 3.10). Let (X,m) be an ideal minimal
space and A ⊂ X. Then

(i) x ∈ αmCl(A) if and only if A ∩ V 6= ∅ for every αm-open set
V containing x.

(ii) x ∈ αm Int(A) if and only if there exists an αm-open set U
such that x ∈ U ⊂ A.

Proof. The proof follows from Theorem 2.28, if I = {∅}. �

Theorem 2.30. Let (X,m, I) be an ideal minimal space and A ⊂ X.
Then the following propeties hold:

(i) mαI Int(X\A) = X\mαI Cl(A);
(ii) mαI Cl(X\A) = X\mαI Int(A).

Proof. (i). Let x ∈ X \ mαI Cl(A). Since x /∈ mαI Cl(A), there
exists V ∈ mαIO(X, x) such that V ∩ A = ∅; hence we obtain x ∈
mαI Int(X\A). This shows that X\mαI Cl(A) ⊂ mαI Int(X\A).
Let x ∈ mαI Int(X\A). Since mαI Int(X\A) ∩ A = ∅, we obtain
x /∈ mαI Cl(A); hence x ∈ X\mαI Cl(A). Therefore, we obtain
mαI Int(X\A) = X\mαI Cl(A).
(ii). This follows from (i). �

Corollary 2.31 ([8], Theorem 3.8(v)). Let (X,m) be an ideal minimal
space and A ⊂ X. Then the following propeties hold:

(i) αm Int(X\A) = X\αmCl(A);
(ii) αmCl(X\A) = X\αm Int(A).

Proof. The proof follows from Theorem 2.30, if I = {∅}. �

Definition 2.32. A subset Bx of an ideal minimal space (X,m, I)
is called an m-α-I-neighbourhood of a point x ∈ X if there exists an
m-α-I-open set U such that x ∈ U ⊂ Bx.

Theorem 2.33. A subset of an ideal minimal space (X,m, I) is m-
α-I-open if and only if it is an m-α-I-neighbourhood of each of its
points.

Proof. Let G be an m-α-I-open set of X. Then by definition, it is
clear that G is an m-α-I-neighbourhood of each of its points, since
for every x ∈ G, x ∈ G ⊂ G and G is m-α-I-open. Conversely,
suppose G is an m-α-I-neighbourhood of each of its points. Then for
each x ∈ G, there exists Sx ∈ αIO(X,m) such that Sx ⊂ G. Then
G =

⋃
{Sx : x ∈ G}. Since each Sx is m-α-I-open, G is m-α-I-open

in (X,m, I). �
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3. m-α-I-continuous functions

Definition 3.1. A function f : (X,m, I)→ (Y, τ) is said to be m-α-
I-continuous if the inverse image of every open set of Y is m-α-I-open
in X.

Proposition 3.2. For a function f : (X,m, I)→ (Y, τ), the following
properties hold:

(i) Every m-α-I-continuous function is m-semi-I-continuous but
not conversely.

(ii) Every m-α-I-continuous function is αm-continuous but not
conversely.

(iii) Every m-α-I-continuous function is m-pre-I-continuous but
not conversely.

Proof. The proof follows from Proposition 2.2, Examples 2.3 and 2.4.
�

Theorem 3.3. A function f : (X,m, I)→ (Y, τ) is m-α-I-continuous
if and only if it is m-semi-I-continuous and m-pre-I-continuous.

Proof. This is an immediate consequence of Lemma 2.9. �

Theorem 3.4. For a function f : (X,m, I) → (Y, τ), the following
statements are equivalent:

(i) f is m-α-I-continuous;
(ii) For each point x in X and each open set F in Y such that

f(x) ∈ F , there is an m-α-I-open set A in X such that x ∈ A,
f(A) ⊂ F ;

(iii) The inverse image of each closed set in Y is m-α-I-closed in
X;

(iv) For each subset A of X, f(mαI Cl(A)) ⊂ Cl(f(A));
(v) For each subset B of Y , mαI Cl(f−1(B)) ⊂ f−1(Cl(B));

(vi) For each subset C of Y , f−1(Int(C)) ⊂ mαI Int(f−1(C)).
(vii) mCl(m Int∗(mCl(f−1(B)))) ⊂ f−1(Cl(B)) for each subset B

of Y .
(viii) f(mCl(m Int∗(mCl(A)))) ⊂ Cl(f(A)) for each subset A of X.

