NANO $\tilde{G}\alpha$ -CLOSED SETS IN NANO TOPOLOGICAL SPACES

A. Selvakumar¹ and S. Jafari²

¹Department of Mathematics Kongunadu Arts and Science College Coimbatore-29, Tamilnadu, India. E-mail : rdevicbe@yahoo.com ²College of Vestsjaelland Syd, Herrestraede 11, 4200 Slagelse, Denmark. E-mail : jafaripersia@gmail.com

Abstract

The basic objective of this paper is to introduce and investigate the properties of Nano $\tilde{g}\alpha$ -closed sets in Nano topological spaces.

Keywords. $N\tilde{g}\alpha$ -closed set, $N\hat{g}$ -closed set, N^*g -closed set and $N^{\sharp}gs$ -closed set.

AMS(2000) Subject classification : 54A05,54D10,54F65,54G05.

1. Introduction

Levine [4] introduced the concept of generalized closed sets in 1970. The concept of $\tilde{g}\alpha$ -closed sets was introduced by R. Devi et al. [2]. In 2013, the notion of Nano topological space with respect to the subset X of a universe U was introduced by Lellis Thivagar [3] which was defined in terms of approximations and boundary region of a universe using an equivalence relation on it. He has defined Nano closed sets, Nano-interior and Nano-closure of a set and also established certain weak forms of Nano open sets such as Nano α -open sets, Nano semi-open sets and Nano pre-open sets. In this paper, we introduce a new class of sets on Nano topological spaces called Nano $\tilde{g}\alpha$ -closed sets and discuss the relation of this new sets with existing ones.

2. Preliminaries

Definition 2.1 [3] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$, then

- (i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and its denoted by $L_R(X)$ and $L_R(X) = \bigcup_{x \in U} \{R(x) : R(x) \subseteq X\}$, where R(x) denotes the equivalence class determined by $x \in U$.
- (ii) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$ which $U_R(X) = \bigcup_{x \in U} \{R(x) : R(x) \cap X \neq \phi\}$.
- (iii) The boundary region of X with respect to R is the set of all objects which can be classified neither as X nor as not X with respect to R and it is denoted by $B_R(X)$ and $B_R(X) = U_R(X) - L_R(X)$.

Property 2.2. [3] If (U, R) is an approximation space and $X, Y \subseteq U$, then

- (i) $L_R(X) \subseteq X \subseteq U_R(X)$.
- (ii) $L_R(\phi) = U_R(\phi) = \phi$ and $L_R(U) = U_R(U) = U$.
- (iii) $U_R(X \cup Y) = U_R(X) \cup U_R(Y).$
- (iv) $L_R(X \cup Y) \supseteq L_R(X) \cup L_R(Y)$.
- (v) $U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y)$.
- (vi) $L_R(X \cap Y) = L_R(X) \cap L_R(Y)$.
- (vii) $L_R(X) \subseteq L_R(Y)$ and $U_R(X) \subseteq U_R(Y)$, whenever $X \subseteq Y$.
- (viii) $U_R(X^c) = [L_R(X)]^c$ and $L_R(X^c) = [U_R(X)]^c$.
- (ix) $U_R U_R(X) = L_R U_R(X) = U_R(X).$
- (x) $L_R L_R(X) = U_R L_R(X) = L_R(X).$

Definition 2.3. [3] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$, where $X \subseteq U$. Then by property 2.2, $\tau_R(X)$ satisfies the following axioms:

- (i) U and $\phi \in \tau_R(X)$.
- (ii) The union of the elements of any subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

(iii) The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

 $\tau_R(X)$ is a topology on U called the Nano topology on U with respect to X. We denote the Nano topological space by $(U, \tau_R(X))$ as . The elements of $\tau_R(X)$ are called Nano open sets.

Remark 2.4. [3] If $\tau_R(X)$ is the Nano topology on U with respect to X, the the set $B = \{U, L_R(X), U_R(X)\}$ is the basis for $\tau_R(X)$.

Definition 2.5. [3] If $(U, \tau_R(X))$ is a Nano topological space with respect to X, where $X \subseteq U$ and if $A \subseteq U$, then the Nano interior of A is defined as the union of all Nano open subsets of A and it is denoted by Nint(A). That is, Nint(A) is the largest Nano open subset of A. The Nano closure of A is defined as the intersection of all Nano closed sets containing A and it is denoted by Ncl(A). Ncl(A) is the smallest Nano closed set containing A.

