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From: 

Open Strings On The Rindler Horizon 
Edward Witten - arXiv:1810.11912v4 [hep-th] 26 Nov 201 

 

We have that: 

 

 

 

We have the following mock theta function: 
(https://en.wikipedia.org/wiki/Mock_modular_form#Order_6) 

 

 

That is: 

(A053271  sequence OEIS) 

Sum_{n >= 0}  q^((n+1)(n+2)/2) (1+q)(1+q^2)...(1+q^n)/((1-q)(1-q^3)...(1-
q^(2n+1))) 

We have that: 

sum q^((n+1)(n+2)/2) (1+q)(1+q^2)(1+q^n)))/((1-q)(1-q^3)(1-q^(2n+1))), n = 0 to k 
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For q = 0.5 and n = 2, we develop the above formula in the following way: 

(((0.5^((2+1)(2+2)/2) (1+0.5)(1+0.5^2)(1+0.5^2)))/(((1-0.5)(1-0.5^3)(1-
0.5^(2*2+1))) 

 

 
 
 

 
0.0864055... 

From (3.9), for k = 2, N = 5, q = e2π = 535.49165… and n from 1 to 0.0864055, we 
obtain: 

 

(2sin((4Pi)/5))^4*535.49165^(1/3) *  product (1-535.49165^n exp((8Pi*i)/5))^4 (1-
535.49165^n exp((-8Pi*i)/5))^4, n=1 to 0.0864055 

Input interpretation: 

 

 
 
Result: 

 
15.5088 

 

8*((((((2sin((4Pi)/5))^4*535.49165^(1/3) *  product (1-535.49165^n 
exp((8Pi*i)/5))^4 (1-535.49165^n exp((-8Pi*i)/5))^4, n=1 to 0.0864055)))))+golden 
ratio 
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where 8 is a Fibonacci number  

 

Input interpretation: 

 

 

 

 
Result: 

 

125.689 result very near to the dilaton mass calculated as a type of Higgs boson: 125 
GeV for T = 0 and to the Higgs boson mass 125.18 GeV 

 

 

8*((((((2sin((4Pi)/5))^4*535.49165^(1/3) *  product (1-535.49165^n 
exp((8Pi*i)/5))^4 (1-535.49165^n exp((-8Pi*i)/5))^4, n=1 to 
0.0864055)))))+13+golden ratio^2 

where 13 is a Fibonacci number  

Input interpretation: 

 

 
 

 
Result: 

 
139.689 result practically equal to the rest mass of  Pion meson 139.57 MeV 
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64*((((((2sin((4Pi)/5))^4*535.49165^(1/3) *  product (1-535.49165^n 
exp((8Pi*i)/5))^4 (1-535.49165^n exp((-8Pi*i)/5))^4, n=1 to 0.0864055)))))-
55+1/golden ratio 

where 55 is a Fibonacci number  

Input interpretation: 

 

 
 

 
Result: 

 
938.183 result practically equal to the proton mass in MeV 

 

76*((((((2sin((4Pi)/5))^4*535.49165^(1/3) *  product (1-535.49165^n 
exp((8Pi*i)/5))^4 (1-535.49165^n exp((-8Pi*i)/5))^4, n=1 to 0.0864055)))))+11 

where 76 and 11 are Lucas numbers  

Input interpretation: 

 

 

Result: 
 

1189.67 result practically equal to the rest mass of Sigma baryon 1189.37 
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89*((((((2sin((4Pi)/5))^4*535.49165^(1/3) *  product (1-535.49165^n 
exp((8Pi*i)/5))^4 (1-535.49165^n exp((-8Pi*i)/5))^4, n=1 to 0.0864055)))))+Pi 

where 89 is a Fibonacci number  

Input interpretation: 

 

 
 
Result: 

 
1383.43 result practically qual to the rest mass of Sigma baryon 1383.7 

 

We have also: 

 

76*((((((2sin((4Pi)/5))^4*535.49165^(1/3) *  product (1-535.49165^n 
exp((8Pi*i)/5))^4 (1-535.49165^n exp((-8Pi*i)/5))^4, n=1 to 0.0864055)))))-11-Pi 

Where 76 and 11 are Lucas numbers 

 
Input interpretation: 

 

 
 
Result: 