Proof. (i) ⇔ (ii): Let x ∈ X and F be an open set of Y containing
f(x). By (i), f−1(F ) is m-α-I-open in X. Let A = f−1(F ). Then
x ∈ A and f(A) ⊂ F . Conversely, let F be open in Y and let
x ∈ f−1(F ). Then f(x) ∈ F . By (ii), there is an m-α-I-open set Ux
in X such that x ∈ Ux and f(Ux) ⊂ F . Then x ∈ Ux ⊂ f−1(F ) and
f−1(F ) = ∪{Ux | x ∈ f−1(F )}. Hence f−1(F ) is m-α-I-open in X.



PROPERTIES OF α-OPEN SETS IN IDEAL MINIMAL SPACES 93

(i) ⇒ (iii): This follows due to the fact that for any subset B of Y ,
f−1(Y \B) = X\f−1(B).
(iii)⇒ (iv): Let A be a subset of X. Since Cl(f(A)) is closed in Y and
by (iii) f−1(Cl(f(A))) is m-α-I-closed in X and A ⊂ f−1(Cl(f(A)).
Then mαI Cl(A) ⊂ f−1(Cl(A)); hence f(mαI Cl(A)) ⊂ Cl(f(A)).
(iv) ⇒ (v): Let B be any subset of Y . Now, f(mαI Cl(f−1(B)))
⊂ Cl(f(f−1(B))) ⊂ Cl(B). Consequently, mαI Cl(f−1(B)) ⊂
f−1(Cl(B)).
(i) ⇔ (vi): Suppose that f is m-α-I-continuous. Let B be
any subset of Y . Clearly, f−1(Int(B)) is m-α-I-open in X and
we have f−1(Int(B)) ⊂ mαI Int(f−1 Int(B)) ⊂ mαI Int(f−1B).
Conversely, let B be an open set in Y . Then Int(B) = B and
f−1(B) ⊂ f−1(Int(B)) ⊂ mαI Int(f−1(B)). Hence we have f−1(B) =
mαI Int(f−1(B)). This shows that f−1(B) is m-α-I-open in X.
(v) ⇒ (vii): Let B any subset of Y . Since mαCl(f−1(B)) is m-α-
I-closed, by Theorem 2.19 and (v), mCl(m Int∗(mCl(f−1(B)))) ⊂
mCl(m Int∗(mCl(mαCl(f−1(B))))) ⊂ mαCl(f−1(B)) ⊂ f−1(Cl(B)).
(vii) ⇒ (viii): Let A be any subset of X. By (vii),
mCl(m Int∗(mCl(A)) ⊂ mCl(m Int∗(mCl(f−1(f(A))))) ⊂
f−1(Cl(f(A))) and hence
f(mCl(m Int∗(mCl(A)))) ⊂ Cl(f(A)).
(viii) ⇒ (i): Let V ∈ τ . Then by (v),
f(mCl(m Int∗(mCl(f−1(Y \V ))))) ⊂ Cl(f(f−1(Y \V ))) ⊂
Cl(Y \V ) = Y \V . It follows that,
mCl(m Int∗(mCl(f−1(Y \V )))) ⊂ f−1(Y \V ) ⊂ X\f−1(V ). Con-
sequently, we obtain f−1(V ) ⊂ m Int(mCl∗(m Int(f−1(V )))). This
shows that f−1(V ) is m-α-I-open. Thus, f is m-α-I-continuous. �

Theorem 3.5. Let f : (X,m, I) → (Y, τ) be an m-α-I-continuous
function. Then for each subset V of Y , f−1(Int(V )) ⊂ mCl∗(f−1(V )).

Proof. Let V be any subset of Y . Then f−1(Int(V )) is m-α-I-open in
X. Hence f−1(Int(V )) ⊂ m Int(mCl∗(m Int(f−1(Int(V ))))) ⊂
mCl∗(f−1(V )). �

Theorem 3.6. Let f : (X,m, I) → (Y, τ) be a bijection. Then f is
m-α-I-continuous if and only if Int(f(U)) ⊂ f(mαI Int(U)) for each
subset U of X.

