An Analysis of the State-Transition Function of a Self-Reproducing Structure in Cellular Automata Space.

Perry W Swanborough

Abstract

A cellular automata structure described by J Byl (1989) self-replicates under a corresponding state-transition function. Subsequent work has established that replication of this and related structures given by other researchers is homochiral. This work describes a detailed analysis of the state-transition function for replication of J Byl's structure, so the work serves as an Appendix to accompany the preceding work *viXra:1904.0225*.

Keywords: cellular automata, self-reproduction, artificial life, biological homochirality.

Introduction

In a previous work [2], it was shown that self-reproduction of loops in cellular automata (CA) spaces is homochiral. The work [2] was intended for a readership already familiar with CA in general, and the CA works cited in it specifically. Subsequent to feedback from some readers, I considered that a more-detailed analysis of one of the systems cited in the prior work [1] could be of interest to readers requiring more detail. For purposes not concerned with chirality questions, only 43 state-transition rules (36 + 7 default rules) need to be explicitly specified for replication of J Byl's structure [1], but by enlarging the state-transition rules list by identifying and explicitly listing all of the default and state-conserving transitions, subsequent analysis comprehensively describes homochirality of CA loop self-reproduction.

The state-transition rules for loop replication sort into three subsets: *achiral* rules, rule and corresponding mirror-rule pairs common to both R- and L- loop (mirror of R-loop) self-reproduction, and *chiral* rules. Mirrors of the R-loop-only chiral rules apply only to L-loop replication. A notable observation is that the chiral rules subset contains rules which contradict rules within the corresponding mirror-chiral rules list, proving that loop self-reproduction is *homochiral*, *i.e.* R-loop replication and L-loop replication cannot coexist under a pooling of the state-transition function with its corresponding mirror-function, because the pooled list is unworkable due to the contradictions [2]. The parallel with homochirality of real biology has been noted [2], but the question of the relevance of this work to organic biological homochirality remains open at the current time.

J Byl's loop, with the state-transition function under which it replicates.

Figure 1 below shows one replication of J Byl's structure within 27 recursions [1]. The cellstate set is {0,1,2,3,4,5}, state 0 being the "quiescent" state. The state of each cell **C** at time t+1 is a function of its time t state and time t states of its immediate neighbour-cells above, to the right, below, and to the left (respectively, **N**orth, **E**ast, **S**outh and **W**est). Rules within the state-transition function are notated in the format **CNESW** \rightarrow **C**' expressing the state transition from the state of **C** (at time t) to **C**' (state of **C** at time t+1), given the specific **N**,**E**,**S**,**W** neighbour-states. Importantly, strong rotational symmetry applies, *i.e.* all 90° rotations of neighbourhoods are equivalent, so for example, the rule notations **CNESW** \rightarrow **C**' = 42531 \rightarrow 3, 45312 \rightarrow 3, 43125 \rightarrow 3 and 41253 \rightarrow 3 are all equivalently one rule.

It is obvious without demonstration that mirror-reflections of the state-transition rules applied to a mirror-configuration of the initial structure will deliver an exact mirror of the development

shown in Figure 1 below. I refer to the development of J Byl's structure shown in Figure 1 as "R-loop" reproduction to distinguish it from corresponding mirror "L-loop" reproduction. (As an example of notation of a rule with its corresponding mirror, the mirror of rule 42531 \rightarrow 3 is 42135 \rightarrow 3).

Figure 1, from [1]. Self-reproduction of the structure shown at time 0 (the first frame above, labelled 0), under the corresponding state-transition function [1] subsequently studied in this work. The structure develops to two separated structures (parent (left) and daughter) at recursion 26. The white space in all frames corresponds to the 0 quiescent state.

The rules of the state-transition function sort into three categories: **achiral** rules which are not changed under mirror-transformation and apply to both R-loop and L-loop replication, **mutual-mirror pairs of rules** which also apply to both R- and L-loop replication, and **chiral** rules which apply only to one *or* the other of R- and L-loop replication (the corresponding mirrors of the R-loop-only chiral rules apply only to L-loop replication). The three categories of rules are tabulated below in Tables 1, 2 and 3.

Table 1 below lists the achiral rules applying to replication of J Byl's structure.

Table 1. *Achiral* subset of rules of the state-transition function for self-reproduction of the structure shown at time 0 in Figure 1. (Achiral rules are the rules unchanged by mirror-transformation.) The highlighted rules are illustrated in Figures 2 to 4.

