An Analysis of the State-Transition Function of a Self-Reproducing Structure in Cellular Automata Space.

Perry W Swanborough

Abstract

A cellular automata structure described by J Byl (1989) self-replicates under a corresponding state-transition function. Subsequent work has established that replication of this and related structures given by other researchers is homochiral. This work describes a detailed analysis of the state-transition function for replication of J Byl's structure, so the work serves as an Appendix to accompany the preceding work viXra:1904.0225.

Keywords: cellular automata, self-reproduction, artificial life, biological homochirality.

Introduction

In a previous work [2], it was shown that self-reproduction of loops in cellular automata (CA) spaces is homochiral. The work [2] was intended for a readership already familiar with CA in general, and the CA works cited in it specifically. Subsequent to feedback from some readers, I considered that a more-detailed analysis of one of the systems cited in the prior work [1] could be of interest to readers requiring more detail. For purposes not concerned with chirality questions, only 43 state-transition rules ($36+7$ default rules) need to be explicitly specified for replication of J Byl's structure [1], but by enlarging the state-transition rules list by identifying and explicitly listing all of the default and state-conserving transitions, subsequent analysis comprehensively describes homochirality of CA loop self-reproduction.

The state-transition rules for loop replication sort into three subsets: achiral rules, rule and corresponding mirror-rule pairs common to both R- and L- loop (mirror of R-loop) selfreproduction, and chiral rules. Mirrors of the R-loop-only chiral rules apply only to L-loop replication. A notable observation is that the chiral rules subset contains rules which contradict rules within the corresponding mirror-chiral rules list, proving that loop selfreproduction is homochiral, i.e. R-loop replication and L-loop replication cannot coexist under a pooling of the state-transition function with its corresponding mirror-function, because the pooled list is unworkable due to the contradictions [2]. The parallel with homochirality of real biology has been noted [2], but the question of the relevance of this work to organic biological homochirality remains open at the current time.

J Byl's loop, with the state-transition function under which it replicates.

Figure 1 below shows one replication of J Byl's structure within 27 recursions [1]. The cellstate set is $\{0,1,2,3,4,5\}$, state 0 being the "quiescent" state. The state of each cell \mathbf{C} at time $t+1$ is a function of its time t state and time t states of its immediate neighbour-cells above, to the right, below, and to the left (respectively, North, East, South and West). Rules within the state-transition function are notated in the format CNESW $\boldsymbol{\rightarrow}$ C' expressing the state transition from the state of \mathbf{C} (at time t) to \mathbf{C}^{\prime} (state of \mathbf{C} at time $t+1$), given the specific N,E,S,W neighbour-states. Importantly, strong rotational symmetry applies, i.e. all 90° rotations of neighbourhoods are equivalent, so for example, the rule notations CNESW \rightarrow C' $=42531 \rightarrow 3,45312 \rightarrow 3,43125 \rightarrow 3$ and $41253 \rightarrow 3$ are all equivalently one rule.

It is obvious without demonstration that mirror-reflections of the state-transition rules applied to a mirror-configuration of the initial structure will deliver an exact mirror of the development
shown in Figure 1 below. I refer to the development of J Byl's structure shown in Figure 1 as "R-loop" reproduction to distinguish it from corresponding mirror "L-loop" reproduction. (As an example of notation of a rule with its corresponding mirror, the mirror of rule $42531 \rightarrow 3$ is $42135 \rightarrow 3$).

1

4

6

12

Figure 1, from [1]. Self-reproduction of the structure shown at time 0 (the first frame above, labelled 0), under the corresponding state-transition function [1] subsequently studied in this work. The structure develops to two separated structures (parent (left) and daughter) at recursion 26. The white space in all frames corresponds to the 0 quiescent state.

The rules of the state-transition function sort into three categories: achiral rules which are not changed under mirror-transformation and apply to both R-loop and L-loop replication, mutual-mirror pairs of rules which also apply to both R - and L-loop replication, and chiral rules which apply only to one or the other of R- and L-loop replication (the corresponding mirrors of the R-loop-only chiral rules apply only to L-loop replication). The three categories of rules are tabulated below in Tables 1, 2 and 3.