 
1164.53 result very near to the following Ramanujan’s class invariant 𝑄 =

𝐺 /𝐺 /  = 1164,2696   
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[1/((((((2sin((4Pi)/5))^4*535.49165^(1/3) *  product (1-535.49165^n 
exp((8Pi*i)/5))^4 (1-535.49165^n exp((-8Pi*i)/5))^4, n=1 to 0.0864055)))))]^1/4096 

Input interpretation: 

 

 
 
Result: 

 
0.999331   result very near to the following Rogers-Ramanujan continued fraction: 

 

 

 

Now, we have that: 

 

 

 

for  N = 5, z = 1/2-0.0000864055i = 0.5-0.0000864055i, π = 180, we obtain: 
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sum (180*sin (180*(0.5-0.0000864055i)))/(((sin((180*k)/5) sin180((0.5-
0.0000864055i)-k/5)))), k=1 to 4 

 
Sum: 

 

 
 
Decimal approximation: 

 
 
Input interpretation: 

 

 
Result: 

 
 
Polar coordinates: 

 
6435.616503980652 

 

 

((((sum (180*sin (180*(0.5-0.0000864055i)))/(((sin((180*k)/5) sin180((0.5-
0.0000864055i)-k/5)))), k=1 to 4))))+123+29+7 

where 123, 29 and 7 are Lucas numbers  

Input interpretation: 

 

 

 
Result: 
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Input interpretation: 

 

 
 
Result: 

 
 
Polar coordinates: 

 
6276.62 result practically equal to the rest mass of charmed B meson 6276 

 

(-6276.35 - 58.2853 i)+golden ratio 

Input interpretation: 
 

 
 

 
Result: 

 
Polar coordinates: 

 
6275 as above 

 

for  N = 5, k = 3, z = 1/2-0.0000864055i = 0.5-0.0000864055i, π = 180, we obtain 
also: 

 

(180*sin (180*(0.5-0.0000864055i)))/(((sin((180*3)/5) sin180 *((0.5-
0.0000864055i)-3/5)))) 

Input interpretation: 
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Result: 

 

Polar coordinates: 
 

2167.52  

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 
Multiple-argument formulas: 
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And we obtain also: 

(180*sin (180*(0.5-0.0000864055i)))/(((sin((180*3)/5) sin180 *((0.5-
0.0000864055i)-3/5)))) – 55 

where 55 is a Fibonacci number  

Input interpretation: 

 

 

Result: 

 

Polar coordinates: 
 

2112.53  result practically equal to the rest mass of strange D meson 2112.3 

 
Alternative representations: 
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Series representations: 

 

 

 
Integral representations: 

 

 



 

 
Multiple-argument formulas:

 
 

Now, we have that: 

For z = 0.5-0.0000864055i , N = 5, π = 180, we obtain:

5*180 cot(180(5(0.5-0.0000864055i

Input interpretation: 

Result: 

 

Polar coordinates: 

15 

argument formulas: 

 

, N = 5, π = 180, we obtain: 

0.0000864055i-0.5)+0.5))-((180 cot 180*(0.5

 

 

 

 

 

 

 

t 180*(0.5-0.0000864055i))) 
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522.262  result very near to the Lucas number 521 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representation: 

 

 

 
from which: 

5*180 cot(180(5(0.5-0.0000864055i-0.5)+0.5))-((180 cot 180*(0.5-0.0000864055i))) 
- 24 - golden ratio 

Input interpretation: 

 

 

 

 

Result: 

 

Polar coordinates: 
 

547.536  result practically equal to the rest mass of Eta meson 547.853 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representation: 
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From the formula of coefficients of the '5th order' mock theta function 𝜓1(q): 
(A053261 OEIS Sequence) 

sqrt(phi) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n))  

sqrt(golden ratio) * exp(Pi*sqrt(140/15)) / (2*5^(1/4)*sqrt(140))-7 

where 7 is a Lucas number 

Input: 

 

 

 
Exact result: 

 

Decimal approximation: 

 

522.53652054…  

Property: 

 

 
 
Alternate forms: 
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Series representations: 

 

 



 

 

 

 

We have also: 

Pi*(((5*180 cot(180(5(0.5-0.0000864055i
0.0000864055i)))))) - 89 - 1/golden ratio

where 89 is a Fibonacci number 

Input interpretation: 

21 

0.0000864055i-0.5)+0.5))-((180 cot 180*(0.5
1/golden ratio 

where 89 is a Fibonacci number  

 