$CNESW \rightarrow C'$

00000> 0	00252> 0	10003> 3	20252> 5	<mark>31215> 1</mark>
00003> 1	01010> 0	10033> 0	21202> 2	34323> 3
00033> 0	01040> 0	20000> 0	23202> 2	40212> 4
00100> 0	02000> 0	20004> 2	24202> 2	<mark>40232> 4</mark>
00110> 0	02200> 0	20011> 2	30001> 0	40242> 4
00131> 0	02202> 0	20020> 2	30003> 0	40252> 0
00201> 0	04000> 0	20022> 0	30011> 0	50022> 5
00202> 0	05000> 0	20030> 2	30121> 1	<mark>50212 → 4</mark>
00205> 0	10000> 0	20033> 2	30323> 3	50222> 0
00242> 0	10001> 0	20044> 2	31122> 1	52324> 2

Figures 2 to 4 below illustrate the achiral rules highlighted in Table 1. The frames on the left correspond to R-loop replication (structures reproduced from Figure 1), and the frames on the right correspond to structures from L-Loop mirror-development.

Figure 2. R-loop structures at t = 3 to 4 (left frames) illustrating the **achiral** state-transition rule $31215 \rightarrow 1$ (as equivalent rotation $32151 \rightarrow 1$). The rule's mirror is the same rule shown acting in the corresponding mirror-recursion from t = 3 to 4 (right frames).

Figure 3. R-loop structures at t = 4 to 5 (left frames) illustrating the **achiral** state-transition rule $50212 \rightarrow 4$ (as equivalent rotation $51202 \rightarrow 4$). The rule's mirror is the same rule shown acting in the corresponding mirror-recursion from t = 4 to 5 (right frames). The quiescent state 0 is explicitly shown in the rule neighbourhoods at t = 4 (all white space within the frames corresponds to state 0).

Figure 4. R-loop structures at t = 5 to 6 (left frames) illustrating the **achiral** state-transition rule $40232 \rightarrow 4$ (as equivalent rotation $43202 \rightarrow 4$). The rule's mirror is the same rule shown acting in the corresponding mirror-recursion from t = 5 to 6 (right frames). The quiescent state 0 is explicitly shown in the rule neighbourhood at t = 5 (all white space within the frames corresponds to state 0).

Table 2. The nine *mirror-pairs* of rules in the state-transition function. Each mutual-mirror rule-pair of the nine pairs listed below applies to both R- and L-loop replication. The two highlighted pairs are illustrated in Figure 5.

 $CNESW \rightarrow C'$

<mark>21204> 2</mark>	23005> 2	24204> 2
<mark>21402> 2</mark>	25003> 2	24402> 2
22001> 2 22100> 2	23204> 2 23402> 2	32443> 3 34423> 3
23002> 2	24002> 2	<mark>54002> 2</mark>
23200> 2	24200> 2	<mark>54200> 2</mark>

Figure 5 continues next page:

Figure 5. Rule $21204 \rightarrow 2$ and its mirror $21402 \rightarrow 2$ both apply to R-loop development (left frames), as shown here in the state-transitions over t = 21 to 24. This mutual mirror-pair of rules applies also to L-loop development (right frames) over t = 21 to 24, but in opposite order. Like many of the rules in the state-transition function, these rules serve to conserve a cell-state (this rule-pair conserves sheathing-state 2). Rule $54200 \rightarrow 2$ and its mirror $54002 \rightarrow 2$ both apply to R-loop development as shown here in the state-transitions over t = 24 to 26. This mirror-pair of rules applies also to L-loop development over t = 24 to 26, but in opposite order. These rules establish a sheathing-state 2 on the boundary of a developing loop (state transition 5 \rightarrow 2).

The rules listed in Tables 1 and 2 together form a subset of the complete state-transition function that is closed under mirror-transformation. These rules are therefore common to both R- and L-loop replication.

Table 3 below completes the list of rules comprising the state-transition function for replication of J Byl's structure. Unlike the rules listed in Tables 1 and 2, they are **chiral** rules which apply only to one **or** the other of R- and L-loop replication. Table 3 shows the contradictions which prove replication of J Byl's structure is homochiral.

Table 3. List of 72 **chiral** rules within the state-transition function for self-reproduction of J. Byl's structure [1]. All contradictions between rules in the R-loop-only list and the corresponding list of L-loop-only mirror-rules are shown highlighted in blue.

$CNESW \rightarrow C'$

Chiral rule index number 1 to 72	72 R-loop- only rules	L-loop-only mirror of R- loop-only rules	Mirror contradicts R- rule (by index)
1	00012> 0	00210> 0	3
2	00013> 5	00310> 5	6
3	00021> 2	00120> 2	1
4	00023> 3	00320> 3	7
5	00024> 2	00420> 2	8