Table 1 below lists the achiral rules applying to replication of J Byl's structure.

Table 1. Achiral subset of rules of the state-transition function for self-reproduction of the structure shown at time 0 in Figure 1. (Achiral rules are the rules unchanged by mirrortransformation.) The highlighted rules are illustrated in Figures 2 to 4.
CNESW \rightarrow C'

00000 --> 0	00252 --> 0	10003 --> 3	20252 --> 5	31215 --> 1
00003 -->	01010 --> 0	10033 --	21202 --> 2	34323 --> 3
00033 -	01040	20000	23202 --> 2	40212 --> 4
00100 --> 0	02000 --> 0	20004 -->	24202 --> 2	40232 --> 4
00110	02200	200	30001 --> 0	40242 --> 4
00131	02202	20020	30003 --> 0	02
00201 --> 0	04000	20022 -	30011 --> 0	0022 --> 5
00202 --> 0	05000 --> 0	20030 --> 2	30121 --> 1	$50212 \rightarrow 4$
00205 --> 0	$10000-->0$	20033 -->	30323 --> 3	50222 --> 0
00242 --> 0	10001 --> 0	20044 --> 2	31122 --> 1	52324 --> 2

Figures 2 to 4 below illustrate the achiral rules highlighted in Table 1. The frames on the left correspond to R-loop replication (structures reproduced from Figure 1), and the frames on the right correspond to structures from L-Loop mirror-development.

Figure 2. R-loop structures at $t=3$ to 4 (left frames) illustrating the achiral state-transition rule $31215 \rightarrow 1$ (as equivalent rotation $32151 \rightarrow 1$). The rule's mirror is the same rule shown acting in the corresponding mirror-recursion from $t=3$ to 4 (right frames).
4

4

5

5

Figure 3. R-loop structures at $t=4$ to 5 (left frames) illustrating the achiral state-transition rule $50212 \rightarrow 4$ (as equivalent rotation $51202 \rightarrow 4$). The rule's mirror is the same rule shown acting in the corresponding mirror-recursion from $t=4$ to 5 (right frames). The quiescent state 0 is explicitly shown in the rule neighbourhoods at $\mathrm{t}=4$ (all white space within the frames corresponds to state 0).

Figure 4. R-loop structures at $t=5$ to 6 (left frames) illustrating the achiral state-transition rule $40232 \rightarrow 4$ (as equivalent rotation $43202 \rightarrow 4$). The rule's mirror is the same rule shown acting in the corresponding mirror-recursion from $t=5$ to 6 (right frames). The quiescent state 0 is explicitly shown in the rule neighbourhood at $t=5$ (all white space within the frames corresponds to state 0).

Table 2. The nine mirror-pairs of rules in the state-transition function. Each mutual-mirror rule-pair of the nine pairs listed below applies to both R- and L-loop replication. The two highlighted pairs are illustrated in Figure 5.

CNESW \rightarrow C'

```
21204 --> 2 23005 --> 2 24204 --> 2
21402 --> 2 25003 --> 2 24402 --> 2
```

22001 --> 23204 --> 232443 --> 3
22100 --> 23402 --> 23423 --> 3

$23002-->2$	$24002-->2$	$54002-->2$
$23200-->2$	$24200-->2$	$54200-->2$

Figure 5 continues next page:

Figure 5. Rule $21204 \rightarrow 2$ and its mirror $21402 \rightarrow 2$ both apply to R-loop development (left frames), as shown here in the state-transitions over $t=21$ to 24 . This mutual mirror-pair of rules applies also to L-loop development (right frames) over $t=21$ to 24 , but in opposite order. Like many of the rules in the state-transition function, these rules serve to conserve a cell-state (this rule-pair conserves sheathing-state 2). Rule $54200 \rightarrow 2$ and its mirror $54002 \rightarrow 2$ both apply to R-loop development as shown here in the state-transitions over $t=24$ to 26 . This mirror-pair of rules applies also to L-loop development over $t=24$ to 26 , but in opposite order. These rules establish a sheathing-state 2 on the boundary of a developing loop (state transition $5 \rightarrow 2$).

