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Abstract. We introduce and study the needle function. We prove that this

function is a function modeling n-step self avoiding walk. We show that the

total length of the l-step self-avoiding walk modeled by this function is of the
order

�
n

3
2

2

(
max{sup(xj)}1≤j≤ l

2
+max{sup(aj)}1≤j≤ l

2

)
.

1. Introduction

Self avoiding walk, roughly speaking, is a sequence of moves on the lattice that
does not visit the same point more than once. It is somewhat akin to the graph
theoretic notion of a path. It is a mathematical problem to determine a function
that models self avoiding walks of any given number of steps. More formally, the
problem states

Conjecture 1.1. Does there exist a function that models n-steps self-avoiding
walks?

The problem had long been studied from mathematical perspective but unfor-
tunately our understanding was not good enough. For instance the problem has
recently been studied from the standpoint of network theory [2]. The problem also
has great significance that extends beyond the shores of mathematics and its al-
lied area. For instance studies shows that a good understanding of the underlying
problem will certainly have its place in physics and chemistry about the long-term
structural movement of substances such as polymers and certain proteins [1],[3]. In
this paper we find a function that models an n-step self avoiding walk. We leverage
the method of compression and its accompanied estimates to study these things in
much more detail. In particular we obtain the following result

Theorem 1.1. The map (Γ ~a1
◦ Vm) ◦ (Γ ~a2

◦ Vm) . . . ◦ (Γ ~a l
2

◦ Vm) : Rn −→ Rn,

where

(Γ ~a1
◦ Vm) ◦ · · · ◦ (Γ ~ak

◦ Vm)

is the k-fold needle function with some mixed translation factors ~a1, ~a2, . . . , ~ak ∈ Rn,
is a function modeling l-step self avoiding walk.

We also comment very roughly about the total length of the l-step self avoiding
walk modeled by the needle function in the following result
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Theorem 1.2. The total length of the l-step self-avoiding walk modeled by the
needle function (Γ ~a1

◦ Vm) ◦ (Γ ~a2
◦ Vm) . . . ◦ (Γ ~a l

2

◦ Vm) : Rn −→ Rn is of order

� n
3
2

2

(
max{sup(xj)}1≤j≤ l

2
+ max{sup(aj)}1≤j≤ l

2

)
.

2. Preliminary results

Definition 2.1. By the compression of scale m ≥ 1 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Proposition 2.1. A compression of scale m ≥ 1 with Vm : Rn −→ Rn is a bijective
map. In particular the compression Vm : Rn −→ Rn is a bijective map of order 2.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition
of the map. Thus the map is bijective. The latter claim follows by noting that
V2

m[~x] = ~x. �

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin away from the origin by certain scale and similarly
draws points away from the origin close to the origin.

2.1. The mass and the gap of compression.

Definition 2.3. By the mass of a compression of scale m ≥ 1 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Nn, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1

�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k
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and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.4. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
.

Proposition 2.3 offers us an extremely useful identity. It allows us to pass from
the gap of compression on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
than points with a relatively smaller gap under compression. That is to say, the
inequality

G ◦ Vm[~x] ≤ G ◦ Vm[~y]

if and only if ||~x|| ≤ ||~y|| for ~x, ~y ∈ Nn. This important transference principle will
be mostly put to use in obtaining our results.

Lemma 2.5 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2, then we
have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1

− 2mn.

Proof. The estimates follows by leveraging the estimates in Proposition 2.2 and
noting that

nInf(x2j )�M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
� nsup(x2j ).

�
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3. Compression lines

In this section we study the notion of lines induced under compression of a given
scale. We first launch the following language.

Definition 3.1. Let ~x = (x1, x2, . . . , xn) ∈ Rn with x1 6= 0 for 1 ≤ i ≤ n. Then
by the line LVm[~x] produced under compression Vm : Rn −→ Rn we mean the line
joining the points ~x and Vm[~x] given by

~r = ~x+ λ(~x− Vm[~x])

where λ ∈ R.

