Analele Universității Oradea Fasc. Matematica, Tom XXII (2015), Issue No. 1, 119–123

OPERATION APPROACH OF g*-CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

S. JAFARI¹, A. SELVAKUMAR², M. PARIMALA³

ABSTRACT. In this article we introduce (\mathcal{I}, γ) -g^{*}-closed sets in topological spaces and also introduce γg^* - $T_{\mathcal{I}}$ -spaces and investigate some of their properties.

1. INTRODUCTION

The concept of generalized closed sets and semi-open sets in topological space was introduced by Levine [8], [9]. Further, M.K.R.S. Veerakumar [14] introduced and investigate the notion of g^* -closed sets in topological spaces. Julian Dontchev et. al. [4] introduced the notion of the generalized closed sets in ideal topological space (i.e. \mathcal{I} -g-closed sets). In this paper we introduce (\mathcal{I}, γ) -g^{*}-closed sets and γg^* - $T_{\mathcal{I}}$ space and discussed some of their applications.

An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X satisfying the following two properties:

- (1) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$
- (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$

For a subset $A \subset X$, $A^*(\mathcal{I}) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for each } U \in \tau(x)\}$ is called the local function of A with respect to \mathcal{I} and τ . Recall that $A \subset (X, \tau, \mathcal{I})$ is called τ^* -closed [6] if $A^* \subset A$. It is well known that $cl^*(A) = A \cup A^*$ [13] defines a Kuratowski closure operator for a topology $\tau^*(I)$, finer than τ .

An operation γ [7,11] on the topology τ on a given topological space (X, τ) is a function from the topology itself into the power set P(X) of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. The following operators are examples of the operation γ : the closure operator γ_{cl} defined by $\gamma(U) = \operatorname{cl}(U)$, the interior-closure operator γ_{ic} defined by $\gamma(U) = \operatorname{int}(\operatorname{cl}(U))$ and the identity operator γ_{id} defined by $\gamma(U) = U$. Another example of the operation γ is the γ_f -operator defined by $U^{\gamma_f} = (FrU)^c = X/FrU$ [12] where FrUdenotes frontier of U and $(FrU)^c$ denotes complement of frontier of U. Two operators γ_1 and γ_2 are called mutually dual [12] if $U^{\gamma_1} \cap U^{\gamma_2} = U$ for each $U \in \tau$. For example the identity operator is mutually dual to any other operator, while the γ_f -operator is mutually dual to the closure operator [12].

Definition 1.1. A subset A of a space (X, τ) is called

- (a) an α -open set [10] if $A \subset int(cl(int(A)))$.
- (b) a semi-open set [9] if $A \subset cl(int(A))$.

Definition 1.2. A subset A of a space $(X, \tau, \mathcal{I}, \gamma)$ is called

²⁰⁰⁰ Mathematics Subject Classification. 54B05, 54C08, 54D05.

Key words and phrases. (\mathcal{I}, γ) -g-closed set, (I, γ) -g*-closed sets, γg^* - T_I -spaces.

S. JAFARI, A. SELVAKUMAR, M. PARIMALA

- (a) a generalized closed (briefly g-closed) set [8] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ) .
- (b) an (\mathcal{I}, γ) -generalized closed (briefly (\mathcal{I}, γ) -g-closed) set [4] if $A^* \subset U^{\gamma}$ whenever $A \subset U$ and U is open in (X, τ) .
- (c) an (\mathcal{I}, γ) -generalized semi-closed (briefly (\mathcal{I}, γ) -gs-closed) set [2] if $A^* \subset U^{\gamma}$ whenever $A \subset U$ and U is semi-open in (X, τ) .
- (d) an (\mathcal{I}, γ) -generalized α -closed (briefly (\mathcal{I}, γ) - $g\alpha$ -closed) set [1] if $A^* \subset U^{\gamma}$ whenever $A \subset U$ and U is α -open in (X, τ) .

We denote the family of all (\mathcal{I}, γ) - g^* -closed subsets of a space $(X, \tau, \mathcal{I}, \gamma)$ by $IG^*(X)$ and simply write \mathcal{I} - g^* -closed in case when γ is an identity operator. Throughout this paper the operator γ is defined as $\gamma : \tau^g \to P(X)$, where τ^g denotes the set of all g-open sets of (X, τ) .

