GENERAL SOLVING TRANSCEDENTAL AND POLYNOMIALS
EQUATIONS- WITH THE GENERALIZED THEOREM OF LAGRANGE

N.Mantzakouras

Abstract: While all the approximate methods mentioned or others that exist, give some
specific solutions of the generalized transcendental equations or even polynomial, cannot
resolve them completely.

"What we ask when we solve a generalized transcendental equation or polyonomial, is to find
the total number of roots and not separate sets of roots in some random or specified this time.
Mainly because this, too many categories transcendental equations have infinite number of
solutions in the complex whole "

There are some particular equations or Logarithmic functions Trigonometric functions which
solve particular problems in Physics, and mostly need the generalized solution. This is now the
theory G.R LE, to deal with the help of Super Simple geometric functions, or interlocking with
very satisfactory answer to all this complex problem.

PART L The Basic theorem G.R;.E(N.Mantzakouras. 2007)
Types of functions
1. Definition

We define as type of function one of the 5 general forms of functions that are

presented in the mathematics that is the following ones:
1. Exponential function.
2. Logarithmic function.
3. Trigonometric function.
4. Power function.

5. Power exponential function.

2. Definition

1. Primary simple transcendental equation is called each equation of the form

c (Z) = q(z)+t = 0 with t € C thathasroots in C

2. Primary composite transcendental equation is called each equation of the form
c (z): q (Z)+ m- p(z)+ t=0 which has roots in the total entire C

Moreover the factors m,t # O which also take values from the set C and in

general the functions g (z), p (z)are of different type, with values above in the C



3. Theorem of existence and count of roots of primary composite

Transcendental equation

Each  primary complex transcendental equation of the form

o) (z): q(z)+ m: p(z)+t =0 has as count of roots the union of individual fields of

2
roots L;,L, € C i.e.: C.R(Count Roots)=[JL, (1) of the equations that follow:

i=1

c,(z)=m-p(z)+t =0 (e1)

0,(2)=q(2)+1=0 (g
which come up with the primary composite transcendental equation:

Q(Z)+m' p(Z)+ t=0 ifalso provided that if:

1. The functions (Z)> p(Z) are functions of different type, or of a different form, or of

a different power of the same type in general.

2. The factors m,t # O take values from the total entire C

3. The fields of L,,L, roots of (61, 62) equations are solved according to the theorem of

Lagrange, and after the primary simple transcendental functions are solved per

case, and belong in the total entire C

The Count of fields of the roots is 2, and consequently the set of the fields of the roots of

2
L={2zEC.6,(z)=0}U{IzEC.0,(z) =0} \g(z)+m- p(z)+1=0, or |L=JL,
i=1

Casel

Let (Z), p(Z) and f (Z) and (P(Z) be functions of z analytic on and inside a
contour C surrounding a point t and let m be such that the inequality

|—m- p(Zj < |Z — (—t} is satisfied at all points z on the perimeter of C; letting g (Z)ZC

and consequently Z= q_l (C ); then doing inversion of the function I take f (C): q_l and

then according to the initial primary composite transcendental equation, I have:



q(z)+m-p(z)+t=0 ()
{=q(z)=—m-p(z)-t @
If where 0(z)=p(@*C) O

Afterwards the equation (2) becomes: { =—m - (P(Z)— t regarded as an equation in { has
one root in the interior of C; and further any function of £ analytic on the inside C can be

expanded as a power series with the use of a variable similarto by the formula

F©)-r ), +XELL [ rwypwy] @

And we come up with the root
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that is also the final relation for the solution of the root of the initial primary composite
transcendental equation g (Z)+ m- p(Z)+ t =0 having count of the roots Z,, where the
sum of the roots i is identified with the count of the roots of the primary simple
transcendental equation g (Z)z —t which also determines the field of the roots of the
equation q(z)z -m- p(z)—t that it is also L, and concerns only this form, that is to say
(o).

Casell

As previously, we examine the second case
1 t ) . L .
p(Z) =——- q(z) —— (062) which come up if we solve the initial equation
m m

q(z)+m-p(z)+t: O as for p(z) Similarly the functions q(z),p(z) and f (Z)
are in effect which are regarded functions of analytic on and inside a contour C surrounding a

point ¢ and let m be such that the inequality




Then letting p (z) = Doing inversion of the function I take f (C ): p! (C ) and from the

initial primary complex transcendental equation q(z)+ m- p(z)—l—t: 0O (1% I take

¢ =p(z)= —% q(z)-— @

1 t
And if I tak =q(p™ 3*) then th ti =——. -— th
nd if I take @ (Z) q (p (C ))( ) then the equation C - [0} (Q ) - (more than

one if the q (z) function exponential, logarithmic, trigonometric, Power function (n> 1), Power

exponential function)regarded as an equation in { has one root in the interior of C; and