Definition 2.6. [3] A Nano topological space $(U, \tau_R(X))$ is said to be extremely disconnected if the Nano closure of each Nano open set is Nano open.

Definition 2.7. [3] Let $(U, \tau_R(X))$ be a Nano topological space and $A \subseteq U$. Then A is said to be

- (i) Nano semi open if $A \subseteq Ncl(Nint(A))$
- (ii) Nano α -open if $A \subseteq Nint(Ncl(Nint(A)))$

The Nano α -closure of A is defined as the intersection of all Nano α -closed sets containing A and it is denoted by $N\alpha cl(A)$. This means that $N\alpha cl(A)$ is the smallest Nano α -closed set containing A. The Nano semi-closure of A is defined as the intersection of all Nano semi-closed sets containing A and it is denoted by Nscl(A). Nscl(A) is the smallest Nano semi closed set containing A. We recall the following definitions which are useful in the sequel.

Definition 2.8. Let U be a Nano topological space. A subset A of U is called

(a) Nano semi-generalized closed (briefly Nsg-closed) set [1] if $Nscl(A) \subseteq V$, whenever $A \subseteq V$ and V is Nano semi-open in U,

- (b) Nano generalized semi-closed (briefly Ngs-closed) set [1] if $Nscl(A) \subseteq V$, whenever $A \subseteq V$ and V is Nano open in U,
- (c) Nano α -generalized closed (briefly $N\alpha g$ -closed) set [5] if $N\alpha cl(A) \subseteq V$, whenever $A \subseteq V$ and V is Nano open in U,
- (d) Nano generalized α -closed (briefly $Ng\alpha$ -closed) set [5] if $N\alpha cl(A) \subseteq V$, whenever $A \subseteq V$ and V is $N\alpha$ -open in U.

3. Properties of Nano $\tilde{g}\alpha$ -closed sets

We introduce the following definitions.

Definition 3.1. Let U be a Nano topological space. A subset A of U is called

- (a) Nano \hat{g} -closed set (briefly $N\hat{g}$ -closed) if $Ncl(A) \subseteq V$, whenever $A \subseteq V$ and V is Nano semi-open in U,
- (b) Nano *g-closed set (briefly N^*g -closed) if $Ncl(A) \subseteq V$, whenever $A \subseteq V$ and V is $N\widehat{g}$ -open in U,
- (c) Nano ${}^{\sharp}gs$ -closed set (briefly $N{}^{\sharp}gs$ -closed) if $Nscl(A) \subseteq V$, whenever $A \subseteq V$ and V is $N{}^{*}g$ -open in U.

In this section, we define and study the forms of Nano $\tilde{g}\alpha$ -closed sets.

Definition 3.2. Let U be a Nano topological space. A subset A of U is called Nano $\tilde{g}\alpha$ -closed set (briefly $N\tilde{g}\alpha$ -closed) if $N\alpha cl(A) \subseteq V$, whenever $A \subseteq V$ and V is $N^{\sharp}gs$ -open in U.

Theorem 3.3.

- (a) Every $N\alpha$ -closed set is a $N\tilde{g}\alpha$ -closed set.
- (b) Every $N\tilde{g}\alpha$ -closed set is a Ngs-closed set.
- (c) Every $N\tilde{g}\alpha$ -closed set is a $Ng\alpha$ -closed set.
- (d) Every $N\tilde{g}\alpha$ -closed set is a $N\alpha g$ -closed set.
- (e) Every $N\tilde{g}\alpha$ -closed set is a Nsg-closed set.

Proof.

- (a) Let A be an $N\alpha$ -closed set in U, then $A = N\alpha cl(A)$. Let $A \subseteq V$, V is $N^{\sharp}gs$ -open in U. Since A is $N\alpha$ -closed, $A = \alpha cl(A) \subseteq V$. This shows that A is $N\tilde{g}\alpha$ -closed set.
- (b) Let A be an $N\tilde{g}\alpha$ -closed set in U. Let $A \subseteq V$, V is a nano open in U which implies V is an $N^{\sharp}gs$ -open set. Since A is $N\tilde{g}\alpha$ -closed, $Nscl(A) \subseteq N\alpha cl(A) \subseteq V$. This shows that A is Ngs-closed set.
- (c) Let A be an $N\tilde{g}\alpha$ -closed set in U. Let $A \subseteq V$, V is an $N\alpha$ -open set in U which implies V is an $N^{\sharp}gs$ -open set. Since A is $N\tilde{g}\alpha$ -closed, $N\alpha cl(A) \subseteq V$. This shows that A is an $Ng\alpha$ -closed set.
- (d) Let A be an $N\tilde{g}\alpha$ -closed set in U. Let $A \subseteq V$, V is a Nano open in U which implies V is an $N^{\sharp}gs$ -open set. Since A is $N\tilde{g}\alpha$ -closed, $N\alpha cl(A) \subseteq V$. This shows that A is an $N\alpha g$ -closed set.
- (e) Let A be an $N\tilde{g}\alpha$ -closed set in U. Let $A \subseteq V$, V is a nano semi open in U which implies V is an $N^{\sharp}gs$ -open set. Since A is $N\tilde{g}\alpha$ -closed, $Nscl(A) \subseteq N\alpha cl(A) \subseteq V$. This shows that A is an Nsg-closed set.