2. Basic properties of (\mathcal{I}, γ) - g^* -closed sets

Definition 2.1. A subset A of a topological space (X, τ) is called (\mathcal{I}, γ) -g^{*}-closed if $A^* \subset U^{\gamma}$, whenever $A \subset U$ and U is g-open in (X, τ) .

Example 2.1. Let $X = \{a, b, c, d, e\}, \tau = \{X, \phi, \{c\}, \{a, b\}, \{a, b, c\}\}, \mathcal{I} = \{\phi\}$ and $U^{\gamma} = int(cl(U))$. Here (\mathcal{I}, γ) -g*-closed sets are $X, \phi, \{a, c\}, \{b, c\}, \{c, e\}, \{d, e\}, \{a, b, c\}, \{a, c, d\}, \{a, d, e\}, \{a, c, e\}, \{b, c, d\}, \{b, d, e\}, \{c, d, e\}, \{a, b, c, d\}, \{a, c, d, e\}, \{a, b, d, e\}, \{a, b, c, e\}, \{b, c, d, e\}$.

Theorem 2.2. (a) Every g^* -closed set is \mathcal{I} - g^* -closed.

(b) Every (\mathcal{I}, γ) -g^{*}-closed set is (\mathcal{I}, γ) -g-closed.

(c) Every (\mathcal{I}, γ) -g^{*}-closed set is (\mathcal{I}, γ) -gs-closed and hence (\mathcal{I}, γ) -g α -closed.

- The converse of the above theorem need not be true by the following example.
- **Example 2.3.** (a) Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Here $A = \{a\}$ is \mathcal{I} -g^{*}-closed but not g^{*}-closed.
- (b) Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}, \mathcal{I} = \{\phi, \{a\}\}$ and γ = identity. Here $A = \{a, b\}$ is (\mathcal{I}, γ) -g-closed but not (\mathcal{I}, γ) -g^{*}-closed.
- (c) Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}, \mathcal{I} = \{\phi, \{a\}\}$ and γ =identity. Here $A = \{a, b\}$ is (\mathcal{I}, γ) -gs-closed and (\mathcal{I}, γ) -g α -closed but not (\mathcal{I}, γ) -g*-closed.

Theorem 2.4. If A is \mathcal{I} -g^{*}-closed and g-open, then A is τ^* -closed.

Proof. Since A is \mathcal{I} -g^{*}-closed, then $A^* \subset U$, U is g-open. It is given that A is g-open implies $A^* \subset A$. Hence A is τ^* -closed.

Lemma 2.5. [5, Theorem II3] Let $(A_i)_{i \in I}$ be a locally finite family of sets in (X, τ, \mathcal{I}) . Then $\bigcup_{i \in I} A_i^*(\mathcal{I}) = (\bigcup_{i \in I} A_i)^*(\mathcal{I})$.

Theorem 2.6. Let $(X, \tau, \mathcal{I}, \gamma)$ be a topological space.

- (a) If $(A_i)_{i \in I}$ is a locally finite family of sets and each $A_i \in IG^*(X)$, then $\bigcup_{i \in I} A_i \in IG^*(X)$.
- (b) Finite intersection of (\mathcal{I}, γ) -g^{*}-closed sets need not be (\mathcal{I}, γ) -g^{*}-closed.
- Proof. (a) Let $\bigcup_{i \in I} A_i \subset U$, where U is g-open. Since $A_i \in IG^*(X)$ for each $i \in I$, then $A_i^* \subset U^{\gamma}$. Hence $\bigcup_{i \in I} A_i^* \subset U^{\gamma}$. By Lemma 2.6, $(\bigcup_{i \in I} A_i)^* = \bigcup_{i \in I} A_i^*$, then $(\bigcup_{i \in I} A_i)^* \subset U^{\gamma}$. Hence $\bigcup_{i \in I} A_i \in IG^*(x)$.
 - (b) Let $X = \{a, b, c, d, e\}, \tau = \{X, \phi, \{c\}, \{a, b\}, \{a, b, c\}\}, \mathcal{I} = \{\phi\} \text{ and } \gamma = \gamma_{ic}.$ Set $A = \{a, c\}$ and $B = \{b, c\}.$ Clearly $A, B \in IG^*(X)$ but $A \cap B = \{c\} \notin IG^*(X).$

Lemma 2.7. [4] If A and B are subsets of (X, τ, \mathcal{I}) , then $(A \cap B)^*(\mathcal{I}) \subset A^*(\mathcal{I}) \cap B^*(\mathcal{I})$.