The rules listed in Tables 1 and 2 together form a subset of the complete state-transition function that is closed under mirror-transformation. These rules are therefore common to both R- and L-loop replication.

Table 3 below completes the list of rules comprising the state-transition function for replication of J Byl's structure. Unlike the rules listed in Tables 1 and 2, they are chiral rules which apply only to one or the other of R-and L-loop replication. Table 3 shows the contradictions which prove replication of J Byl's structure is homochiral.

Table 3. List of 72 chiral rules within the state-transition function for self-reproduction of J . Byl's structure [1]. All contradictions between rules in the R-loop-only list and the corresponding list of L-loop-only mirror-rules are shown highlighted in blue.

CNESW \rightarrow C'

		L-loop-only	Mirror
Chiral rule index	72 R-loop-	mirror of R -	contradicts R-
number 1 to 72	only rules	loop-only rules	rule (by index)

1	$00012-->0$	$00210-->0$	3
2	$00013-->5$	$00310-->5$	6
3	$00021->2$	$00120-->2$	1
4	$00023-->3$	$00320-->3$	7
5	$00024-->2$	$00420-->2$	8

6	00031 --> 1	00130 --> 1	2
7	$00032-->0$	$00230-->0$	4
8	00042 --> 0	00240 --> 0	5
9	00051 --> 2	$00150-->2$	
10	00052 --> 5	00250 --> 5	14
11	00112 --> 0	00211 --> 0	
12	00132 --> 0	00231 --> 0	
13	00140 --> 0	00041 --> 0	
14	00250 --> 0	00052 --> 0	10
15	00312 --> 0	00213 --> 0	
16	00340 --> 0	00043 --> 0	
17	00342 --> 0	00243 --> 0	
18	00433 --> 0	$00334-->0$	
19	00512 --> 0	00215 --> 0	
20	02502 --> 0	02205 --> 0	
21	10034 --> 1	10430 --> 1	
22	10123 --> 3	10321 --> 3	
23	10324 --> 4	10423 --> 4	
24	11124 --> 4	11421 --> 4	
25	11240 --> 4	11042 --> 4	
26	11324 --> 4	11423 --> 4	
27	11352 --> 1	11253 --> 1	
28	12241 --> 4	12142 --> 4	
29	12344 --> 4	12443 --> 4	
30	12354 --> 3	12453 --> 3	
31	13324 --> 4	13423 --> 4	
32	14322 --> 4	14223 --> 4	
33	$20034-$-->	20430 --> 2	
34	20051 --> 5	20150 --> 5	35
35	20150 --> 2	20051 --> 2	34
36	20512 --> 5	20215 --> 5	39
37	20532 --> 3	20235 --> 3	42
38	21004 --> 2	21400 --> 2	
39	21502 --> 2	21205 --> 2	36
40	22155 --> 2	22551 --> 2	
41	24502 --> 2	24205 --> 2	
42	25023 --> 2	25320 --> 2	37
43	25504 --> 2	25405 --> 2	
44	30021 --> 1	30120 --> 1	
45	30023 --> 3	30320 --> 3	
46	30321 --> 1	30123 --> 1	
47	30423 --> 3	30324 --> 3	
48	31123 --> 3	31321 --> 3	49
49	31132 --> 1	31231 --> 1	48
50	31234 --> 1	31432 --> 1	58
51	31254 --> 5	31452 --> 5	
52	31322 --> 1	31223 --> 1	
53	31325 --> 1	31523 --> 1	