The following examples show that these implications are not reversible.

Example 3.4.

- (a) Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ and $X = \{a, b\}$. Thus the Nano topology, $\tau_R(X) = \{U, \phi, \{a\}, \{a, b, d\}, \{b, d\}\}$. Then in a space U, a subset $\{a, b, c\}$ is an $N\tilde{g}\alpha$ -closed set but it is not an $N\alpha$ -closed set.
- (b) Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ and $X = \{a, b\}$. Then the Nano topology, $\tau_R(X) = \{U, \phi, \{a\}, \{a, b, d\}, \{b, d\}\}$. Hence in a space U, a subset $\{a\}$ is an Ngs-closed set but it is not an N $\tilde{g}\alpha$ -closed set.
- (c) Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ and $X = \{a, b, c\}$. Then the Nano topology, $\tau_R(X) = \{U, \phi, \{a, c\}, \{b, d\}\}$. In a space U, a subset $\{a, b, c\}$ is an $Ng\alpha$ -closed set but it is not an $N\tilde{g}\alpha$ -closed set.
- (d) Let $U = \{a, b, c, d, e\}$ with $U/R = \{\{d\}, \{a, b\}, \{c, e\}\}$ and $X = \{a, d\}$. Then the Nano topology, $\tau_R(X) = \{U, \phi, \{d\}, \{a, b, d\}, \{a, b\}\}$. Then in a space U, a subset $\{a, c\}$ is an $N\alpha g$ -closed set but it is not an $N\widetilde{g}\alpha$ -closed set.

(e) Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ and $X = \{a, b\}$. Then the Nano topology, $\tau_R(X) = \{U, \phi, \{a\}, \{a, b, d\}, \{b, d\}\}$. In a space U, a subset $\{b\}$ is an Nsg-closed set but it is not an N $\tilde{g}\alpha$ -closed set.

Theorem 3.5. Let A be a subset of a Nano topological space U. If A is $N\tilde{g}\alpha$ closed, then $N\alpha cl(A) - A$ does not contain any non-empty $N^{\sharp}gs$ -closed set. **Proof.** Suppose that A is $N\tilde{g}\alpha$ -closed and let F be a non-empty $N^{\sharp}gs$ -closed set with $F \subseteq N\alpha cl(A) - A$. Then $A \subseteq U - F$ and so $N\alpha cl(A) \subseteq U - F$. Hence $F \subseteq U - N\alpha cl(A)$ which is a contradiction.

Theorem 3.6. Let A be a subset of a Nano topological space U. If A is $N\tilde{g}\alpha$ closed and $A \subseteq B \subseteq N\alpha cl(A)$, then B is $N\tilde{g}\alpha$ -closed.

Proof. Let V be an $N^{\sharp}gs$ -open set of U such that $B \subseteq V$. Then $A \subseteq V$. Since A is $N\tilde{g}\alpha$ -closed, then $N\alpha cl(A) \subseteq V$. Now $N\alpha cl(B) \subseteq N\alpha cl(N\alpha cl(A)) \subseteq V$. Therefore B is also an $N\tilde{g}\alpha$ -closed set of U.

Theorem 3.7. Let A and B be $N\tilde{g}\alpha$ -closed sets of a Nano topological space U. Then $A \cup B$ is an $N\tilde{g}\alpha$ -closed set in U.

Proof. Let A and B be $N\tilde{g}\alpha$ -closed sets. Let $A \cup B \subseteq V$, where V is $N^{\sharp}gs$ -open. Since A and B are $N\tilde{g}\alpha$ -closed sets, $N\alpha cl(A) \subseteq V$ and $N\alpha cl(B) \subseteq V$. This implies that $N\alpha cl(A \cup B) = N\alpha cl(A) \cup N\alpha cl(B) \subseteq V$ and so $N\alpha cl(A \cup B) \subseteq V$. Therefore $A \cup B$ is $N\tilde{g}\alpha$ -closed.

