$G\alpha$ -CLOSED SETS IN TERMS OF GRILLS

A. Selvakumar¹ and S. Jafari²

¹SNS College of Engineering, Coimbatore, Tamilnadu, India. E-mail : selvam_mphil@yahoo.com ²College of Vestsjaelland Syd, Herrestraede 11, 4200 Slagelse, Denmark. E-mail : jafaripersia@gmail.com

Abstract

In this paper, we define the $\tilde{g}\alpha(\theta)$ -convergence and $\tilde{g}\alpha(\theta)$ -adherence using the concept of grills and study some of their properties. **Keywords.** Grill, $\tilde{g}\alpha(\theta)$ -convergence and $\tilde{g}\alpha(\theta)$ -adherence of a grill, $\tilde{g}\alpha$ closed space.

AMS Subject Classification: 54B05, 54C08

1. Introduction and Preliminaries

Recently, R. Devi et al. [2] introduced and studied the concept of $\tilde{g}\alpha$ -closed sets in topological spaces. The idea of grill was introduced by G. Choquent [1] in 1947 and since then it has been observed in connection with many mathematical investigation such as the theories of proximity spaces, compactification etc, that grills as a tool (like filters) are extremely useful and convenient for many situations. In 2006, M.N. Mukherjee and B. Roy [4] studied the notion of *p*-closed sets in topological spaces in terms of grills.

In this paper, we introduce the notions of $\tilde{g}\alpha(\theta)$ -adherence and $\tilde{g}\alpha(\theta)$ -convergence of a grill and develop the concept to some extent so that the result derived here may support our subsequent deliberations.

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure and the interior of A will be denoted by cl(A) and int(A), respectively. **Definition 1.1.** [1] A grill \mathcal{G} on a topological space X is defined to be a collection of non empty subsets of X such that

- (i) $A \in \mathcal{G}$ and $A \subseteq B \subseteq X \Rightarrow B \in \mathcal{G}$ and
- (ii) $A, B \subseteq X$ and $A \cup B \in \mathcal{G} \Rightarrow A \in \mathcal{G}$ or $B \in \mathcal{G}$.

Definition 1.2. A subset A of a space (X, τ) is called a

- 1. semi-open set [3] if $A \subseteq cl(int(A))$ and a semi-closed set [4] if $int(cl(A)) \subseteq A$ and
- 2. α -open set [5] if $A \subseteq int(cl(int(A)))$ and an α -closed set [6] if $cl(int(cl(A))) \subseteq A$.

The semi-closure (resp. α -closure) of a subset A of a space (X, τ) is the intersection of all semi-closed (resp. α -closed) sets that contain A and is denoted by scl(A) (resp. $\alpha cl(A)$).

Definition 1.3. A subset A of a space (X, τ) is called a

- 1. \widehat{g} -closed set [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) ; the complement of \widehat{g} -closed set is \widehat{g} -open,
- 2. *g-closed set [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \widehat{g} -open in (X, τ) ; the complement of *g-closed set is *g-open.
- 3. $\sharp gs$ -closed set [9] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\ast g$ -open in (X, τ) ; the complement of $\sharp gs$ -closed set is $\sharp gs$ -open.
- 4. $\tilde{g}\alpha$ -closed set [2] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\sharp gs$ -open in (X, τ) ; the complement of $\tilde{g}\alpha$ -closed set is $\tilde{g}\alpha$ -open.

The set of all $\tilde{g}\alpha$ -open sets of X will be denoted by $\tilde{G}\alpha O(X)$ and the set of all those members of $\tilde{G}\alpha O(X)$, which contain a given point x of X will be designated by $\widetilde{G}\alpha O(x)$. The intersection of all $\widetilde{g}\alpha$ -closed sets in X, which are contained in a given set $A(\subseteq X)$ is called the $\widetilde{g}\alpha$ -closure of A, to be denoted by $\operatorname{cl}_{\widetilde{g}\alpha}(A)$. It is known that for $x \in X$ and $A \subseteq X$, $x \in \widetilde{g}\alpha$ -cl(A) if and only if $U \cap A \neq \phi$, for all $U \in \widetilde{G}\alpha O(x)$. Again for any set A in X, $\widetilde{g}\alpha(\theta)$ -cl(A), denoted by $\widetilde{g}\alpha(\theta)$ -cl(A), is defined as $\widetilde{g}\alpha(\theta)$ -cl $(A) = \left\{ x \in X : \widetilde{g}\alpha$ -cl $(U) \cap A \neq \phi$ for all $U \in \widetilde{G}\alpha O(x) \right\}$.