Remark 3.2. Next we show that the lines produced under compression of two dis-
tinct points not on the same line of compression cannot intersect at the correspond-
ing points and their images under compression.

Lemma 3.3. Let ~a = (a1, a2, . . . , an) ∈ Rn with ~a 6= ~x and ai, xj 6= 0 for 1 ≤ i, j ≤
n. If the point ~a lies on the corresponding line LVm[~x], then Vm[~a] also lies on the
same line.

Proof. Pick arbitrarily a point ~a on the line LVm[~x] produced under compression for
any ~x ∈ Rn. Suppose on the contrary that Vm[~a] cannot live on the same line as
~a. Then Vm[~a] must be away from the line LVm[~x]. Produce the compression line
LVm[~a] by join the point ~a to the point Vm[~a] by a straight line. Then It follows
from Proposition 2.3

G ◦ Vm[~x] > G ◦ Vm[~a].

Again pick a point ~c on the line LVm[~a], then under the assumption it follows that
the point Vm[~c] must be away from the line. Produce the compression line LVm[~c]

by joining the points ~c to Vm[~c]. Then by Proposition 2.3 we obtain the following
decreasing sequence of lengths of distinct lines

G ◦ Vm[~x] > G ◦ Vm[~a] > G ◦ Vm[~c].

By repeating this argument, we obtain an infinite descending sequence of lengths
of distinct lines

G ◦ Vm[~x] > G ◦ Vm[ ~a1] > · · · > G ◦ Vm[ ~an] > · · · .

This proves the Lemma. �

It is important to point out that Lemma 3.3 is the ultimate tool we need to show
that certain function is indeed a function modeling n-step self avoiding walk. We
first launch such a function as an outgrowth of the notion of compression. Before
that we launch our second Lemma. One could think of this result as an extension
of Lemma 3.3.

Lemma 3.4. Let ~a = (a1, a2, . . . , an) ∈ Rn and ~b = (b1, b2, . . . , bn) ∈ Rn with

~a 6= ~b and ai, bj 6= 0 for 1 ≤ i, j ≤ n. If the corresponding lines LVm[~a] : r1 =

~a+ λ(~a− Vm[~a]) and LVm[~b] : r2 = ~b+ µ(~b− Vm[~b]) for µ, λ ∈ R intersect, then

~a− Vm[~a] ‖ ~b− Vm[~b].
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Proof. First consider the points ~a = (a1, a2, . . . , an) ∈ Rn and ~b = (b1, b2, . . . , bn) ∈
Rn with ~a 6= ~b and ai, bj 6= 0 for 1 ≤ i, j ≤ n with corresponding lines LVm[~a] :

r1 = ~a + λ(~a − Vm[~a]) and LVm[~b] : r2 = ~b + µ(~b − Vm[~b]) for µ, λ ∈ R. Suppose

they intersect at the point ~s, then it follows that the point Vm[~s] lies on the lines

LVm[~a] : r1 = ~a + λ(~a − Vm[~a]) and LVm[~b] : r2 = ~b + µ(~b − Vm[~b]) and the result

follows immediately. �

Lemma 3.3 combined with Lemma 3.4 tells us that the line produced by com-
pression on points away from other lines of compression are not intersecting. We
leverage this principle to show that a certain function indeed models a self-avoiding
walk.

4. The needle function

Definition 4.1. By the needle function of scale m and translation factor ~a, we
mean the composite map

Γ~a ◦ Vm : Rn −→ Rn

such that for any ~x ∈ Rn

Γ~a ◦ Vm[~x] = ~y

where ~x = (x1, x2, . . . , xn) with xi 6= 0 for 1 ≤ i ≤ n and Γ~a[~x] = (x1 + a1, x2 +
a2, . . . , xn + an).

Definition 4.2. The needle function Γ~a ◦ Vm : Rn −→ Rn is a bijective function
of order 2.