Proof. Let U ⊂ X. By Theorem 3.4, f−1(Int(f(U))) ⊂
mαI Int(f−1(f(U))). Since f is a bijection, Int(f(U)) =
f(f−1(Int(f(U))) ⊂ f(mαI Int(U)). Conversely, let V ⊂ Y .
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Then Int(f(f−1(V ))) ⊂ f(mαI Int(f−1(V ))). Since f is a bi-
jection, Int(V ) = Int(f(f−1(V ))) ⊂ f(mαI Int(f−1(V ))); hence
f−1(Int(V )) ⊂ mαI Int(f−1(V )). Therefore, by Theorem 3.4, f is
m-α-I-continuous. �

Proposition 3.7. A function f : (X,m, I) → (Y, τ) is m-α-I-
continuous if and only if it is both m-δ-I-continuous and m-pre-I-
continuous.

Proof. The proof follows from Proposition 2.8. �

Definition 3.8. The graph G(f) of a function f : (X,m, I)→ (Y, τ)
is said to be m-α-I-closed in X × Y if for each (x, y) ∈ (X × Y ) \
G(f), there exist U ∈ mαIO(X, x) and an open set V of Y containing
y such that (U × V ) ∩ G(f) = ∅.

Lemma 3.9. The graph of a function f : (X,m, I)→ (Y, τ) is m-α-
I-closed in X × Y if and only if for each (x, y) ∈ (X × Y ) \ G(f),
there exist U ∈ mαIO(X, x) and an open set V of Y containing y
such that f(U) ∩ V = ∅.

Proof. The proof is an immediate consequence of Definition 3.8. �

Theorem 3.10. If f : (X,m, I) → (Y, τ) is an m-α-I-continuous
function and (Y, τ) is T2, then G(f) is m-α-I-closed.

Proof. Let (x, y) ∈ (X × Y ) \ G(f). Then y 6= f(x). Since Y is T2,
there exist disjoint open sets V and W of Y such that f(x) ∈ W and
y ∈ V . Since f is m-α-I-continuous, there exists U ∈ mαIO(X, x)
such that f(U) ⊂ W . Therefore, f(U) ∩V = ∅. Therefore, by Lemma
3.9, G(f) is m-α-I-closed. �

Definition 3.11. An ideal minimal space (X,m, I) is called an m-α-
I-T2 space if for each pair of distinct points x, y ∈ X, there exist U, V
∈ αIO(X,m) containing x and y, respectively, such that U ∩ V = ∅.

Definition 3.12. An m-space (X,m) is said to be m-T2 [10] if for
any distinct points x, y of X, there exist U , V ∈ m such that x ∈ U ,
y ∈ V and U ∩ V=∅.

Theorem 3.13. Let (X,m, I) be an ideal minimal space and m have
property B. Then (X,m, I) is m-T2 if and only if it m-α-I-T2.

Proof. It is obvious that every m-T2 space is m-α-I-T2 since m ⊂
αIO(X,m). Suppose that (X,m, I) is m-α-I-T2. For any distinct
points x, y ∈ X, there exist U , V ∈ αIO(X,m) such that x ∈ U ,
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y ∈ V and U∩V = ∅. Since U∩V = ∅, mInt(V )∩mInt(V ) = ∅. Since
m has property B, by Theorem 1.3 mInt(U) ∈ m and m ⊂ m∗(I,m).
Therefore, we obtain mInt(U) ∩ mCl∗(mInt(V )) = ∅ and hence
mInt(U)∩mInt(mCl∗(mInt(V ))) = ∅. By repeating the same argu-
ment, we obtain mInt(mCl∗(mInt(U))) ∩mInt(mCl∗(mInt(V ))) =
∅. Now, U, V ∈ αIO(X,m) and hence we have x ∈ U ⊂
mInt(mCl∗(mInt(U)))
∈ m and y ∈ V ⊂ mInt(mCl∗(mInt(V ))) ∈ m. This shows that
(X,m, I) is m-T2. �

Theorem 3.14. If f : (X,m, I) → (Y, τ) is an m-α-I-continuous
injective function and Y is a T2 space, then (X,m, I) is an m-α-I-T2

space.