120

121

Theorem 2.8. Let $(X, \tau, \mathcal{I}, \gamma_{id})$ be a topological space. If $A \subset X$ is \mathcal{I} -g^{*}-closed and B is closed and τ^* -closed, then $A \cap B$ is \mathcal{I} -g^{*}-closed.

Proof. Let $U \in \tau^g$ be such that $A \cap B \subset U$. Then $A \subset U \cap (X \setminus B)$. Since A is \mathcal{I} - g^* -closed, then $A^* \subset U \cap (X \setminus B)$. Hence $B \cap A^* \subset U \cap B \subset U$, but we know that $B^* \subset B$. Therefore $(A \cap B)^* \subset A^* \cap B^* \subset A^* \cap B \subset U$, by Lemma 2.7. Hence $A \cap B$ is \mathcal{I} - g^* -closed. \Box

Theorem 2.9. Let A be a subset of $(X, \tau, \mathcal{I}, \gamma_{id})$. Then, A is \mathcal{I} -g^{*}-closed if and only if $A^* - A$ does not contain any non-empty closed subset.

Proof. (Necessity) Assume that F is a closed subset of $A^* - A$. Note that clearly $A \subset X - F$, where A is \mathcal{I} -g*-closed and $X - F \in \tau$. Then $A^* \subset X - F$, that is $F \subset X - A^*$. Since due to our assumption $F \subset A^*$, $F \subset (X - A^*) \cap A^* = \phi$.

(Sufficiency) Let U be an open subset and hence g-open subset containing A. Since A^* is closed [6, Theorem 2.3(c)] and $A^* \cap (X - U) \subset A^* - A$ holds, then $A^* \cap (X - U)$ is a closed set contained in $A^* - A$. By assumption, $A^* \cap (X - U) = \phi$ and hence $A^* \subset U$.

A subset S of a space $(X, \tau, \mathcal{I}, \gamma)$ is a topological space with an ideal $\mathcal{I}_s = \{I \in \mathcal{I} : I \subset S\} = \{I \cap S : I \in \mathcal{I}\}$ on S [3].

Lemma 2.10. [4] Let (X, τ, \mathcal{I}) be a topological space and $A \subset S \subset X$. Then, $A^*(\mathcal{I}_S, \tau/S) = A^*(\mathcal{I}, \tau) \cap S$ holds.

Theorem 2.11. Let $A \subset S \subset (X, \tau, \mathcal{I}, \gamma_{id})$. If A is \mathcal{I}_S - g^* -closed in $(S, \tau/S, \mathcal{I}_S, \gamma_{id})$ and S is closed in (X, τ) , then A is \mathcal{I} - g^* -closed in $(X, \tau, \mathcal{I}, \gamma_{id})$.

Proof. Let $A \subset U$, where $U \in \tau^g$. Let $x \notin U$. We consider the following two cases. *Case(i)* $x \in S$. By assumption, $A^*(\mathcal{I}_S, \tau/S) \subset U \cap S \subset U$. We show that $A^*(\mathcal{I}) \subset U \cap S \subset U$.

 $A^*(\mathcal{I}_S, \tau/S)$. Let $x \notin A^*(\mathcal{I}_S, \tau/S)$. Since $x \in S$, then for some open subset V_S of $(S, \tau/S)$ containing x, we have $V_S \cap A \in \mathcal{I}_S$, since $V_S = V \cap S$ for some $V \in \mathcal{I}$, then $(S \cap V) \cap A \in \mathcal{I}_S \subset \mathcal{I}$, that is $V \cap A \in \mathcal{I}$ for some $V \in \tau$ containing x. This shows that $x \notin A^*(\mathcal{I})$. Hence $A^*(\mathcal{I}) \subset U$.