2. Grills: $\tilde{G}\alpha(\theta)$ -convergence and $\tilde{G}\alpha(\theta)$ -adherence

Definition 2.1. A grill \mathcal{G} on a topological space X is said to

- (i) $\widetilde{g}\alpha(\theta)$ -adhere at $x \in X$ if for each $U \in \widetilde{G}\alpha O(x)$ and each $G \in \mathcal{G}$, $\operatorname{cl}_{\widetilde{g}\alpha}(U) \cap G \neq \phi$,
- (ii) $\tilde{g}\alpha(\theta)$ -converge to a point $x \in X$ if for each $U \in \tilde{G}\alpha O(x)$, there is some $G \in \mathcal{G}$ such that $G \subseteq \operatorname{cl}_{\tilde{g}\alpha}(U)$ (in this case we shall also say that \mathcal{G} is $\tilde{g}\alpha(\theta)$ -convergent to x).

Remark 2.2. It at once follows that a grill \mathcal{G} is $\tilde{g}\alpha(\theta)$ -convergent to a point $x \in X$ if and only if \mathcal{G} contains the collection $\left\{ \operatorname{cl}_{\tilde{g}\alpha}(U) : U \in \tilde{G}\alpha O(x) \right\}$.

Definition 2.3. A filter \mathcal{F} on a topological space X is said to $\tilde{g}\alpha(\theta)$ -adhere at $x \in X$ ($\tilde{g}\alpha(\theta)$ -converge to $x \in X$) if for each $F \in \mathcal{F}$ and each $U \in \tilde{G}\alpha O(x)$, $F \cap cl_{\tilde{g}\alpha}(U) \neq \phi$ (resp. to each $U \in \tilde{G}\alpha O(x)$, there corresponds $F \in \mathcal{F}$ such that $F \subseteq cl_{\tilde{g}\alpha}(U)$).

Definition 2.4. [6] If \mathcal{G} is a grill (or a filter) on a space X, then the section of \mathcal{G} , denoted by $\sec \mathcal{G}$ is given by $\sec \mathcal{G} = \left\{ A \subseteq X : A \cap G \neq \phi, \text{ for all } G \in \mathcal{G} \right\}.$

Lemma 2.5. [6]

- (a) For any grill (filter) \mathcal{G} on a space X, sec \mathcal{G} is a filter(resp. grill) on X.
- (b) If \mathcal{F} and \mathcal{G} are respectively a filter and a grill on a space X with $\mathcal{F} \subseteq \mathcal{G}$, then there is an ultrafilter \mathcal{U} on X such that $\mathcal{F} \subseteq \mathcal{U} \subseteq \mathcal{G}$.

Theorem 2.6. If a grill \mathcal{G} on a topological space X, $\tilde{g}\alpha(\theta)$ -adheres at some point $x \in X$, then \mathcal{G} is $\tilde{g}\alpha(\theta)$ -convergent to x.

Proof. Let a grill \mathcal{G} on X, $\tilde{g}\alpha(\theta)$ -adhere at $x \in X$. Then for each $U \in \tilde{G}\alpha O(x)$ and each $G \in \mathcal{G}$, $\operatorname{cl}_{\tilde{g}\alpha}(U) \cap G \neq \phi$ so that $\operatorname{cl}_{\tilde{g}\alpha}(U) \in \operatorname{sec}\mathcal{G}$, for each $U \in \tilde{G}\alpha O(x)$ and hence $X - \operatorname{cl}_{\tilde{g}\alpha}(U) \notin \mathcal{G}$. Then $\operatorname{cl}_{\tilde{g}\alpha}(U) \in \mathcal{G}$ (as \mathcal{G} is a grill and $X \in \mathcal{G}$), for each $U \in \tilde{G}\alpha O(x)$. Hence \mathcal{G} must $\tilde{g}\alpha(\theta)$ -converge to x.

The reverse need not be true by the following Example.

Example 2.7. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. It is easy to verify that (X, τ) is a topological space such that $\widetilde{G}\alpha O(X) = \tau$. Let $\mathcal{G} = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Then \mathcal{G} is $\widetilde{g}\alpha(\theta)$ -convergent but not $\widetilde{g}\alpha(\theta)$ -adherent.