further any function of { analytic on and inside C' can be expanded as a power series with

w — —t/m by the formula

o
Fe)=f (w)wwi( x L r@b@y] @

n! wo—tfm
And we come up with the root
1 n
- E J d n-1

Z,=f (w)w_H/m + i( |
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that is the relation for the solution of the root of the initial primary composite transcendental
equation q(z) +m- p(z)+ t = 0 having sum of roots Z; , so the count { is identified with

the count of roots of the primary simple transcendental equation
t
Z)=——

which determines also the field of the roots of the equation p (z ) =- L. q (z) _t that
m m

are L, and it also concems only this form, that is to say (62). The total of roots, as simply

comes up, will be the union of totals of solutions that is represented by the fields of the roots

2
L,L, ie. |C.R(Count Roots)=JL |and because the functions g(z) and p(z) are

i=1

different between them, accordingly the totals of solutions L, L, will be different between



them. In general, however, we accept the union of fields of the roots L, L, as the final field of

roots of the equation q(z)+ m- p(Z)+t =0 which we also symbolize as L =L, UL,

1. Generalised Theorem of existence and count of roots, of an accidental
transcendental equ ation

Each accidental transcendental equation, of the form
c(z)=Ym -p(z)+t=0
i=1

has as count of roots the union of individual fields of the roots L, L,,...L,, i.e.: the equations

that follow:

m, - p,(2)+ Zmi p,(2)+t=0 (o)
=2

m, - p,(z)+ Z m;-p;(z)+t=0 (o)

i=1,i#2

n-1
m b (z)+ 2, M p(2)+t=0 (o0

i=1,i#k

n-1
m, - p, (2)+ > m - p (2)+t=0 (0w
i=1
which come up with the generalised transcendental equation:
n
o (z)= Zmi p(z)+t=0
i=1

if also provided that if:
1. Functions P, (Z) are analytical functions at all the point in the interior on total entire

C simultaneously, they are functions of different type, or of different form, or of

different power of the same type generally.



2. The factors m,,t # O take values in the total entire C belong to the sequence of n
(count of n factors) with at least 2 factors of m; to be different of zero.
3. The fields of the roots L,,L,,...L, of the 6,,6,,..0, equations are solved according

to the theorem of Lagrange and belong in the total entire C
4. The Count of fields of the roots is n, and consequently the set of the fields of th

n-1 i
rootsof m - p, (z)+ Y, m;-p,(z)+t=0,k=1,2,..,n is [L=UL
i=1

i=1,i#

Casel

Proof

Let p, (Z) and f (Z) and @ (Z) be functions of z analytic on and inside a contour

C surrounding a point t and let m, be such that the inequality

‘—LZmi - p; (z* < |Z - (_t/mJ is satisfied at all points Z on the perimeter of C;
i=2

letting p; (Z) =( then doing inversion of the function I take f (C ): ot (C ) and from the

generalised transcendental equation

c(z)zzn:mi-pi(z)Ht:O )
i=1

I take £ =p (z):—mizn:mi-pi (z)-t/m (@
If where 0(€)=2m p(n' Q) @

and also it is in effect f (Q ) =p’ (Q ) then the equation

1 n
- Y —t ,
¢ 22 m,-p,(z)-t/m

regarded as an equation in { which has one root in the interior of C ; (more than one if the q

(z) function exponential, logarithmic, trigonometric, Power function (n> 1), Power exponential

function )and further any function of { analytic on and inside C can be expanded as a power

series with the use of a variable w — —t/m, by the formula



= m

f(c)f(w)wﬂ,mﬁZ[_ J db:;ll[f'(w){cp(w)}”] 4

n=1 n! w ——tfmy

where o (W)= (m/m,) p.(p' (w)) ©

i=2
with |m | <|m,| forany i21 i#k, isn,keZ or m, =min{jm,|,|m,).....|m,[} so that
|m, /my| <1

And we come up with the root

_ﬂj"
ull w( 1 d+! ' n
2 = F () g+ 2 @@y < ®

dl,Uni1 w——tfmy
that is the relation for the solution of the root of a generalised transcendental equation

n
c (z): Z m, - p, (Z)+ t =0 having count of roots Zﬁ‘” so that the count 7 is identified
i=1

t
with the count of the roots of the primary simple transcendental equation p, (Z)= —_

1

In this case now this determines also the field of the roots of the equation

m, - p, (Z)+ Zml- - D; (z)+ t =0 thatis L, and it also concerns only this form, that is to

=2

say the form (ol).