 

 

 

 

 

 

 

((180 cot 180*(0.5-
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Result: 

 

Polar coordinates: 
 

1729.16  

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
 
Integral representation: 
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1/Pi*(((5*180 cot(180(5(0.5-0.0000864055i-0.5)+0.5))-((180 cot 180*(0.5-
0.0000864055i))))))+29-golden ratio  

where 29 is a Lucas number  

Input interpretation: 

 

 

 

 

Result: 

 

Polar coordinates: 
 

139.319 result practically equal to the rest mass of  Pion meson 139.57 MeV 
 

 
Alternative representations: 
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Series representations: 

 

 

 

 
 
 
Integral representation: 
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1/Pi*(((5*180 cot(180(5(0.5-0.0000864055i-0.5)+0.5))-((180 cot 180*(0.5-
0.0000864055i))))))+47-4-golden ratio 

where 47 and 4 are Lucas numbers  

Input interpretation: 

 

 

 

 

Result: 

 

Polar coordinates: 
 

125.631 result very near to the dilaton mass calculated as a type of Higgs boson: 125 
GeV for T = 0 and to the Higgs boson mass 125.18 GeV 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
 
Integral representation: 
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Now, we have that: 

 

 

 

16  product (1+exp(-4*Pi*n*1729))^8, n=1 to infinity 

Input interpretation: 

 

 
Result: 

 

16 

 

 
1-exp(-4Pi*n*1729)^8 

Input: 
 

 
 
Exact result: 

 
Plots: 
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Roots: 

 

 

Periodicity: 

 

Series expansion at n = 0: 

 

 
Derivative: 

 

Indefinite integral: 

 

Limit: 

 

Series representations: 
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Definite integral over a half-period: 

 

Definite integral over a period: 

 

Definite integral mean square: 

 

 
In conclusion, we obtain: 

1/(((1 - e^(-55328 * π))))   16  product (1+exp(-4*Pi*n*1729))^8, n=1 to infinity 

Input interpretation: 

 

 
Result: 

 

16 

 

Alternate form: 

 

 
8 * ((((1/(((1 - e^(-55328 * π))))   16  product (1+exp(-4*Pi*n*1729))^8, n=1 to 
infinity))))-3+1/golden ratio 

where 8 and 3 are Fibonacci numbers  

Input interpretation: 
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Result: 

 

125.618 result very near to the dilaton mass calculated as a type of Higgs boson: 125 
GeV for T = 0 and to the Higgs boson mass 125.18 GeV 

 

 

Alternate forms: 

 

 

 

 
 

8 * ((((1/(((1 - e^(-55328 * π))))   16  product (1+exp(-4*Pi*n*1729))^8, n=1 to 
infinity))))+11+1/golden ratio 

where 11 is a Lucas number 

Input interpretation: 

 

 

 
 
 
 
Result: 

 

139.618 result practically equal to the rest mass of  Pion meson 139.57 MeV 
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Alternate forms: 

 

 

 

 
 

 

Now, we have that: 

 

 

exp(2*Pi*(0.0864055))-8+(exp(-2*Pi*(0.0864055))) 

Input interpretation: 
 

 
Result: 

 
-5.697947... 

 

exp(2*Pi*(0.0864055))+8+(exp(-2*Pi*(0.0864055))) 

Input interpretation: 
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Result: 

 
10.30205... 

 

From the difference between the two functions and squaring, we get: 

 

[((exp(2*Pi*(0.0864055))-8+(exp(-2*Pi*(0.0864055))))) - 
((exp(2*Pi*(0.0864055))+8+(exp(-2*Pi*(0.0864055)))))]^2 

Input interpretation: 

 
 
Result: 

 
256 = 64 × 4 

 

From the formula of coefficients of the '5th order' mock theta function 𝜓1(q): 
(A053261 OEIS Sequence) 

sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n))  

for n = 117, we obtain: 

sqrt(golden ratio) * exp(Pi*sqrt(117/15)) / (2*5^(1/4)*sqrt(117))+(2*0.9568666373) 

where 0.9568666373 is the following Rogers-Ramanujan continued fraction: 
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Input interpretation: 

 

 

 
Result: 

 

256.083666904… 

 
Series representations: 

 

 



 

 

 

 

 

Multiplying the two results, we obtain:

(((exp(2*Pi*(0.0864055))-8+(exp(
(((exp(2*Pi*(0.0864055))+8+(exp(

Input interpretation: 

 

35 

Multiplying the two results, we obtain: 

8+(exp(-2*Pi*(0.0864055)))))) * 
5))+8+(exp(-2*Pi*(0.0864055)))))) 
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Result: 

 
-58.7006... 