54	31332 --> 1	31233 --> 1	
55	31423 --> 3	31324 --> 3	
56	31532 --> 5	31235 --> 5	
57	32053 --> 3	32350 --> 3	
58	32143 --> 3	32341 --> 3	50
59	32230 --> 3	32032 --> 3	
60	34223 --> 3	34322 --> 3	
61	40123 --> 3	40321 --> 3	
62	40230 --> 3	40032 --> 3	
63	40523 --> 5	40325 --> 5	
64	41123 --> 3	41321 --> 3	
65	42143 --> 3	42341 --> 3	
66	42531 --> 3	42135 --> 3	
67	43122 --> 3	43221 --> 3	
68	43152 --> 3	43251 --> 3	
69	50023 --> 5	50320 --> 5	
70	50130 --> 2	50031 --> 2	
71	50223 --> 0	50322 --> 0	
72	52044 --> 2	52440 --> 2	

A selection of the contradictions shown in Table 3 above is illustrated in Figures 6 to 9 below. R-loop replication corresponds to the left-frames. L-loop replication corresponds to the right-frames.

Figure 6. Left frames show the R-loop-only rule $\mathbf{2 2 0 5 3} \boldsymbol{\rightarrow} \mathbf{3}$ (equivalent to rotation $20532 \rightarrow 3$ listed at index line 37, Table 3). In the right frames, the contradiction is L-loop-only rule $23205 \rightarrow 2$, equivalent to $\mathbf{2 2 0 5 3} \boldsymbol{\rightarrow} \mathbf{2}$ (not $\boldsymbol{\rightarrow}$ 3). Rotated, this is $25320 \rightarrow 2$ listed in the L-loop-only column of Table 3 at index line 42.

Figure 7. Left frames show the R-loop-only rule $\mathbf{3 2 3 4 1} \boldsymbol{\rightarrow} \mathbf{1}$ for transition $\mathrm{t}=\mathbf{7}$ to 8 (equivalent to rotation $31234 \rightarrow 1$ listed at index line 50 , Table 3). In the right frames ($t=5$ to 6), the contradiction is L-loop-only rule $\mathbf{3 2 3 4 1} \mathbf{\rightarrow \mathbf { 3 }}$, $($ not $\boldsymbol{\rightarrow} \mathbf{1})$ listed in the L-loop-only column of Table 3 at index line 58.

Figure 8. Left frames ($\mathrm{t}=8$ to 9) show the R-loop-only rule $\mathbf{3 1 1 2 3} \boldsymbol{\rightarrow} \mathbf{3}$, listed in Table 3 at index line 48. In the right frames ($\mathrm{t}=13$ to 14), the contradiction is L-loop-only rule $\mathbf{3 1 1 2 3} \boldsymbol{\rightarrow} \mathbf{1}$, (not $\boldsymbol{\rightarrow} \mathbf{3}$). Rotated, this is $31231 \rightarrow 1$ listed in the L-loop-only column of Table 3 at index line 49.

Figure 9. Left frames ($t=3$ to 4) show the R-loop-only rule $\mathbf{2 1 5 0 2} \boldsymbol{\rightarrow} \mathbf{2}$, listed in Table 3 at index line
 listed as equivalent rotation $20215 \rightarrow 5$ in the L-loop-only column of Table 3 at index line 36.

Conclusion.

As for self-reproducing loops in cellular automata spaces generally, the state-transition function corresponding to replication of J Byl's structure [1] consists of a subset of rules which is closed under mirror transformation, and so is common to both right- and left-handed replication. There are also state-transition chiral rules and their mirrors which correspond respectively to right-handed-only and left-handed-only replication. Contradictions between right-handed-only and left-handed-only chiral state-transition rules prevent heterochiral selfreproduction of loops under a pooling of the state-transition function with its corresponding mirror function. Homochirality of loop self-reproduction in CA spaces parallels homochirality observed in real biology, but the question of relevance of this work to real biology is left open at the present time.

References

[1] J Byl, Self-reproduction in small cellular automata, Physica D 34 (1989) 295-299.
[2] PW Swanborough, Chiral Asymmetry of Self-Reproduction in Cellular Automata Spaces. viXra:1904.0225 (2019).