Lemma 3.8. For any space $U, U = U_{N\sharp gsc} \cup U_{N\tilde{g}\alpha o}$ holds.

Proof. Let $x \in U$. Suppose that $\{x\}$ is not $N^{\sharp}gs$ -closed set in U. Then U is a unique $N^{\sharp}gs$ -open set containing $U - \{x\}$. Thus $U - \{x\}$ is $N\tilde{g}\alpha$ -closed in U and so $\{x\}$ is $N\tilde{g}\alpha$ -open. Therefore $x \in U_{N^{\sharp}gsc} \cup U_{N\tilde{g}\alpha o}$ holds.

We need more notations:

For a subset A of U, $ker(A) = \cap \{V/V \in \tau_R(X) \text{ and } A \subseteq V\};$ $N^{\sharp}GSO\text{-}ker(A) = \cap \{V/V \in N^{\sharp}GSO(U) \text{ and } A \subseteq V\}.$

Theorem 3.9. For a subset A of U, the following conditions are equivalent.

- (1) A is $N\tilde{g}\alpha$ -closed in U.
- (2) $N\alpha cl(A) \subseteq N^{\sharp}GSO\text{-}ker(A)$ holds.
- (3) (i) $N\alpha cl(A) \cap U_{N^{\sharp}qsc} \subseteq A$ and (ii) $N\alpha cl(A) \cap U_{N^{\sharp}qso} \subseteq N^{\sharp}GSO\text{-}ker(A)$

holds.

Proof.

(1) \Rightarrow (2) Let $x \notin N^{\sharp}GSO\text{-}ker(A)$. Then there exists a set $V \in N^{\sharp}GSO(U)$ such that $x \notin V$ and $A \subseteq V$. Since A is $N\tilde{g}\alpha\text{-}closed$, $N\alpha cl(A) \subseteq V$ and so $x \notin N\alpha cl(A)$. This shows that $N\alpha cl(A) \subseteq N^{\sharp}GSO\text{-}ker(A)$. (2) \Rightarrow (1) Let $V \in N^{\sharp}GSO(U)$ such that $A \subseteq V$. Then, we have that $N^{\sharp}GSO\text{-}ker(A) \subseteq V$ and so by (2) $N\alpha cl(A) \subseteq V$. Therefore A is $N\tilde{g}\alpha\text{-}closed$. (2) \Rightarrow (3) (i) First we claim that $N^{\sharp}GSO\text{-}ker(A) \cap U_{N^{\sharp}gsc} \subseteq A$. Indeed, let $x \in N^{\sharp}GSO\text{-}ker(A) \cap U_{N^{\sharp}gsc}$ and assume that $x \notin A$. Since the set $U - \{x\} \in$ $N^{\sharp}GSO(U)$ and $A \subseteq U - \{x\}, N^{\sharp}GSO\text{-}ker(A) \subseteq U - \{x\}$. Then we have that $x \in U - \{x\}$ and so this is a contradiction. Thus we show that $N^{\sharp}GSO\text{-}ker(A) \cap$ $U_{N^{\sharp}gsc} \subseteq A$. By using (2), $N\alpha cl(A) \cap U_{N^{\sharp}gsc} \subseteq N^{\sharp}GSO\text{-}ker(A) \cap U_{N^{\sharp}gsc} \subseteq A$. (ii) It is obtained by (2).

(3) \Rightarrow (2) By Lemma 3.8 and (3),

$$N\alpha cl(A) = N\alpha cl(A) \cap U = N\alpha cl(A) \cap (U_{N^{\sharp}gsc} \cup U_{N\tilde{g}\alpha o})$$
$$= (N\alpha cl(A) \cap U_{N^{\sharp}gsc}) \cup (N\alpha cl(A) \cap U_{N\tilde{g}\alpha o})$$
$$= A \cup N^{\sharp}GSO\text{-}ker(A)$$
$$= N^{\sharp}GSO\text{-}ker(A) \text{ holds.}$$

Theorem 3.10. Let U be a Nano topological space and $A \subseteq U$.