 

From which: 

-2(((exp(2*Pi*(0.0864055))-8+(exp(-2*Pi*(0.0864055)))))) * 
(((exp(2*Pi*(0.0864055))+8+(exp(-2*Pi*(0.0864055))))))+29-7 

where 29 and 7 are Lucas numbers  

Input interpretation: 

 
 
Result: 

 
139.4011... result practically equal to the rest mass of  Pion meson 139.57 MeV 
 

 

-2(((exp(2*Pi*(0.0864055))-8+(exp(-2*Pi*(0.0864055)))))) * 
(((exp(2*Pi*(0.0864055))+8+(exp(-2*Pi*(0.0864055))))))+7+3-golden ratio 

where 7 and 3 are Lucas numbers  

Input interpretation: 

 

 
 
Result: 

 
125.783… result very near to the dilaton mass calculated as a type of Higgs boson: 
125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV 
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-27*(((exp(2*Pi*(0.0864055))-8+(exp(-2*Pi*(0.0864055)))))) * 
(((exp(2*Pi*(0.0864055))+8+(exp(-2*Pi*(0.0864055))))))+123+18+golden ratio^2 

where 123 and 18 are Lucas numbers  

Input interpretation: 

 

 
 
 
 
Result: 

 
1728.533... 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 

 

 

 

 

for  q = e2π = 535.49165…, we obtain: 
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535.49165^(1/24) product (1-535.49165^n), n=1 to 0.0864055 

Input interpretation: 

 
 
Result: 

 
1.29927 

 

And: 

(((535.49165^(1/24) product (1-535.49165^n), n=1 to 0.0864055)))^8 

Input interpretation: 

 
 
Result: 

 
8.12053 

 

From: 

 

-(((1/(1-535.49165*(535.49165^(1/2))^-2)))) * 1/8.12053 * 535.49165^(-1/6) product 
((1-535.49165^(n-0.5)))^8, n=1 to 0.0864055 

Input interpretation: 

 
 
Result: 

 
1.94618*1014 
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From which, we have: 

(((-(((1/(1-535.49165*(535.49165^(1/2))^-2)))) * 1/8.12053 * 535.49165^(-1/6) 
product ((1-535.49165^(n-0.5)))^8, n=1 to 0.0864055)))^1/3 

Input interpretation: 

 
 
Result: 

 
57951 

 

From the formula of coefficients of the '5th order' mock theta function 𝜓1(q): 
(A053261 OEIS Sequence) 

sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n))  

 

for n = 329, we obtain: 

 

sqrt(golden ratio) * exp(Pi*sqrt(329/15)) / (2*5^(1/4)*sqrt(329)) + 377 + 34 + 8 

where 377, 34 and 8 are Fibonacci numbers 

Input: 

 

 

Exact result: 
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Decimal approximation: 

 

57951.357… 

Property: 

 

Alternate forms: 

 

 

 

 
 
Series representations: 
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55+(((-(((1/(1-535.49165*(535.49165^(1/2))^
product ((1-535.49165^(n-0.5)))^8, n=1 to 0.0864055)))^1/5

where 55 is a Fibonacci number  

Input interpretation: 

 
 
 
Result: 

 
775.836 result practically equal to the rest mass of Neutral rho meson 775.49

 

8+10^3+(((-(((1/(1-535.49165*(535.49165^(1/2))^
1/6) product ((1-535.49165^(n

where 8 is a Fibonacci number 

Input interpretation: 

 
Result: 

 
1728.84 

This result is very near to the mass of candidate glueball f
Furthermore, 1728 occurs in the algebraic formula for the 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross
Zagier theorem. The number 1728 is one less than the Hardy
1729 

42 

535.49165*(535.49165^(1/2))^-2)))) * 1/8.12053 * 535.49165^(
0.5)))^8, n=1 to 0.0864055)))^1/5 

where 55 is a Fibonacci number   

result practically equal to the rest mass of Neutral rho meson 775.49

535.49165*(535.49165^(1/2))^-2)))) * 1/8.12053 * 535.49165^(
535.49165^(n-0.5)))^8, n=1 to 0.0864055)))^1/5 

where 8 is a Fibonacci number  

This result is very near to the mass of candidate glueball f
Furthermore, 1728 occurs in the algebraic formula for the j-invariant