 $Case(ii) x \notin S$. Then X/S is an open neighbourhood of x disjoint from A. Hence $x \notin A^*(\mathcal{I})$. Consequently $A^*(\mathcal{I}) \subset U$.

Both cases we show that the local function of A with respect to \mathcal{I} and τ is in U. Hence A is \mathcal{I} - g^* -closed in $(X, \tau, \mathcal{I}, \gamma_{id})$.

Theorem 2.12. Let $(X, \tau, \mathcal{I}, \gamma_{id})$ be a topological space and $A \subset S \subset X$. If A is \mathcal{I}_S -g^{*}closed in $(S, \tau/S, \mathcal{I}_S, \gamma_{id})$ and S is \mathcal{I} -g^{*}-closed in X, then A is \mathcal{I} -g^{*}-closed in X.

Proof. Let $A \subset U$ and $U \in \tau^g$. By assumption and Lemma 2.10, $A^*(\mathcal{I}, \tau) \cap S \subset U \cap S$. Then we have $S \subset U \cup (X/A^*(\mathcal{I}, \tau))$. Since $X/A^*(\mathcal{I}, \tau) \in \tau^g$, then $A^*(\mathcal{I}, \tau) \subset S^*(\mathcal{I}, \tau) \subset U \cup (X/A^*(\mathcal{I}, \tau))$. Therefore, we have that $A^*(\mathcal{I}, \tau) \subset U$ and hence A is \mathcal{I} -g*-closed in X.

Corollary 2.13. Let $(X, \tau, \mathcal{I}, \gamma_{id})$ be a topological space and A and F subsets of X. If A is \mathcal{I} -g^{*}-closed and F is closed in (X, τ) , then $A \cap F$ is \mathcal{I} -g^{*}-closed.

Proof. Since $A \cap F$ is closed in $A, \tau/A$, then $A \cap F$ is \mathcal{I}_A -g^{*}-closed in $(A, \tau/A, \mathcal{I}_A)$. By Theorem 2.13, $A \cap F$ is \mathcal{I} -g^{*}-closed.

Theorem 2.14. Let $A \subset S \subset (X, \tau, \mathcal{I}, \gamma)$. If $A \in IG^*(X)$ and $S \in \tau^g$, then $A \in IG^*(S)$.

Proof. Let U be a g-open subset of $(S, \tau/S)$ such that $A \subset U$. Since $S \in \tau^g$, then $U \in \tau^g$. Then $A^*(\mathcal{I}) \subset U^{\gamma}$, since $A \in IG^*(X)$. By Lemma 2.10, we have $A^*(\mathcal{I}_S, \tau/S) \subset U^{\gamma/S}$, where $U^{\gamma/S}$ means the image of the operation $\gamma/S : \tau^g/S \to P(S)$, defined by $(\gamma/S)(U) = \gamma(U) \cap S$ for each $U \in \tau^g/S$. Hence $A \in IG^*(S)$. **Theorem 2.15.** If the set $A \subset (X, \tau, \mathcal{I})$ is both (\mathcal{I}, γ_1) -g^{*}-closed and (\mathcal{I}, γ_2) -g^{*}-closed, then it is \mathcal{I} -g^{*}-closed, granted the operators γ_1 and γ_2 are mutually dual.

Proof. Let $A \subset U$, where $U \in \tau^g$. Since $A^* \subset U^{\gamma_1}$ and $A^* \subset U^{\gamma_2}$, then $A^* \subset U^{\gamma_1} \cap U^{\gamma_2} = U$, since γ_1 and γ_2 are mutually dual. Hence A is \mathcal{I} -g^{*}-closed.

Theorem 2.16. Every set $A \subset (X, \tau, \mathcal{I})$ is $(\mathcal{I}, \gamma_{cl})$ -g^{*}-closed.

Proof. Let $A \subset U$, U is g-open. We know that $A \cup A^* = \operatorname{cl}^*(A) \subset \operatorname{cl}(A) \subset \operatorname{cl}(U)$. This implies that $A^* \subset \operatorname{cl}(U)$. Hence A is (I, γ_{cl}) -g^{*}-closed.