- (a) If A is $N^{\sharp}gs$ -open and $N\tilde{g}\alpha$ -closed, then A is α -closed in U.
- (b) Suppose that U is an $N\alpha$ -space. An $N\tilde{g}\alpha$ -closed set A is $N\alpha$ -closed in U if and only if $N\alpha cl(A) A$ is $N\alpha$ -closed in U.
- (c) For each $x \in U$, $\{x\}$ is $N^{\sharp}gs$ -closed or $U \{x\}$ is $N\tilde{g}\alpha$ -closed in U.
- (d) Every subset is $N\tilde{g}\alpha$ -closed in U if and only if $N^{\sharp}gs$ -open set is $N\alpha$ -closed.

Proof.

- (b) (Necessity) If A is Nα-closed, then Nαcl(A) A = φ.
 (Sufficiency) Suppose that A is Nğα-closed and Nαcl(A) A is Nα-closed. Then, Nαcl(A) – A is N[‡]gs-closed in U and by Theorem 3.5, Nαcl(A) – A = φ. Therefore A is Nα-closed in U.
- (c) If $\{x\}$ is not $N^{\sharp}gs$ -closed, then $U \{x\}$ is not $N^{\sharp}gs$ -open. Therefore $U \{x\}$ is $N\tilde{g}\alpha$ -closed in U.

(d) (Necessity) Let V be an N[#]gs-open set. Then we have that Nαcl(V) ⊆ V and hence V is Nα-closed.
(Sufficiency) Let A be a subset and V is an N[#]gs-open set such that A ⊆ V. Then Nαcl(A) ⊆ Nαcl(V) = V and hence A is Nğα-closed.

4. Properties of Nano $\tilde{g}\alpha$ -open sets

Definition 4.1. A subset A of a Nano topological space U is called Nano $\tilde{g}\alpha$ -open set (briefly $N\tilde{g}\alpha$ -open) if A^c is $N\tilde{g}\alpha$ -closed.

Theorem 4.2. A subset $A \subseteq U$ is $N\tilde{g}\alpha$ -open if and only if $F \subseteq N\alpha int(A)$ whenever F is $N^{\sharp}gs$ -closed set and $F \subseteq A$.

Proof. Let A be an $N\tilde{g}\alpha$ -open set and suppose $F \subseteq A$, where F is $N^{\sharp}gs$ closed. Then U - A is $N\tilde{g}\alpha$ -closed set contained in $N^{\sharp}gs$ -open set U - F. Hence $N\alpha cl(U - A) \subseteq U - F$ and $U - N\alpha int(A) \subseteq U - F$. Thus $F \subseteq N\alpha int(A)$.

Conversely, if F is $N^{\sharp}gs$ -closed set with $F \subseteq N\alpha int(A)$ and $F \subseteq A$, then $U - N\alpha int(A) \subseteq U - F$. Thus $N\alpha cl(U - A) \subseteq U - F$. Hence U - A is an $N\tilde{g}\alpha$ -closed set and A is an $N\tilde{g}\alpha$ -open set.

Theorem 4.3. Let A and B be subsets of a Nano topological space U. If $N\alpha int(A) \subseteq B \subseteq A$ and A is $N\tilde{g}\alpha$ -open, then B is $N\tilde{g}\alpha$ -open.

Proof. Let $N\alpha int(A) \subseteq B \subseteq A$. Then $A^c \subseteq B^c \subseteq N\alpha cl(A^c)$, where A^c is $N\tilde{g}\alpha$ -closed and hence B^c is also $N\tilde{g}\alpha$ -closed by Theorem 3.6. Therefore, B is $N\tilde{g}\alpha$ -open.

Theorem 4.4. Let A be a subset of a Nano topological space U. If A is $N\tilde{g}\alpha$ closed, then $N\alpha cl(A) - A$ is $N\tilde{g}\alpha$ -open.

Proof. Let A be $N\tilde{g}\alpha$ -closed and F be $N^{\sharp}gs$ -closed such that $F \subseteq N\alpha cl(A) - A$. Then $F = \phi$ by Theorem 3.5. Therefore $F \subseteq N\alpha int(N\alpha cl(A) - A)$. Hence $N\alpha cl(A) - A$ is $N\tilde{g}\alpha$ -open.

Definition 4.5. Let U be a Nano topological space and $x \in U$. A subset N of U is said to be $N\tilde{g}\alpha$ -neighbourhood of x if there exists an $N\tilde{g}\alpha$ -open set G such that $x \in G \subseteq N$.

Definition 4.6.