. As a consequence, it is sometimes called a Zagier as a pun on the Gross
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 

 

2)))) * 1/8.12053 * 535.49165^(-1/6) 

 

result practically equal to the rest mass of Neutral rho meson 775.49 

2)))) * 1/8.12053 * 535.49165^(-

 

This result is very near to the mass of candidate glueball f0(1710) meson. 
invariant of an elliptic 

. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Ramanujan number 
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55+8+10^3+(((-(((1/(1-535.49165*(535.49165^(1/2))^-2))))*1/8.12053* 
535.49165^(-1/6) product ((1-535.49165^(n-0.5)))^8, n=1 to 0.0864055)))^1/5 

where 55 and 8 are Fibonacci numbers  

Input interpretation: 

 

 
Result: 

 

1783.84 result in the range of the hypothetical mass of Gluino (gluino = 1785.16 
GeV). 

 

 

(((-(((1/(1-535.49165*(535.49165^(1/2))^-2)))) * 1/8.12053 * 535.49165^(-1/6) 
product ((1-535.49165^(n-0.5)))^8, n=1 to 0.0864055)))^1/4 - 123 + 11 - golden ratio 

where 123 and 11 are Lucas numbers  

Input interpretation: 

 

 

 
Result: 

 

3621.43 result practically equal to the rest mass of  double charmed Xi baryon 
3621.40 
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1/2[(((-(((1/(1-535.49165*(535.49165^(1/2))^-2)))) * 1/8.12053 * 535.49165^(-1/6) 
product ((1-535.49165^(n-0.5)))^8, n=1 to 0.0864055)))^1/4]+golden ratio 

Input interpretation: 

 

 
 
Result: 

 
1869.14 result practically equal to the rest mass of D meson 1869.62 

 

 

And: 

 

 

(((1/(1-535.49165*(-535.49165^(1/2))^-2)))) * 1/8.12053 * 535.49165^(-1/6) product 
((1+535.49165^(n-0.5)))^8, n=1 to 0.0864055 

Input interpretation: 

 
 
Result: 

 
-1.94618*1014 

 

We have that: 
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-1/(sqrt535.49165- 1/(535.49165^(1/2))) * 1/8.12053 *(((16 * 535.49165^(1/3) 
product ((1+535.49165^n))^8, n=1 to 0.0864055))) 

Input interpretation: 

 
 
Result: 

 
-0.692716 

 

Multiplying the two results, we obtain: 

-0.692716*(((((((1/(1-535.49165*(-535.49165^(1/2))^-2)))) * 1/8.12053 * 
535.49165^(-1/6) product ((1+535.49165^(n-0.5)))^8, n=1 to 0.0864055)))) 

Input interpretation: 

 

 
Result: 

 

1.34815*1014 

 

From which: 

4ln[-0.692716*(((((((1/(1-535.49165*(-535.49165^(1/2))^-2)))) * 1/8.12053 * 
535.49165^(-1/6) product ((1+535.49165^(n-0.5)))^8, n=1 to 0.0864055))))]-5 

 
where 5 is a Fibonacci number  
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Input interpretation: 

 

 
Result: 

 
125.14 result very near to the dilaton mass calculated as a type of Higgs boson: 125 
GeV for T = 0 and to the Higgs boson mass 125.18 GeV 

 

 

4ln[-0.692716*(((((((1/(1-535.49165*(-535.49165^(1/2))^-2)))) * 1/8.12053 * 
535.49165^(-1/6) product ((1+535.49165^(n-0.5)))^8, n=1 to 0.0864055))))]+11-
2+1/golden ratio 

where 11 and 2 are Lucas numbers  

Input interpretation: 

 

 

 

 
Result: 

 

139.758 result practically equal to the rest mass of  Pion meson 139.57 MeV 
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We have also: 

27*2ln[-0.692716*(((((((1/(1-535.49165*(-535.49165^(1/2))^-2)))) * 1/8.12053 * 
535.49165^(-1/6) product ((1+535.49165^(n-0.5)))^8, n=1 to 0.0864055))))]-
29+1/golden ratio 

where 29 is a Lucas number  

From Wikipedia: 

“The fundamental group of the complex form, compact real form, or any algebraic 
version of E6 is the cyclic group Z/3Z, and its outer automorphism group is the cyclic 
group Z/2Z. Its fundamental representation is 27-dimensional (complex), and a basis 
is given by the 27 lines on a cubic surface. The dual representation, which is 
inequivalent, is also 27-dimensional. In particle physics, E6 plays a role in 
some grand unified theories”. 