6	00031> 1	00130> 1	2
7	00032> 0	00230> 0	4
8	00042> 0	00240> 0	5
9	00051> 2	00150> 2	
10	00052> 5	00250> 5	14
11	00112> 0	00211> 0	
12	00132> 0	00231> 0	
13	00140> 0	00041> 0	
14	00250> 0	00052> 0	10
15	00312> 0	00213> 0	
16	00340> 0	00043> 0	
17	00342> 0	00243> 0	
18	00433> 0	00334> 0	
19	00512> 0	00215> 0	
20	02502> 0	02205> 0	
21	10034> 1	10430> 1	
21	10123> 3	10321> 3	
22	10324> 4	10423> 4	
23	11124> 4	11421> 4	
25	1124 > 4	11042> 4	
25	11324> 4	11422 > 4	
20	11352> 1	11753> 1	
27	12241> 4	12142> 4	
28	12241> 4	12142> 4	
30	12344> 4	12443> 4	
21	12224> 3	12433> 3	
32	1/322> /	1/223> 4	
22	20024> 2	20420> 2	
34	20054> 2	20430> 2	35
25	20051> 3	20150> 5	24
36	20130> 2	20031> 2	30
27	20512> 3	20215> 3	42
20	20332> 3	20233 23	42
20	21004> 2	21400> 2	36
39	21302> 2	21203> 2	
40 //1	22122> 2	22337> 2	
41	24JU2 2 Z	24203 22	27
42	25025> 2	25520> 2	57
43	20021 \ 1	20120 \ 1	
44	20022> 1	20220 > 2	
45	20223 2 3	30320> 3 20122 \> 1	
40	20422 > 2	20224 > 2	
47	20423> 3 21122 ∖ 2	20224> 3 21221 ∖ 2	40
48	31123> 3 21122 \sigma 1	31321> 3	49
49	31132> 1	31231> 1	48
50	31234> 1	31432> 1	58
51	31234> 5 21232 × 1	51452> 5 21222 -> 1	
52	31322> 1 21225 -> 1	31223 -> 1	
53	27272> T	27272> T	

54	31332> 1	31233> 1	
55	31423> 3	31324> 3	
56	31532> 5	31235> 5	
57	32053> 3	32350> 3	
58	32143> 3	32341> 3	50
59	32230> 3	32032> 3	
60	34223> 3	34322> 3	
61	40123> 3	40321> 3	
62	40230> 3	40032> 3	
63	40523> 5	40325> 5	
64	41123> 3	41321> 3	
65	42143> 3	42341> 3	
66	42531> 3	42135> 3	
67	43122> 3	43221> 3	
68	43152> 3	43251> 3	
69	50023> 5	50320> 5	
70	50130> 2	50031> 2	
71	50223> 0	50322> 0	
72	52044> 2	52440> 2	

A selection of the contradictions shown in Table 3 above is illustrated in Figures 6 to 9 below. R-loop replication corresponds to the left-frames. L-loop replication corresponds to the right-frames.

Figure 6. Left frames show the R-loop-only rule **22053** \rightarrow **3** (equivalent to rotation 20532 \rightarrow 3 listed at index line 37, Table 3). In the right frames, the contradiction is L-loop-only rule 23205 \rightarrow 2, equivalent to **22053** \rightarrow **2 (not** \rightarrow **3)**. Rotated, this is 25320 \rightarrow 2 listed in the L-loop-only column of Table 3 at index line 42.

Figure 7. Left frames show the R-loop-only rule **32341** \rightarrow **1** for transition t = 7 to 8 (equivalent to rotation 31234 \rightarrow 1 listed at index line 50, Table 3). In the right frames (t = 5 to 6), the contradiction is L-loop-only rule **32341** \rightarrow **3**, (not \rightarrow **1**) listed in the L-loop-only column of Table 3 at index line 58.

Figure 8. Left frames (t = 8 to 9) show the R-loop-only rule **31123** \rightarrow **3**, listed in Table 3 at index line 48. In the right frames (t = 13 to 14), the contradiction is L-loop-only rule **31123** \rightarrow **1**, (not \rightarrow **3**). Rotated, this is 31231 \rightarrow 1 listed in the L-loop-only column of Table 3 at index line 49.

Figure 9. Left frames (t = 3 to 4) show the R-loop-only rule **21502** \rightarrow **2**, listed in Table 3 at index line 39. In the right frames (t = 23 to 24), the contradiction is L-loop-only rule **21502** \rightarrow **5**, (not \rightarrow **2**) listed as equivalent rotation 20215 \rightarrow 5 in the L-loop-only column of Table 3 at index line 36.

Conclusion.

As for self-reproducing loops in cellular automata spaces generally, the state-transition function corresponding to replication of J Byl's structure [1] consists of a subset of rules which is closed under mirror transformation, and so is common to both right- and left-handed replication. There are also state-transition chiral rules and their mirrors which correspond respectively to right-handed-only and left-handed-only replication. Contradictions between right-handed-only and left-handed-only chiral state-transition rules prevent heterochiral self-reproduction of loops under a pooling of the state-transition function with its corresponding mirror function. Homochirality of loop self-reproduction in CA spaces parallels homochirality observed in real biology, but the question of relevance of this work to real biology is left open at the present time.

References

- [1] J Byl, Self-reproduction in small cellular automata, *Physica D* 34 (1989) 295-299.
- [2] PW Swanborough, Chiral Asymmetry of Self-Reproduction in Cellular Automata Spaces. *viXra:1904.0225* (2019).