Case?2

Proofin generally

The pairs of forms at line of the function

c(z)= imi -pi(2)+t=0  (@*)
i=1
inthe formula ™M, - P (2)+ i m,-p;(z)+t=0 (%)
i=lizk

belongs, as simply is proved, to the sequence of 1 (sum of n factors). The proof is simple:

we suppose that we have a change k with the attribute that follows:



If m,,m,,..m,distinguished elements of the total {1,2,...n} with the equivalence are existed,
then  if T =Q,,,T =A;,...,0, T =0, is called a circle of length ¥ and it is written as

follows. Consequently, we have line of changes K Respectively, if n =k, then we have the
line of changes n According to the developed form (2*%*) we take the analysis in the forms

that follow:

b (Z)+ Z(mz/ml) " P (Z)+ t/m=0 (o1)

pQ(Z)+ i (mi/mZ)'pi(z)+t/m2=O ()

i=17#2

pi(2)+ Z(mi/mk)'pi(z)"‘t/mk =0 (@

i=l,i#k

p,(2)+ Z(mi/mn)-pl.(z)+t/mn =0 (s,

i=1
Now let p; (Z) and f(z) and @ (z) be functions of z analytic on and inside a

contour C surrounding a point ¢ and let m, be such that the inequality

‘—(1 m, )z m; - p; (z* < |z - (—t/mK 1 is satisfied at all points z on the perimeter of C;
i=2

letting P, (Z ) = then doing inversion of the function I take f (C ) =p. ! (C ) and from the

generalised transcendental equation G (Z) = i m; - p; (Z)+ t=0(@)
=1

I take with replacement|C = p_ (Z)= - L i m - p, (Z)_ t/m| @)

k i=1,i#x




and(p(c )= Zn: m; - p; (p]:1 (Q))withiZl, 1 #K, i< n,keZ after of course it is in

i=1,i#

effect f(C )= jore (C ),then the equation { = — mi Zn: m,; - p,; (C )— t/m_. Q)

k i=l,i#x

regarded as an equation in  which has one root in the interior of C; (more than one if the q
(z) function exponential, logarithmic, trigonometric, Power function (n> 1)), and further any

function of C analytic on and inside C can be expanded as a power series with a similar of

variable w — —t /m_ by the formula

1E)=1 (@), ZE ’[[;j L r@bwy] @

where (P(w): Zn: (mi/mr)'pi (p,Zl (w)) ®)

i=1,i#Kk

with |m|<|m| for any i21 i#x, i<n or m, =min{m||m,|..Jm,|} so that

|mr/mk| <1 also for complex roots k>=1 and k € Z in general. Final we come up with the

root
m, "
i - [_ ij da ' "
2 = @)+ X aes [ @ e @) ] < ©

that is the relation for the solution of the roots of the generalised transcendental equation

GA(Z):Zmipi(Z)"‘t:O with ISA <n and 1<i<n,y, €Z havingcount of roots of
i=1

Zmipi (2)+t=0 tois Zy% and y, is the partial sets cardinality of roots and thus y,
i=1 2=1
identified with the number of roots of the the primary simple transcendental equations

D= —L,i=?». Specifically, the case p, :—i,i: A identified as field roots , with the
m, m

i i

field of the roots of the equation in form my, p,(z) + Zm[pi(z) +t=0 that isthe [, and

i=l,i#k

concems only this form, that is to say (ox). Now, for the generalisation of cases, because



this K takes values from 1 to n, consequently the count of fields of roots will also be n,and
consequently the field of total of the roots of the equations

6. (2)=m, p(2)+ D mp(2)+t=0,z —>—t/m, ke {l2..,n} willbe L=TJL,

i=lizk i=1

Of course, all these are in effect, provided that the functions of type p; (Z) are of different

type, or of different form, or of different power of the same type in general. In the case where

we have powers of the same type, then we have the formula o, (z) = Zmipf (z) +t =0 with
i1

r, € C and L € N . More specifically, for the case of 7, € N and for the calculation of the

roots, we will have the general relation that fol lows:

m

r

= f(w), .+ z( ’:,j L r@pwy] <

w——tfm,

with f (w)=p.’ (wl/rf .e2“i/g)and ¢ (w)= Z m. - p, (pE 1(wl/rj ’e%i/g)) 7
i=1i#K

Within g=0,1,2...1, -1le N

For the sum in general we have the following formula:

m

r

> (ZZ; J L [r@ewy]  ®

el w——tfm,

That sum should converge in some limit of more generally complex number, and according to

the conditions of the theorem of Lagrange.

This method gives very good results usually in cases where t <=1. For instances, however,
where t> 1 is usually employs the inverse of the transformation F(1/z) which facilitates the
convergence of the sum of the formula (8).

The relevant literature on the original theorem of Lagrange and Burmann's derived from the
classic book on the theorem "Course of modern Analysis of E.T Witteker and G.N.Watson
"Press Campridge 2002 [0].