Notation 2.8. Let X be a topological space. Then for any $x \in X$, we have the following notation:

$$\mathcal{G}(\widetilde{g}\alpha(\theta), x) = \left\{ A \subseteq X : x \in \widetilde{g}\alpha(\theta) \text{-cl}(A) \right\}$$
$$sec\mathcal{G}(\widetilde{g}\alpha(\theta), x) = \left\{ A \subseteq X : A \cap G \neq \phi, \text{ for all } G \in \mathcal{G}(\widetilde{g}\alpha(\theta), x) \right\}$$

In the next two theorems, we characterize the $\tilde{g}\alpha(\theta)$ -adherence and $\tilde{g}\alpha(\theta)$ convergence of grills in terms of the above notations.

Theorem 2.9. A grill \mathcal{G} on a space X, $\tilde{g}\alpha(\theta)$ -adheres to a point $x \in X$ if and only if $\mathcal{G} \subseteq \mathcal{G}(\tilde{g}\alpha(\theta), x)$.

Proof. A grill \mathcal{G} on a space X, $\tilde{g}\alpha(\theta)$ -adheres at $x \in X$.

$$\Rightarrow cl_{\tilde{g}\alpha}(U) \cap G \neq \phi, \text{ for all } U \in G\alpha O(x) \text{ and all } G \in \mathcal{G}$$
$$\Rightarrow x \in \tilde{g}\alpha(\theta) \text{-}cl(G), \text{ for all } G \in \mathcal{G}$$
$$\Rightarrow G \in \mathcal{G}(\tilde{g}\alpha(\theta), x), \text{ for all } G \in \mathcal{G}$$
$$\Rightarrow \mathcal{G} \subseteq \mathcal{G}(\tilde{g}\alpha(\theta), x).$$

Conversely, let $\mathcal{G} \subseteq \mathcal{G}(\tilde{g}\alpha(\theta), x)$. Then for all $G \in \mathcal{G}, x \in \tilde{g}\alpha(\theta)$ -cl(G), so that for

all $U \in \widetilde{G}\alpha O(x)$ and for all $G \in \mathcal{G}$, $cl_{\widetilde{g}\alpha}(U) \cap G \neq \phi$. Hence \mathcal{G} is $\widetilde{g}\alpha(\theta)$ -adheres at x.

Theorem 2.10. A grill \mathcal{G} on a topological space X is $\tilde{g}\alpha(\theta)$ -convergent to a point x of X if and only if $\sec \mathcal{G}(\tilde{g}\alpha(\theta), x) \subseteq \mathcal{G}$.

Proof. Let \mathcal{G} be a grill on X, $\tilde{g}\alpha(\theta)$ -converging to $x \in X$. Then for each $U \in \tilde{G}\alpha O(x)$ there exists $G \in \mathcal{G}$ such that $G \subseteq cl_{\tilde{g}\alpha}(U)$ and hence

$$cl_{\widetilde{g}\alpha}(U) \in \mathcal{G} \text{ for each } U \in \widetilde{G}\alpha O(x)$$
 (1)

Now, $B \in \sec \mathcal{G}(\tilde{g}\alpha(\theta), x) \Rightarrow X - B \notin \mathcal{G}(\tilde{g}\alpha(\theta), x) \Rightarrow x \notin \tilde{g}\alpha(\theta) \text{-cl}(X - B) \Rightarrow$ there exists $U \in \tilde{G}\alpha O(x)$ such that $\operatorname{cl}_{\tilde{g}\alpha}(U) \cap (X - B) = \phi \Rightarrow \operatorname{cl}_{\tilde{g}\alpha}(U) \subseteq B$, where $U \in \tilde{G}\alpha O(x) \Rightarrow B \in \mathcal{G}$ (by (1)).

Conversely, let if possible, \mathcal{G} not to $\tilde{g}\alpha(\theta)$ -converge to x. Then for some $U \in \widetilde{G}\alpha O(x)$, $\operatorname{cl}_{\tilde{g}\alpha}(U) \notin \mathcal{G}$ and hence $\operatorname{cl}_{\tilde{g}\alpha}(U) \notin \operatorname{sec}\mathcal{G}(\tilde{g}\alpha(\theta), x)$. Thus for some $A \in \mathcal{G}(\tilde{g}\alpha(\theta), x)$,

$$A \cap cl_{\tilde{g}\alpha}(U) = \phi \tag{2}$$

But $A \in \mathcal{G}(\widetilde{g}\alpha(\theta), x) \Rightarrow x \in \widetilde{g}\alpha(\theta) \text{-cl}(A) \Rightarrow cl_{\widetilde{g}\alpha}(U) \cap A \neq \phi$, contradicting (2).