Corollary 2.17. For a set $A \subset (X, \tau, \mathcal{I}, \gamma)$, the following conditions are equivalent.

- (a) A is (\mathcal{I}, γ_f) -g^{*}-closed.
- (b) A is \mathcal{I} -q^{*}-closed.

Proof. (a) \Rightarrow (b) By Theorem 2.16, A is $(\mathcal{I}, \gamma_{cl})$ - g^* -closed. Since γ_f and γ_{cl} are mutually dual due to [12], then $\gamma_f(U) \cap \gamma_{cl}(U) = U$. This implies that $A^* \subset U$, that is, A is \mathcal{I} - g^* -closed.

(b) \Rightarrow (a) Let $A \subset U$, U is g-open. Since A is \mathcal{I} -g^{*}-closed, $A^* \subset U$. But we know that $U \subset U^{\gamma_f}$, we have $A^* \subset U^{\gamma_f}$, this implies that A is (\mathcal{I}, γ_f) -g^{*}- closed. \Box

3. $\gamma g^* - T_{\mathcal{I}}$ -Space

Definition 3.1. A space $(X, \tau, \mathcal{I}, \gamma)$ is called an $\gamma g^* - T_{\mathcal{I}}$ -space if every $(\mathcal{I}, \gamma) - g^*$ -closed subset of X is an τ^* -closed. We use the simple notation $g^*T_{\mathcal{I}}$ -space, in case γ is the identity operator.

Theorem 3.1. For a space (X, τ, \mathcal{I}) , the following conditions are equivalent.

- (a) X is a g^*T_I -space.
- (b) Each singleton of X is either closed or τ^* -open.

Proof. (a) \Rightarrow (b) Let $x \in X$. If $\{x\}$ is not closed, then $A = X \setminus \{x\} \notin \tau$ and then A is trivially \mathcal{I} -g^{*}-closed. By (a), A is τ^* -closed. Hence $\{x\}$ is τ^* -open.

(b) \Rightarrow (a) Let A be a \mathcal{I} -g^{*}-closed and let $x \in cl^*(A)$. We have the following two cases. case(i). $\{x\}$ is closed. By Theorem 2.10, $A^* - A$ does not contain any non-empty closed

subset. This shows that $x \in A$.

case(ii). $\{x\}$ is τ^* -open. Then $\{x\} \cap A \neq \phi$. Hence $x \in A$.

Thus in both cases $\{x\}$ is in A and so $A = cl^*A$, that is A is τ^* -closed, which shows that X is a $g^*T_{\mathcal{I}}$ -space.

References

- [1] .Devi, V.Kokilavani and M.Rajik, (\mathcal{I}, γ) -g α -closed sets in ideal topological space (submitted).
- [2] .Devi, A.Selvakumar and M.Vigneshwaran, (*I*, γ)-generalized semi-closed sets in topological space, Filomat, 24:1 (2010), 97-100.
- [3] . Dontchev, On Hausdorff spaces via topological ideals and *I*-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, Vol. 767 (1995), 2838.
- [4] .Dontchev. M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [5] .R. Hamlett, David Rose and Dragan Jankovic, Paracompactness with respect to an ideal, Internat. J. Math. Math. Sci., 20(3)(1997), 433-442.
- [6] Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [7] .Kasahara, Operation-compact spaces, Math. Japon., 24 (1979), 97-105.
- [8] .Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96.
- [9] .Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

122

- [10] .Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [11] .Ogata, Operations on topological spaces and associated topology, Math. Japon., 36 (1991), 175-184.
- [12] .Tong, Expansion of open sets and decomposition of continuous mappings, Rend. Circ. Mat. Palermo (2), 43 (1994), 303-308.
- [13] . Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, New York, 1960.
- [14] .K.R.S. Veera Kumar, Between g*-closed sets and g-closed sets, Antartica J. Math., 3(1)(2006), 43-65.

Received 25 February 2014

¹ College of Vestsjaelland Syd, Herrestraede 11, 4200 Slagelse, Denmark.

 2 Department of Mathematics, Info Institute of Engineering, Coimbatore, Tamilnadu, India

 3 Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India

E-mail address: ¹ jafari@stofanet.dk, ² selvam_mphil@yahoo.com, ³ rishwathpari@gmail.com