PART 1II. 7 FAMUS TRANSCENDENTAL EQUATIONS

1. SOLUTION OF THE EQUATION z-€* =t

The roots of the equation play a role in the iteration of the exponential function[2;3;11]and in
the solution and application of certain difference - Equation [1;9;10;12]. For this reason, several
authors [4; 5; 7; 8; 9; 12] have found various properties of some or all of the roots. There is a
work by E.M. Write, communicated by Richard Bellman, December 15, 1958. Also must mention

a very important offer of Wolfram in Mathematica program with the W-Function.

But now we will solve the with the method (G.Ry.E ), because it is the only method that
throws ample light on general solve all equations. All the roots of our equation are given by
log(z)+z=1log(t)+2-k-m-i (1) where k takes all integral values as k=0,£1,£2,£3,....20.To
solve the equation looking at three intervals, which in part are common and others differ in the

method we choose.

A) Because we take the logarithm in both parties of the equation, the case r <o Af e R leads
only in complex roots. From the theory (G.RL.E ) we gettwo cases according to relation (I), because

the relationship (1) has two functions, p,(z)=z=C (a) and p,(z)=1log(z) =C (b).

Thus the first case (a) the solution we are the roots of the equation

0 _ i a[—] , ; ,
z =G +§( Lo o (G -1og (©)) (i) where C'isthe first derivative of G with the type

Gamma (i +1)
C =log(1)+2-k-m-i andk is integer, for a value of .Alsothecase when t and is acomplex

number and especially when |t|2e,then the solution is represented by the same form (i).

1
B) For interval 0<7< ZM € R but also general where 0 < k< LI case that ¢ is complex
e

number and when k # 0, then the solutions illustrated from the equation :

B © (_m)i 81’71
2 =6 +;(Gamma(i+1) oc

G "1og'©)) )

and in case that s = othen using the form p.(z) =log(z) =C = z = Exp(C) the Lagrange equation from

o ey o .
(GRL.E) transformed to 7, = Exp(Q) + Z( Cm) ) (Exp(C Y - Expl €)) (ii) butthis specific form
=l Gamma(i +1) o




I
o0 —m . .
translatable to z; =ExpC)+ Z(—( ) i +1) 1-EXphLl(C;)) because we know the nth derivative of
= Gammi +1)

Exp(m-x)=m" - Exp(m - Xx)

e .1 1
C) Specificity for the region — <t <eA t€ R but more generally — £|t| <e. Appears a small anomaly
e e

in the form (i) and as regards the complex or real value for k =0 in  =log(¢)+2-k-m -i. The case

for Complex roots we get as asolution of the equation by the form

P ~ (m) 07 e except if k=0.
% =5 +Z(Gamma(i+ 1) o¢ ™ (6" log"C)

i=1

Eventually the case k=0 is presented and the anomaly in the approach of the infinite sum in the
form (ii)

ZFExp(g)@( Cm) Gy Ep Q)

= Gamma(i +1)
but m=m/e”" with s>=1

Because the replay will be s times and { =z _,,s>1 we have to repeat. A very good approximation
also in this special case is when we use the method approximate of Newton after obtaining an

initial root Z; with s=1.
2. MAXIMUM THE SURFACE AREA AND VOLUME OF A HYPERSPHERE N DIM’S

In mathematics, an n-sphere is a generalization of the surface of an ordinary sphere to arbitrary
dimension. For any natural number », an n-sphere of radius » is defined as the set of points in (n + 1)-
dimensional Euclidean space which are at distance  from a central point, where the radius » may be any

positive real number. It is an n-dimensional manifold in Euclidean (n + 1)-space.

The n-hypersphere (often simply called the n-sphere) is a generalization of the circle (called by geometers

the 2-sphere) and usual sphere (called by geometers the 3-sphere) to dimensions n>=4. The n-sphere is

therefore defined (again, to a geometer; see below) as the set of n-tuples of points (%1, X2+>X,) such that

XP+ X3+ ..+ x> =R (1)
where R istheradius of the hypersphere.

Let 7 denote the content of an n-hypersphere (inthe geometer's sense) of radius R is given by



S,-R’

n

R
V =S+ dr= where S, is the hyper-surface area of an n-sphere of unit radius. A unit

0

hypersphere must satisfy

SnTe”z " dr = T T....Te"*‘z*"'”i)dxl oy, = (]C'e*’fz dx)" = %Snl“(n /2) = (T(1/2))"
0 —0

—00—0 -0

And to the end

S, =R"™2TA/2)" /T(n/2)=R""(2n"*)/T(n/2) (1)
V,=R'x"?)/T(1+n/2) (2)But the gamma function can be defined by T(m) = 2j e 2 \dy
0

Strangely enough, the hyper-surface area reaches a maximum and then decreases towards 0 as n

increases. The point of maximal hyper-surface area satisfies

ds
—t= R (2x ")/ T(n/2)=R™'n"? -[Int —y ,(n/2)]/T(n/2)=0 (3)
n

Where y, (x) = W(x) is the digamma function . For maximum volume the same they be calculated

‘Zﬁ =R"(n"?)/T(+n/2) =R'n""? [Inm —y (1 +n/2)](2-T(+n/2))=0 (4)
n

From Feng Qi and Bai —-Ni-Guo exist theorem [arXiv:0902.2519v2 [math.CA] 19 Jan 2011]

Forall xe (0,0), ln(x+—;)—l<\|/(x)<ln(x+e“'”)—l the constant ¢’ =0.56.
X X

Taking advantage of the previous theorem solved in two levels ie...