Definition 2.11. A non empty subset A of a topological space X is called $\tilde{g}\alpha$ -closed relative to X if for every cover \mathcal{U} of A by $\tilde{g}\alpha$ -open sets of X, there exists a finite subset \mathcal{U}_0 of \mathcal{U} such that $A \subseteq \bigcup \{ \operatorname{cl}_{\tilde{g}\alpha}(U) : U \in \mathcal{U}_0 \}$. If, in addition, A = X, then X is called a $\tilde{g}\alpha$ -closed space.

Theorem 2.12. A subset A of a topological space X is $\tilde{g}\alpha$ -closed relative to X if and only if every grill \mathcal{G} on X with $A \in \mathcal{G}$, $\tilde{g}\alpha(\theta)$ -converges to a point in A. **Proof.** Let A be $\tilde{g}\alpha$ -closed relative to X and \mathcal{G} a grill on X satisfying $A \in \mathcal{G}$ such that \mathcal{G} does not $\tilde{g}\alpha(\theta)$ -converges to any $a \in A$. Then to each $a \in A$, there corresponds some $U_a \in \tilde{G}\alpha O(a)$ such that $\operatorname{cl}_{\tilde{g}\alpha}(U_a) \notin \mathcal{G}$. Now $\{U_a : a \in A\}$ is a cover of A by $\tilde{g}\alpha$ -open sets of X. Then $A \subseteq \bigcup_{i=1}^n \operatorname{cl}_{\tilde{g}\alpha}(U_{a_i}) = U$ (say), for some positive integer n. Since \mathcal{G} is a grill, $U \notin \mathcal{G}$ and hence $A \notin \mathcal{G}$, which is a contradiction. Conversely, let A be not $\tilde{g}\alpha$ -closed relative to X. Then for some cover $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ of A by $\tilde{g}\alpha$ -open sets of X, $\mathcal{F} = \{A - \bigcup_{\alpha \in \Lambda_0} \operatorname{cl}_{\tilde{g}\alpha}(U_{\alpha}) : \Lambda_0 \text{ is a finite subset of } \Lambda\}$ is a filterbase on X. Then the family \mathcal{F} can be extended to an ultrafilter \mathcal{F}^* on X. Then \mathcal{F}^* is a grill on X with $A \in \mathcal{F}^*$. Now for each $x \in A$, there must exist $\beta \in \Lambda$ such that $x \in U_{\beta}$, as \mathcal{U} is a cover of A. Then for any $G \in \mathcal{F}^*$, $G \cap (A - \operatorname{cl}_{\tilde{g}\alpha}(U_{\beta})) \neq \phi$, so that G does not contained in $\operatorname{cl}_{\tilde{g}\alpha}(U_{\beta})$, for all $G \in \mathcal{G}$. Hence \mathcal{F}^* cannot $\tilde{g}\alpha(\theta)$ -converge to any point of A. The contradiction proves the desired result.

References

- G. Choquent, Sur les notions de filtre et grille, Comptes Rendus Acad. Sci. Paris, 224, (1947), 171-173.
- [2] R. Devi, A. Selvakumar and S. Jafari, $\widetilde{G}\alpha$ -closed sets in topological spaces (submitted).
- [3] N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [4] M.N. Mukherjee and B. Roy, p-closed topological spaces in terms of grills, Hacettepe Journal of Mathematics and Statistics, Vol. 35(2), (2006), 147-154.
- [5] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961- 970.
- [6] W.J. Thron, Proximity Structure and grills, Math. Ann., (1973), 35-62.
- M.K.R.S. Veera kumar, Between g*-closed sets and g-closed sets, Antartica J. Math., 3(1)(2006), 43-65.
- [8] M.K.R.S. Veera Kumar, On ĝ-closed sets in topological spaces, Allahabad Math. Soc., 18(2003), 99-112.

 [9] M.K.R.S. Veera kumar, [#]g-semi-closed sets in topological spaces, Antartica J. Math., 2:2(2005), 201-222.

* * * * *