 

Input interpretation: 

 

 

 

 
Result: 

 

1728.5 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 
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And: 

 

((((27*2ln[-0.692716*(((((((1/(1-535.49165*(-535.49165^(1/2))^-2)))) * 1/8.12053 * 
535.49165^(-1/6) product ((1+535.49165^(n-0.5)))^8, n=1 to 0.0864055))))]-
29+1/golden ratio))))^1/15 

where 29 is a Lucas number  

Input interpretation: 

 

 

 

 
Result: 

 

1.64378 ≈ ζ(2) = = 1.644934… 

 

 

Now, we have that: 
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(((535.49165^(1/24) product (1-535.49165^n), n=1 to 0.0864055)))^6 

Input interpretation: 

 
 
Result: 

 
4.81048 = η6(τ) 

 

1/((((535.49165^1/12 product ((1-535.49165^n exp((2*4Pi*i)/5))) ((1-535.49165^n 
exp((-2*4Pi*i)/5))) 4.81048 , n=1 to 0.0864055)))) 

Input interpretation: 

 

 
 
Result: 

 
0.592385 

 

[1/((((535.49165^1/12 product ((1-535.49165^n exp((2*4Pi*i)/5))) ((1-535.49165^n 
exp((-2*4Pi*i)/5))) 4.81048 , n=1 to 0.00864055))))]^1/1024 

 
 
Input interpretation: 
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Result: 
 

0.999489 result very near to the value of the following Rogers-Ramanujan continued 
fraction: 
  

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓  

 

 

1/8log base 0.999489 [1/((((535.49165^1/12 product ((1-535.49165^n 
exp((2*4Pi*i)/5))) ((1-535.49165^n exp((-2*4Pi*i)/5))) 4.81048 , n=1 to 
0.00864055))))]-e 

Input interpretation: 

 

 
 

 
Result: 

 
125.331 result very near to the dilaton mass calculated as a type of Higgs boson: 125 
GeV for T = 0 and to the Higgs boson mass 125.18 GeV 
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1/8log base 0.999489 [1/((((535.49165^1/12 product ((1-535.49165^n 
exp((2*4Pi*i)/5))) ((1-535.49165^n exp((-2*4Pi*i)/5))) 4.81048 , n=1 to 
0.00864055))))]+11+1/golden ratio 

where 11 is a Lucas number  

 
Input interpretation: 

 

 
 
 

 
Result: 

 
139.667 result practically equal to the rest mass of  Pion meson 139.57 MeV 
 

 

Now, we have that: 

 

 

 

         = 0.592385 

 

1/(4sin^2(4Pi/5)) 

Input: 
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Exact result: 

 

 
Decimal approximation: 

 

0.723606797…. 

Alternate forms: 

 

 

 

Minimal polynomial: 
 

 
Alternative representations: 

 

 

 

 
 
 
Series representations: 
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1/(8Pi^2*0.9568666373*0.0864055)^3 

Input interpretation: 

 

 
Result: 

 

 0.00359462… 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

 
(0.592385 * 0.723606797 * 0.00359462) 

Input interpretation: 
 

 
Result: 

 
 
Repeating decimal: 

 
0.0015408475672.... 

 

golden ratio/(0.592385 * 0.723606797 * 0.00359462) + 64 + golden ratio 

Input interpretation: 
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Result: 

 

1115.71… result practically equal to the rest mass of Lambda baryon 1115.683 

Alternative representations: 

 

 

 

 

 

e/(0.592385 * 0.723606797 * 0.00359462)-47+11 

where 47 and 11 are Lucas numbers 

Input interpretation: 

 

 
Result: 

 

1728.15… 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 
Alternative representation: 
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Series representations: 

 

 

 

 

 

Pi/(0.592385 * 0.723606797 * 0.00359462)-256-55+1/golden ratio 

where 55 is a Fibonacci number  

Input interpretation: 