From (3) we have 2 levels :

ln(lx+l)—L=1nn (a) and ln(lx+ e“’)—l—zlnn (b)
2 2 lx 2 lx

2 2

Both cases, if resolved in accordance with the theorem (G.R;.E) from by the

form..

PSPPI S ) P S S
R R vyl ey

)°)
with § —log(mt) butm =1/¢""', with s>=1 as beforein 1 case. The initial value for (a) case is
559464 and for (b) case is5.48125. We use the method approximate of Newton after obtaining an

initial root Zs with s=11s7.27218 and 7.18109 respectively, finally after a few iterations.This shows

that ultimately we as integer result the integer 7, for maximum hyper-surface area.



Joyce

Thereafter for the case of maximum volume, and before applying From Feng Qi and Bai —Ni-Guo

= ln’]’[ . ’The

1 1 1
For all xe (0,%), hl((5x+1+—)—1— =log(m) and ln(lx+1+e_y)— T 1
(x+1) 2 Sxtl
2 2
results in both cases according to equation..

(_m)i ai
Gamma(i+1) 0C

-1 —2 3 s+l :
o8 (e ¢y with § > log(n)but m=1/¢"" with
T2 ST )

z =25 =3/2)-+)(

i=1
s>=1 as before case.In two cases end up in the initial values 3.59464 and 3.48125. We use the
method approximate of Newton arrive quickly in 5.27218 and 5.18109 respectively. Therefore the

integer for the maximum volume hyper-surface is the 5.

3. THE KEPLER’S EQUATION

The kepler’s equation allows determine the relation of the time angular displacement within an
orbit. Kepler's equation is of fundamental importance in celestial mechanics, but cannotbe directly
inverted in terms of simple functions in order to determine where the planet will be at

a given time. Let M be the mean anomaly(a parameterization of time) and E the eccentric anomaly (a

parameterization of polar angle) of a body orbiting on an ellipse with eccentricity e, then ...

3

jzéa-b-(E—e-SinE):M=E—e-SinE=(t—T)- /a_ and =P 1
n

is angular momentum, j= Area— angular .Eventually the equation of interest is in final form is

M =E—e-SinE and calculate the E. The Kepler's equation [14]has a unique solution,butis a simple
transcendental equation and so cannot be inverted and solved directly for E given an arbitrary M.
However, many algorithms have been derived for solving the equation as a result of its importance in
celestial mechanics. In essentially trying to solve the general equation x—e-Sinx =t where t,e are
arbitrary in C more generally. According to the theory G.R;.E we have two basic cases
p(z)=z=C (@) and p,(z) = Sin(z) =¢ (b) which if the solve separately,the total settlement will
result from theunion of the 2 fields of the individual solutions.The first case is this is of interest in

relation to the equation Kepler, because e < 1.From theory G.R;.E we have the solution

PR < PR O M LR P PN < PR ( M AP
z =G +;(Gamma(i+l) o C"Sin (§)) =G +I~Z:1:(Gamma(i+1) acr (Sin'(€)) (1)

for { —¢. Since the exponents are changed from an odd to even we use two general expressions for

the nth derivatives. If we have even exponent is



~1nr-1

¢

Ex:ﬂ—l

2k)*™ 1% Sin[(2n — 2k) * t + (2n) n/2]

Sin™ (x) =(1/227 1)« Fo_(~1)" e (2 xn)!/(k! * (20— K))) % (20—

and for odd exponent is

&

fa ] 1

S (x) = = Yoeo—D " e 2xn+ )Y (kK « (2n+ 1—k)) *

o~ 1n

(2n—2k+ 1) +S8in[(2n — 2k + 1) *x + (2n) /2]

These formulas help greatly in finding the general solution of equation Kepler,because this is

generalize the nth derivative of Sin'(() as sum of the two separate cases. So from (1) we can see

the only solution for the equation Kepler’s with the type (2)

z=1t+ Z(UZE”} " Z(—i} mk g ((m)2™ L /Gammal2 xn +2]) x (2xn+ D/ (kK x 2n+1 —k)!)
n=0 o

#(2n— 2k + 1)« Sin[(2n — 2k + 1)+t + (2n) /2]
5-1

+ (1/224571) « Z((m}ﬂweamma[z o5+ 1]) * (=1)5% x (2% 5)1/ (k! * (25 — K)I)
k=0

=0

# (25 —2k)* 1% Sin[(2s — 2k) = t + (25) /2]

The second case solution ofthe x —e- Sinx = ¢ according to the theory G.R..E we can also from
the p,(z)=Sin(z) =€ (b) that z = ArcSin(z)+ 2kn and also z =—ArcSin(z)+(2k+1)m . So the
full solution of the equation x—e-Sinx=t of the second field of roots is ...