Proof. The proof follows from the definitions 3.11 and 3.1. �

Theorem 3.15. If f : (X,m, I) → (Y, τ) is an injective m-α-I-
continuous function with an m-α-I-closed graph, then X is an m-α-
I-T2 space.

Proof. Let x1 and x2 be any distinct points of X. Then f(x1) 6= f(x2),
so (x1, f(x2)) ∈ (X×Y )\G(f). Since the graph G(f) is m-α-I-closed,
there exist an m-α-I-open set U containing x1 and V ∈ τ containing
f(x2) such that f(U) ∩ V = ∅. Since f is m-α-I-continuous, f−1(V )
is an m-α-I-open set containing x2 such that U ∩ f−1(V ) = ∅. Hence
X is m-α-I-T2. �

Definition 3.16. An ideal minimal space (X,m, I) is said to be m-
α-I-connected if X cannot be expressed as the union of two nonempty
disjoint m-α-I-open sets.

Theorem 3.17. A m-α-I-continuous image of an m-α-I-connected
space is connected.

Proof. Obvious. �

Lemma 3.18. [9] For any function f : (X, τ, I)→ (Y, σ), f(I) is an
ideal on Y .

Definition 3.19. A subset K of an ideal minimal space (X,m, I) is
said to be m-α-I-compact relative to X, if for every cover {Uλ : λ ∈ Λ}
of K by m-α-I-open sets of X, there exists a finite subset Λ0 of Λ such
that K\

⋃
{Uλ : λ ∈ Λ0} ∈ I. The space (X,m, I) is said to be m-α-

I-compact if X is m-α-I-compact relative to X.
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Definition 3.20. A subset K of an ideal minimal space (X,m, I) is
said to be countably m-α-I-compact relative to X, if for every cover
{Uλ : λ ∈ Λ} of K by countable m-α-I-open sets of X, there exists
a finite subset Λ0 of Λ such that K\

⋃
{Uλ : λ ∈ Λ0} ∈ I. The space

(X,m, I) is said to be countably m-α-I-compact if X is countable m-
α-I-compact relative to X.

Definition 3.21. A subset K of an ideal minimal space (X,m, I) is
said to be m-α-I-Lindelöf relative to X, if for every cover {Uλ : λ ∈ Λ}
of K by m-α-I-open sets of X, there exists a countable subset Λ0 of
Λ such that K\

⋃
{Uλ : λ ∈ Λ0} ∈ I. The space (X,m, I) is said to

be m-α-I-Lindelöf if X is m-α-I-Lindelöf subset of X.

Theorem 3.22. If f : (X,m, I) → (Y, σ) is an m-α-I-continuous
surjection and (X,m, I) is m-α-I-compact, then (Y, σ, f(I)) is f(I)-
compact.

Proof. Let {Vλ : λ ∈ Λ} be an open cover of Y . Then {f−1(Vλ) : λ ∈
Λ} is an m-α-I-open cover of X and hence, there exists a finite subset
Λ0 of Λ such that X\

⋃
{f−1(Vλ) : λ ∈ Λ0} ∈ I. Since f is surjective,

Y \
⋃
{Vλ : λ ∈ Λ0} = f(X\

⋃
{f−1(Vλ) : λ ∈ Λ0}) ∈ f(I). Therefore,

(Y, σ, f(I)) is f(I)-compact. �

The proofs of the next two theorems are straight forward, we therefore
omit them.

Theorem 3.23. If f : (X,m, I) → (Y, σ) is an m-α-I-continuous
surjection and (X,m, I) is m-α-I-Lindelöf, then (Y, σ, f(I)) is f(I)-
Lindelöf.

Theorem 3.24. If f : (X,m, I) → (Y, σ) is an m-α-I-continuous
surjection and (X,m, I) is countably m-α-I-compact, then (Y, σ, f(I))
is countably f(I)-compact.

4. m-α-I-irresolute functions

Definition 4.1. A function f : (X,m1, I)→ (Y,m2,J ) is said to be
(m1,m2)-α-I-irresolute if the inverse image of every m2-α-J -open set
of Y is m1-α-I-open in X.