Proof. We remark that the translation with translation factor ~a for a fixed ~a given
by Γ~a : Rn −→ Rn is a bijective map. The result follows since the composite of
bijective maps is still bijective. �

Theorem 4.3. The map (Γ ~a1
◦ Vm) ◦ (Γ ~a2

◦ Vm) . . . ◦ (Γ ~a l
2

◦ Vm) : Rn −→ Rn,

where

(Γ ~a1
◦ Vm) ◦ · · · ◦ (Γ ~ak

◦ Vm)

is the k-fold needle function with mixed translation factors ~a1, ~a2, . . . , ~ak ∈ Rn, is a
function modeling l-step self avoiding walk.

Proof. Pick arbitrarily a point ~x = (x1, x2, . . . , xn) ∈ Nn for n ≥ 2 with xi 6= 0
for 1 ≤ i ≤ n and apply the needle function Γ ~a1

◦ Vm[~x] for a fixed translation

factor ~a1 6= ~O such that the point Γ ~a1
◦ Vm[~x] with a fixed compression scale

m is away from the line LVm[~x]. Let us now traverse the line produced under
compression to the line produced by translation of the point Γ ~a1

(Vm[~x]) with the
starting point ~x to Vm[~x] and finally from Vm[~x] to Γ ~a1

(Vm[~x]). The upshot is a
self avoiding walk of length 2. Since the point Γ ~a1

(Vm[~x]) = ~z is away from the
line LVm[~x] produced under compression on the point ~x, the line under compression
on the point Vm[~x] = ~z given by LVm[~z] cannot intersect the line LVm[~x] produced
under compression. For suppose this happens, then by Lemma 3.4 the line LVm[~z]

produced under compression on the point ~z must be parallel to the line LVm[~x].
This is absurd since the point ~z is away from the line LVm[~x]. The upshot is a
self avoiding walk of length 3. Again we apply the translation Γ ~a2

on the point
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Vm[~z] with a suitable translation factor ~a2 6= ~O such that the point Γ ~a2
◦ Vm[~z]

is away from previous lines so constructed and whose corresponding line under
compression does not intersect previous lines so constructed under translation, since
by Lemma 3.4 and Lemma 3.3 the corresponding line under compression cannot
intersect previous lines under compression by the choice of our translation factor.
By traversing all these lines starting from the point ~x to Vm[~x], ~z = Vm[~x] to
Γ ~a1

[~z], Γ ~a1
[~z] to Vm ◦ Γ ~a1

[~z] and finally from Vm ◦ Γ ~a1
[~z] to Γ ~a2

◦ Vm ◦ Γ ~a1
[~z], we

obtain a self avoiding walk of length 4. By continuing this argument l
2 number of

times and choosing an appropriate translation factor so that the image point under
such translation is away from all the previous lines and whose corresponding line
under compression does not intersect previous line produced under translation, and
noting that this line under compression will certainly not intersect previous lines of
compression by appealing to Lemma 3.3 and Lemma 3.4, we produce a self avoiding
walk of length l. This completes the proof. �

We remark that we can certainly do more than this by estimating the total length
of the self-avoiding walk modeled by this function in the following result.

Theorem 4.4. The total length of the l-step self-avoiding walk modeled by the
needle function (Γ ~a1

◦Vm) ◦ (Γ ~a2
◦Vm) . . . ◦ (Γ ~a l

2

◦Vm) : Rn −→ Rn for ~ai ∈ Rn is

of order

� n
3
2

2

(
max{sup(xj)}1≤j≤ l

2
+ max{sup(aj)}1≤j≤ l

2

)
.

Proof. We note the the total length of the l-step self avoiding walk modeled by the
needle function is given by the expression

l
2∑

i=1

G ◦ Vm[~xi] +

l
2∑

i=1

||~ai||

and the result follows by applying the estimates in Lemma 2.5. �

1.
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