0 (l/e)l ai*l

o = AreSin© )+ 24+ D G a1y 7

((AreSin€)(AreSin€) +2kr )’y 3)

(—AreSin(C ) (—AreSin(€) +( 2k + m) ) (4)

Or z, =(=ArcSin(C )+ (2k +1)m )+ i( Ganii}i/cjz;+ D aaci_;l—l

ArcSin(C)' = 1 2 (5) with £ —t/e and ke Z.Anexample is the Jupiter, with data

1-C
M =5-2-1/11.8622 with eccentricity € where e =0.04844, then from equation (2) we find the
value of (x or E) =2.6704 radians.



4. THE NEUTRAL DIFFERENTIAL EQUATIONS (D.D.E)

In this part solve of transcendental equations we introduce another class of equations depending on
past and present values but that involve derivatives with delays as well as function itself. Such

equations historically have been referred as neutral differential difference equations[15].

The model non homogeneous equation is

n ak m ar G
28 () + 26 ==t = ax(O)+ 2w x( =) + /() (1)
X Ox i=1

k=1 rd

With g,,c,,a,w, is constants and w, #0 and f(s) is a continuous function on C. Of course any
discussion of specific properties of the characteristic equation will be much more difficult since this

equation transcendental, will be of the form :

nl n

H0) = a0+ 3,00+ 3 B0 =0 )

i=1
Where a (1),b,(A),j >0 are polynomials of degree <(m+c) and g, () is apolynomial of degree n
also must 7, +n, <m+c . The equations (2) also resolved in accordance with the method G.R;.E

k3

and the general solution is of as the form x(¢) :fs(t)+zpj (1)-€"" where 7”_/ are the roots
J

of the equation of characteristic and 7, are polynomials and also f, # f in generally. As an
example we give the D.D.E differential equation x'(¢)—C-x'(t—7) =a-x(@t)+w-x@t—v)+ f(t) (3)
which is like an equation A (1) as of characteristic A(A) =A(1-C-e™")—a—w-e™ =0 where

C#0,r>0,v>0 and a,w constants.

5. SOLUTION OF THE EQUATION x" —m-x+t =0

The solution of the equation is based mostly on the solution of equation x* =z which has solution relying
on the solution of x-¢" =V which solved before. Specifically because we know the function W,(z) is

product log function k e Z,and using it to solve the equation x-e* =v is z=W,(v),v=0.Also ke Z

,all the solutions of the equation ** =z is for z#0. According to this assumption we can solve the
equation x¥ —m-x+t =0 with the help of the method G.R1.E. According to the theory G.R.E we
have two basic cases p (x)=x*=C (a) and p,(x)=x=C (b)which if the solve separately, the total
settlement will result from the union of the 2 fields ofthe individual solutions, ¢ < .The first case is

of interest in relation to the equation has more options than the second, because



it covers a large part of the real and the complex solutions. This situation leads to the solution for x such

that it is in the form

ProductLog[(2k)mi+L ,
x = glrodertoslGnrtLoglc] or taking and the other form

. (log (@ ))
(W, (102(8)))

From theory G.Ri.E we have the solution

ProductLog[h,2mik+log[C 1| © (_m)" aV71 ProductLog[h 2mik+log[C 1]\’ v-ProductLog|
—e glh, gel 4 e glh, g ) e g

Y . v—1
v=l Gamma(i+1) o¢

M) with the ke Z

And h=-1,01 or more exactly

Xy

v—1
:eProductLag[h,ZnikJrlog[Q]]+ § (7m)V 0 1 ) vProducTLog[h,ZnikHog[Q]]) Wl

V21 Gamma(v+1) o "1 C-(ProductLoglh 2uik+loglC 1) th

multiple roots in relation to k and & = 7. Variations presented in case where, when we change the sign of

m,t mainly in the sign of the complex roots. Even and in anomaly in the approach of the infinite sum
we use the transformation but 7. =m /€' with s>=1,a very good approximation also in this special

case is when we use the method approximate of Newton after obtaining an initial root Z,. The

second group of solutions represents real mainly roots of equation where p,(x)= x=C

So we have

_ < ~1/my o vy = (=1/m)" o e _
*=6 +é(Gamma(v—i-l) oc! G-67)=¢ +;(Gamma(v+l) oc! € with §—>t/m formteC

in generally.