(a)
$$N\widetilde{g}\alpha int(A) = \bigcup \{ B : B \text{ is } N\widetilde{g}\alpha \text{-open set and } B \subseteq A \}.$$

(b) $N\widetilde{g}\alpha cl(A) = \bigcap \Big\{ B : B \text{ is } N\widetilde{g}\alpha \text{-closed set and } A \subseteq B \Big\}.$

Theorem 4.7. Let A and B be subsets of U. Then

- (a) $N\widetilde{g}\alpha int(U) = U$ and $N\widetilde{g}\alpha int(\phi) = \phi$.
- (b) $N\widetilde{g}\alpha int(A) \subseteq A$.
- (c) If B is any $N\tilde{g}\alpha$ -open set contained in A, then $B \subseteq N\tilde{g}\alpha int(A)$.
- (d) If $A \subseteq B$, then $N\widetilde{g}\alpha int(A) \subseteq N\widetilde{g}\alpha int(B)$.

Proof.

- (a) Since U and ϕ are $N\tilde{g}\alpha$ -open sets, by definition $N\tilde{g}\alpha int(U) = \bigcup \left\{ B : B \text{ is } N\tilde{g}\alpha$ -open set and $B \subseteq U \right\} = U$. Since ϕ is the only $N\tilde{g}\alpha$ -open set contained in ϕ , $N\tilde{g}\alpha int(\phi) = \phi$.
- (b) Let $x \in Ng\tilde{\alpha}int(A) \Rightarrow x$ is a $N\tilde{g}\alpha$ interior of $A \Rightarrow A$ is a $N\tilde{g}\alpha$ -neighbourhood of $x \Rightarrow x \in A$. Thus $N\tilde{g}\alpha int(A) \subseteq A$.
- (c) Let B be any $N\tilde{g}\alpha$ -open set such that $B \subseteq A$. Let $x \in B$. Since B is an $N\tilde{g}\alpha$ -open set contained in A, x is an $N\tilde{g}\alpha$ -interior point of A. That is B is an $N\tilde{g}\alpha int(B)$. Hence $B \subseteq N\tilde{g}\alpha int(A)$.
- (d) Let A and B be subsets of U such that $A \subseteq B$. Let $x \in N\tilde{g}\alpha int(A)$. Then x is an $N\tilde{g}\alpha$ -interior point of A and so A is $N\tilde{g}\alpha$ -neighbourhood of x. This implies that $x \in N\tilde{g}\alpha int(B)$. Hence $N\tilde{g}\alpha int(A) \subseteq N\tilde{g}\alpha int(B)$.

Theorem 4.8. If a subset A of a nano topological space U is $N\tilde{g}\alpha$ -open, then $N\tilde{g}\alpha int(A) = A$.

Proof. Let A be an $N\tilde{g}\alpha$ -open subset of U. We know that $N\tilde{g}\alpha int(A) \subseteq A$. Also A is an $N\tilde{g}\alpha$ -open set contained in A. By Theorem 4.7 (c), $A \subseteq N\tilde{g}\alpha int(A)$. Hence $N\tilde{g}\alpha int(A) = A$.

Theorem 4.9. If A and B are subsets of U, then $N\tilde{g}\alpha int(A) \cup N\tilde{g}\alpha int(B) \subseteq N\tilde{g}\alpha int(A \cup B)$.

Proof. We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$. By Theorem 4.7 (d), $N\tilde{g}\alpha int(A) \subseteq N\tilde{g}\alpha int(A \cup B)$ and $N\tilde{g}\alpha int(B) \subseteq N\tilde{g}\alpha int(A \cup B)$. This implies that $N\tilde{g}\alpha int(A) \cup N\tilde{g}\alpha int(B) \subseteq N\tilde{g}\alpha int(A \cup B)$.

References

- K. Bhuvaneshwari and K. Ezhilarasi, On Nano semigeneralized and Nano generalized semi-closed sets, *IJMCAR*, 2014, 4(3), 117-124.
- [2] R. Devi, A. Selvakumar and S. Jafari, $\widetilde{G}\alpha$ -closed sets in topological spaces (submitted).
- [3] M. Lellis Thivagar, Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematical and Statistics Invention, 2013, 1(1), 31-37.
- [4] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970),89-96.
- [5] R. Thanga Nachiyar and K. Bhuvaneswari, On Nano Generalized α-Closed Sets and Nano α-Generalized Closed Sets in Nano Topological Spaces, International Journal of Engineering Trends and Technology (IJETT), Volume 13 Number 6, 2014, 257-260.

* * * * *