 

 

Result: 

 

1728.49… 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 
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1/5 * 1/(0.592385 * 0.723606797 * 0.00359462) + 11 - golden ratio 

where 11 is a Lucas number  

Input interpretation: 

 

 

 
Result: 

 

139.181… result practically equal to the rest mass of  Pion meson 139.57 MeV 
 
 

 
Alternative representations: 

 

 

 

 

1/5 * 1/(0.592385 * 0.723606797 * 0.00359462) - Pi -  golden ratio 

Input interpretation: 

 

 

Result: 

 

125.039… result very near to the dilaton mass calculated as a type of Higgs boson: 
125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

Integral representations: 

 

 

 

 

 

1/4 * 1/(0.592385 * 0.723606797 * 0.00359462)-29+golden ratio 

where 29 is a Lucas number  

Input interpretation: 
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Result: 

 

134.866… result practically equal to the rest mass of Pion meson 134.9766 

 
Alternative representations: 

 

 

 

 

 

3/2*1/(0.592385 * 0.723606797 * 0.00359462)-34 

where 34 is a Fibonacci number  

Input interpretation: 

 
 
Result: 

 
939.49019... result practically equal to the neutron mass in MeV 

 

Now, from the previous equation 

 

we have also, for V = 1.9559391549 
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1.9559391549/(8Pi^2*0.9568666373*0.0864055)^3 

Input interpretation: 

 

Result: 

 

0.00703085… 

 
Alternative representations: 
 

 

 

 

 

Series representations: 
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Integral representations: 
 

 

 

 

 

 
1/ (((1.9559391549/(8Pi^2*0.9568666373*0.0864055)^3)))-3 

where 3 is a Fibonacci number 

Input interpretation: 

 

Result: 

 

139.230… result practically equal to the rest mass of  Pion meson 139.57 MeV 
 

 
Alternative representations: 
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Series representations: 
 

 

 

 

 
Integral representations: 
 

 

 

 

 

 

Thence, we obtain: 

(0.592385 * 0.723606797 * 0.00703085) 

Input interpretation: 
 

 
Result: 

 
0.00301380065719971506825 
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From which: 

1/(0.592385 * 0.723606797 * 0.00703085) 

Input interpretation: 

 
 
Result: 

 
331.80694868… 

 

From the formula of coefficients of the '5th order' mock theta function 𝜓1(q): 
(A053261 OEIS Sequence) 

sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n))  

for n = 125, we obtain: 

sqrt(golden ratio) * exp(Pi*sqrt(125/15)) / (2*5^(1/4)*sqrt(125)) + golden ratio 

Input: 

 

 

 
Exact result: 

 

Decimal approximation: 

 

331.8975144… 

Property: 
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Alternate forms: 

 

 

 

 
Series representations: 

 

 



 

 

 

golden ratio/ (0.592385 * 0.723606797 * 0.00703085) + 11

where 11 is a Lucas number 

Input interpretation: 

Result: 

 

547.875… result practically equal to the rest 

66 

golden ratio/ (0.592385 * 0.723606797 * 0.00703085) + 11 

 

 

result practically equal to the rest mass of Eta meson 547.853

 

 

 

 

 

 

 

 

mass of Eta meson 547.853 
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Alternative representations: 
 

 

 

 

 

 

 

Pi/ (0.592385 * 0.723606797 * 0.00703085) - 21 - golden ratio 

where 21 is a Fibonacci number  

Input interpretation: 

 

 

Result: 
 

 

1019.78… result practically equal to the rest mass of Phi meson 1019.445 

 
Alternative representations: 
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Series representations: 
 

 

 

 

 
Integral representations: 
 

 

 

 

 

 

5/ (0.592385 * 0.723606797 * 0.00703085) + 76 -7 

where 76 and 7 are Lucas numbers  

Input interpretation: 

 
 
Result: 

 
1728.0347434…. 