6. SOLUTION OF THE EQUATION x? —m-x? +¢t=0

An equation seems simple but needs analysis primarily on the distinction of m, but also the powers
specific p,q as to what look every time.

Distinguish two main cases:

The weight method would follow it takes m ,which regulates the method we will follow any time. But

according to the method G.E.R we have two basic cases 7| (x)=x"=C (@) and Py(¥) = =g (b)
whose solution gives the individual a comprehensive solution of the equation. For the case under



considerationie m >1, p > ¢ transforms the original in two formats to assist us in connection with the

logic employed by the general relation G.R:..E .

The first transform given from the form x” —m-x? +t=0= x! —(1/m)-x” —t/m =0 which is now in

the normal form to solve equation. First we need to solve the relationship x” =¢ in C. Following that we

L +2:k i)/ .
can get the form X, = ol Log(G )r2km) 1 keZ k=0%1,22,. .4 IntegerParfq/ 2] and the count of roots is

maximum 2*IntegerPart[q/2] in generality.
Therefore so the first form of solution of the equation is..

—1 3
Ko © 1/m) 8 (Log (§ W2k-mi)lg
X, = SLog@rr2kemilg s (=1/m) e

v=l Gamma(i+1) o vl (« q-C

3 (epuog(é )+2'k'1[-i)/q)v)

L 2-kmi)/
= (B CIRATDIG () , with multiple roots in relation to k and

Where 6(; (e(Log((.’J YH2kn ‘i)/q)

keZ k=0,£1,12,.. . IntegerPart[q /2] and & > t/m

But for the complete solution of this case and find the other roots of the equation for this purpose i make

p

. —1 — —
the transformation x =y = and we have F—mx?+t=0=y"7-m-y"P +1=0 and then we transform

pa P ¢ /m-yP —1/m =0 Inthis way we find a whole other roots we have left

mni-m-y +t-yp=0:>y

from all the roots. The form of solution will be as above and assuming the that g = p— g we have..

v v—1 L 2k
| =ellox@a2knils 4 © (t/m) 0 e(Log @ )+ 2kmi)lg

y
v=l Gamma(i+1) o¢ v-1 gd

)-(er(Log@2kn-il gy vy and X, :1/yk which roots

arein relationtok € Z,k = 0,£1,42,.... + IntegerPart[ g/ 2] with { — —1/m .The second case related to

m<1 has no procedure for dealing with the method. Starting from the original equation was originally

found on the p and so the first transform given from the form x” —m -x? +¢=0 to solve the

relationship x” = in C, as helpful to the general equation G.R;.E. So we have

® m)y o'l (Log(&)r2kmi)p

xk — e(Log(Q )+2-km i)/ p + ) (eq-(Log(Q )+2:-k-mi) p )v)

v=l Gamma(i+1) 6¢ v-1 j 24
with k € Z,k =0,£1,42,.... £ IntegerPart[p/ 2] with { —¢.

To settle the issue of finding the roots, where roots arise other and with m<1 then i make the
transformation x = y_1 and we have x¥ —m-x?+t=0=3y"% —=m-y"? +¢=0 and then we transform in

yq +1/¢- yq_p —m/t = Owith the pre case p <g¢ . This transformation is relevant to the case remains as a

final case before us. The solution in this case has form and assuming the that g = p —g we have..



_ s @2kmivg | 2 (=1/¢)" ol (Log(G)y2kmi)lq

)’ eg-(Log(Q Y2-km-i)/g\v X, :1/)/ .
V=l Gamma(i+1) o V) < ( )") and % + which roots

Vi

are in relationto k € Z,k = 0,+1,42,.... + IntegerPart[q/ 2] with & =>m/t.

In this case should first solve the equation ,z* —m-z” +1 = 0,z € C.The solution for z variable, after

several operations in concordance with the type De Moivre, we get the relation connecting the real and

. . bi .
imaginary parts the general case of complex numbers.. Z = x+yi

and the solution is

b(2kni+Arg(x+yi)
a2+b2 (Xz + y2 )m COS[a(an +Arg(X + yl) B bLOg[X2 + y2 ]

a’+b’ 2(a*+b?%)

Z, =€ ]+

b(2kr+Arg(x+yi)
o ey a . 2, 2
ie a2+b2 (X2 i y2 )2(a2+b2) Sil’l[a(an +Arg(x +yi) _ bLog[x" +y~]

a’+b’ 2(a’+b?%)

J

we see that the number of solutions, resulting from the denominator of the fraction that the full line
equals with the ¢=(a”+b*)/a if prices of k € Z,k = 0,+1,22,.... + IntegerPart[c /2] - For the case under
consideration ie m > 1, p > ¢ transforms the original in two formats to assist us in connection with the

logic employed by the general relation G.R¢.E.