Theorem 4.2. Let f : (X,m1, I) → (Y,m2,J ) be a function, then
the following properties are eequivalent:

(i) f is (m1,m2)-α-I-irresolute;
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(ii) the inverse image of each m2-α-J -closed subset of Y is m1-α-
I-closed in X;

(iii) for each x ∈ X and each V ∈ αJO(Y,m2) containing f(x),
there exists U ∈ αIO(X,m1) containing x such that f(U) ⊂ V .

Proof. The proof is obvious from that fact that the arbitrary union of
m-α-I-open subsets is m-α-I-open. �

Theorem 4.3. Let f : (X,m1, I) → (Y,m2,J ) be a function. Then
the following properties are equivalent:

(i) f is (m1,m2)-α-I-irresolute;
(ii) m1αI Cl(f−1(V )) ⊂ f−1(m2αJ Cl(V )) for each subset V of Y ;

(iii) f(m1αI Cl(U)) ⊂ m2αJ Cl(f(U)) for each subset U of X.

Proof. (i)⇒ (ii): Let V be any subset of Y . By (i), f−1(m2αJ Cl(V ))
is an m1-α-I-closed subset of X. Hence we have m1αI Cl(f−1(V )) ⊂
m1αI Cl(f−1(m2αJ Cl(V ))) = f−1(m2αJ Cl(V )).
(ii)⇒ (iii): Let U be any subset of X. Then f(U) ⊂ m2αJ Cl(f(U))
and m1αI Cl(U) ⊂ m1αI Cl(f−1(f(U))) ⊂ f−1(m2αJ Cl(f(U))).
Then f(m1αI Cl(U)) ⊂ f(f−1(m2αJ Cl(f(U)))) ⊂ m2αJ Cl(f(U)).
(iii) ⇒ (i): Let V be an m2-α-J -closed subset of Y . Then we have
f(m1αI Cl(f−1(V )) ⊂ m2αI Cl(f(f−1(V ))) ⊂ m2αI Cl(V ) = V .
This implies that m1αI Cl(f−1(V )) ⊂ f−1(f(m1αI Cl(f−1(V )))) ⊂
f−1(V ). Therefore, f−1(V ) is an m1-α-I-closed subset of X and con-
sequently f is an (m1,m2)-α-I-irresolute function. �

Theorem 4.4. A function f : (X,m1, I) → (Y,m2,J ) is (m1,m2)-
α-I-irresolute if and only if f−1(m2αJ Int(V )) ⊂ m1αI Int(f−1(V ))
for each subset V of Y .

Proof. Suppose that f is (m1,m2)-α-I-irresolute. Let V be any subset
of Y . Then m2αJ Int(V ) ⊂ V . Since f is (m1,m2)-α-I-irresolute,
f−1(m2αJ Int(V )) is an m1-α-I-open subset of X. Hence
f−1(m2αJ Int(V )) = m1αI Int(f−1(m2αJ Int(V ))) ⊂
m1αI Int(f−1(V )). Conversely, let V be an m2-α-J -open sub-
set of Y . Then f−1(V ) = f−1(m2αJ Int(V )) ⊂ m1αI Int(f−1(V )).
Therefore, f−1(V ) is an m1-α-I-open subset of X and consequently
f is an (m1,m2)-α-I-irresolute function. �

The proof of the following theorems are follows from the definitions
and hence omitted.

Theorem 4.5. The (m1,m2)-α-I-irresolute image of an m1-α-I-
connected space is m2-α-f(I)-connected.
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Theorem 4.6. If f : (X,m1, I) → (Y,m2,J ) is an (m1,m2)-
α-I-irresolute surjection and (X,m1, I) is m1-α-I-compact, then
(Y,m2, f(I)) is m2-α-f(I)-compact.

Theorem 4.7. If f : (X,m1, I) → (Y,m2,J ) is an (m1,m2)-
α-I-irresolute surjection and (X,m1, I) is m1-α-I-Lindelöf, then
(Y,m2, f(I)) is m2-α-f(I)-Lindelöf.

Theorem 4.8. If f : (X,m1, I) → (Y,m2,J ) is an (m1,m2)-α-I-
irresolute surjection and (X,m1, I) is countably m1-α-I-compact, then
(Y,m2, f(I)) is countably m2-α-f(I)-compact.

We close with the following: Find nontrivial examples for m-α-I-
compactness, countable m-α-I-compactness and m-α-I-Lindelöfness.
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