 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
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curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 

 

4 / (0.592385 * 0.723606797 * 0.00703085) + 55 

where 55 is a Fibonacci number  

Input interpretation: 

 
Result: 

 
1382.227794... result practically equal to the rest mass of Sigma baryon 1382.8  
 
 

Pi / (0.592385 * 0.723606797 * 0.00703085) + 199 - 11+ golden ratio 

where 199 and 11 are Lucas numbers  

Input interpretation: 

 

 

Result: 

 

1232.02… result practically equal to the rest mass of Delta baryon 1232 
 
 

 
Alternative representations: 
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Series representations: 
 

 

 

 

Integral representations: 
 

 

 

 

 

  

(((Pi / (0.592385 * 0.723606797 * 0.00703085) + 123))) 

where 123 is a Lucas number  

Input interpretation: 
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Result: 

 

1165.40… result very near to the following Ramanujan’s class invariant 𝑄 =

𝐺 /𝐺 /  = 1164,2696   
 
 
Alternative representations: 
 

 

 

 

 
Series representations: 
 

 

 

 

Integral representations: 
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(((Pi / (0.592385 * 0.723606797 * 0.00703085) + 123)))^1/14 

Input interpretation: 

 
 
Result: 

 
1.655899557313.... result very near to the 14th root of the following Ramanujan’s 

class invariant 𝑄 = 𝐺 /𝐺 /  = 1164,2696  i.e. 1,65578... 

 

(((Pi / (0.592385 * 0.723606797 * 0.00703085) + 123)))^1/14 - (29+7+2)/10^3 

where 29, 7 and 2 are Lucas numbers  

Input interpretation: 

 

Result: 

 

1.6178995573…. result that is a very good approximation to the value of the golden 
ratio 1,618033988749... 
 

 
Alternative representations: 
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Series representations: 
 

 

 

 

 
Integral representations: 
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Now, we have that: 

 

For s = 2, N = 5, 𝑇 = 0.0864055 

1/4 exp(2*Pi*0.0864055)  sum ((-1)^s (tanh ((5Pi*s)/(4*0.0864055)))-1/5 
tanh((Pi*s)/(4*0.0864055)) * 1/((sinh(Pi*s)/(2*0.0864055)))), s = 1 to 233 

Input interpretation: 
 

 

 

 

Result: 
 

-0.431594 
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From which: 

1/10^27[(((-2/(((1/4 exp(2*Pi*0.0864055)  sum ((-1)^s (tanh 
((5Pi*s)/(4*0.0864055)))-1/5 tanh((Pi*s)/(4*0.0864055)) * 
1/((sinh(Pi*s)/(2*0.0864055)))), s = 1 to 233))))))^1/3 + 5/10^3] 

where 5 is a Fibonacci number  

Input interpretation: 

 

 
 

 
Result: 

 
1.67219*10-27 result practically equal to the proton mass in kg 

 

 

We have also: 

 

N = 5,  x = 1/5  

 

(tanh (5Pi/20)-1/5 tanh (Pi/20)) * 1/(sinh (Pi/10)) 

Input: 
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Exact result: 

 

 

 
Decimal approximation: 

 

1.9559391549…. 

Property: 

 

Alternate forms: 

 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 

 

 

From which: 

((((tanh (5Pi/20)-1/5 tanh (Pi/20)) * 1/(sinh (Pi/10)))))^11+123+golden ratio^2 

where 123 is a Lucas number  

Input: 
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Exact result: 

 

 

Decimal approximation: 

 

1728.52659… 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 

Property: 

 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 

 

 

 

 



 

((((tanh (5Pi/20)-1/5 tanh (Pi/20)) * 1/(sinh (Pi/10)))))^7+29+1/golden ratio

where 29 is a Lucas number 

Input: 

Exact result: 

Decimal approximation: 

139.136508… result practically equal
 

Property: 

 
Alternate forms: 

 

 
 
 

80 

1/5 tanh (Pi/20)) * 1/(sinh (Pi/10)))))^7+29+1/golden ratio

  

 

 

 

result practically equal to the rest mass of  Pion meson 

 

 

 

1/5 tanh (Pi/20)) * 1/(sinh (Pi/10)))))^7+29+1/golden ratio 

 

 

 

 

 

o the rest mass of  Pion meson 139.57 MeV 
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Expanded form: 

 

 
Alternative representations: 

 

 

 

 
Series representations: 
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((((tanh (5Pi/20)-1/5 tanh (Pi/20)) * 1/(sinh (Pi/10)))))^7+11+Pi+golden ratio 

where 11 is a Lucas number  

Input: 

 

 

 

 

Exact result: 

 

 

 
Decimal approximation: 

 

125.2781008… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV 



 

 

Alternate forms: 

 
Alternative representations:
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Alternative representations: 
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Series representations: 
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