The first transform given from the form x” —m-x% +1=0= x? =(1/m)-x" -t /m = Owhich is now in
the normal form to solve equation. First we need to solve the relationship ' =¢ mcC. Following that we
can get the form ke Z,k =0,£1,£2,.... = IntegerPart[q/ 2] and the count of roots is maximum

2*IntegerPart[q/2] in generality. The solution is when we analyze the power as

v 1 Jemd
(Log ()+2-km-i)lq + @ (—] /m) 6V_ e(Log(Q )+2 km l)/q
v=l Gamma(v+1) 8¢ vl 96

inrelationto k € Z,k =0,+1,£2,.... + IntegerPart[q / 2] with { —¢/m. The remaining cases are similar

_ «(Log (§)+2-k-m i) q\v .
y,=e )- (e "*))and x, =y, which roots are

to previous with p,q € R. The sole change is in relation to the number of casesis Integer((a* +b*)/ a)

a+bi

for (+/-xaxes) and z"" =x+y-i=w forany w,ze C.

7. 2FAMOUS EQUATIONS OF PHYSICS

1)The difraction phenomena due to "capacity" of the waves bypass obstacles in their way, so to be
observed in regions of space behind the barriers, which could be described as geometric shadow areas .
In essence the phenomena of diffraction phenomena [17] is contribution, that is due to superposition of

waves of the same frequency that coexist at the same point in space.



If virus is where the intensity at a distance ro from the slot at 6 = 0, ie opposite to the slit. So finally we

write the relationship in the form

sin” w

1(8)=1,

w"

1 2
w= :r’.‘D sin &

The maximum intensity appears to correspond to the extremefunction sin w/ w.Derivative of and
equating to zero will take the trigonometric equation w = tan w a solution which provides the values of w
corresponding to maximum intensity. With the assist of a second of the relations We can then, for a given
problem is know the wave number & (or wavelength /) and width D the slit, to calculate the addresses
corresponding to ¢ are the greatest.

Consider many tears as a crowd of 2 N +1 parallel between the cracks width D, the distance from center
to center is @ and which we have numbered from - N to N. Such a device called a diffraction grating

slits.We accept that sufficiently met the criterion for Fraunhofer diffraction and find the equation for the

volume.
p sin® v sin® Mu
1(6)=1, —xl%
wW- ST
where

~ xDsin@
A

w

s sin &
A

There fringes addresses for which zero quantity sin u, and therefore the intensity of which is determined

by the factor

So we must solve the relation w = tan w.

Where k=0/D and u=kw ,m=M.Trying solving the general form of the equation w = m*tan w with
m €C, consider 2 general forms of solution, arising from the form Cos(w)=C and
Cos(w) =C = w=xA4rcCos(w)+ 2kn

ke Z k=0,£1,%£2,... so we have..

) al: ((AreCos(C )" (Sin[ArcCos(G) + 2kn)] / (ArcCos(G) +2xkn))’)

w, = (ArcCos(C )+ 2km ) + i(Gamma(i e

and the form

(m) 6’:14 ((=ArcCos )" (Sin[- ArcCos(G ) +2kn )] / (— ArcCos(G ) +2kn))

w, =(=ArcCos(C ) +2km)+ i( Gamma(i +1) &

Then the general solution is w, Uw, .



i1) The spectral density of black body is given by the equation

hv  8mv'  8wh
u(v) = Eg(v) = 47——— =

'.Hr» -1 ¢ o hyw (BT _ ]

according to the relationship of Plank.

The correlated u (V)

87he 1

u(h) = W ehe/kTh _ 1

By ¢=A /T =Av which is extreme if the derivative zero. Thus we have the relationship

_,";},] (I,.frr-l.-'L-T} o I) o }\.';".Flr'.."LTe’. (_11_;4_;)

d .
—u(h) = 8whe 5
. W10 (ehe/kTh _ 1)?

Zeroing the derivative will have the relationship
5 [ Ghel/kTh heskt 1 h_" =
_.j(i - l) | ¢ (}. % =10

Andif x= hc/ kTA then we get the equation

5=58e F —-zx=0

Finding the solution of x we find the relationship
Amazsl = b

By b=hc /4965 k Is called constant Bin, called displacement law. Then we need to
calculate the general solution of the equation by the method G,RiE

The first group of solutions represents real mainly roots of equation where p,(x) =x =

So we have

i+ O e pg gy =+ 3 e (e with G > p for mreC.

Gamma(v+1) 0C o Gamma(v +1)

v=1
In this caset=5 and m=-5, we calculate the x=4.9651142317442763037 the nearest 20 ignored.

Because apply relation



r
a —Xw

a - :(_W)}"e—XW
X

I
aa_reXW:(W)reXW

X

The second group of solutions represents complex roots of equation where
p,(x)=¢" =C = x =log({)+2kmi

But this does not refer to real solutions and not the physical Evol equations for this and omitted.
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