g*bp-CONTINUOUS, ALMOST g*bp-CONTINUOUS AND WEAKLY g*bp-CONTINUOUS FUNCTIONS

ALIAS B. KHALAF, SUZAN N. DAWOD, AND SAEID JAFARI

ABSTRACT. In this paper we introduce new types of functions called g^*bp -continuous function, almost g^*bp -continuous function, and weakly g^*bp -continuous function in topological spaces and study some of their basic properties and relations among them.

1. Introduction

Biswas [8], Husain [17], Levine [23], Noiri and Ahmed [36] and Tong [41] have introduced and investigated many types of continuity such as simple, almost, weak, semi, quasi, α , strong semi, semi-weak, weak almost, A- and B-continuity. Balachandran, Sundaram and Maki [5] have introduced and studied generalized continuous function in topological spaces. Mashour and Deeb [30] have introduced pre-continuous and weak pre continuous mappings. EL Etik [15] also introduced the concept of gb-continuous function by utilizing b-open sets. Omari and Noorani [37] introduced and studied the concept of generalized b-closed sets and gb-continuous function in topological spaces. Vidhya and Parimelazhgana [43] introduced and studied the properties of g^*b -closed sets, g^*b -continuous and g^*b -irresolute in topological spaces.

The aim of this paper is to introduce and study new types of functions called g^*bp (almost g^*bp and weakly g^*bp)-continuous functions.

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represents the non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, Cl(A) and Int(A) represents the closure of A and Interior of A respectively. A subset A is said to be preopen [30] (resp., α -open [32], semi open [24], regular open[45]) set if $A \subseteq IntCl(A)$ (resp., $A \subseteq IntClInt(A), A \subseteq ClInt(A), A = IntCl(A)$). The complement of a preopen set is called preclosed. The intersection of all preclosed [6] (resp., semi closed) sets containing A is called the preclosure (resp. semi closure) of A and is denoted by pCl(A) (resp., sClA). The preinterior of A is defined by the union of all preopen sets contained in A and is denoted by pInt(A). It is clear that A is a preopen set if and only if A = pInt(A) and A is preclosed if A = pCl(A). The family of all preopen sets of X is denoted by PO(X) and the family of all preclosed sets of X

Key words and phrases. g^*b -closed set, g^*bp -continuous, almost g^*bp -continuous, weakly g^*bp -continuous.

containing x is denoted by PC(X, x).

2. Preliminaries

In this section we recall some definitions and results which are used in the next sections.

Definition 2.1. A subset A of a topological space (X, τ) is called

- (1) b-open set [2], if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$ and b-closed set if $Cl(Int(A)) \cup Int(Cl(A)) \subseteq A$.
- (2) generalized closed set (briefly g-closed)[23] (g^{*}-closed [42]), if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open(g-open) in X.
- (3) pg-closed [28], if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is preopen in X.
- (4) gb-closed [37], and $(g^*b$ -closed [43]) if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open(g-open) in X. The complement of a gb-closed (g^*b closed) set is called gb-open (g^*b -open) respectively.
- (5) $p\delta$ -open set [18], if for each $x \in A$, there exists a preopen set U in X such that $x \in U \subseteq pIntpCl(U) \subseteq A$.
- (6) pre-regular *p*-open [19] (resp., pre-regular *p*-closed [20]) if A = pIntpCl(A)(resp., A = pClpInt(A)).

Remark 2.2. It is worth to mention that the notion of pre-regular p-open is called regular preopen in [11]. S. Jafari investigated the fundamental properties of pre-regular p-open sets in [20]. M. Caldas et al. [9] introduced and investigated some weak separation axioms via pre-regular p-open sets. In this paper we use the notions of regular preopen and regular preclosed sets instead of pre-regular p-open and pre-regular p-closed sets.

Definition 2.3. Let (X, τ) and (Y, σ) be two topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be:

- (1) g-continuous [5] (b-continuous [15], gb-continuous [37], g^*b -continuous [43], and pre-continuous [30]) if $f^{-1}(A)$ is g-closed (b-closed, gb-closed, g^*b -closed, and pre-closed) in X for every closed set A in Y.
- (2) preirresolute [38] if $f^{-1}(A) \in PO(X)$ for each $A \in PO(Y)$.
- (3) g^*b -irresolute [43], if the inverse image of every g^*b -closed set in Y is g^*b -closed in X.
- (4) weakly continuous [26] (resp., weakly precontinuous [30], and weakly α -continuous [34]) If for each $x \in X$ and each open set A of Y containing f(x), there exists an open (resp., preopen and α -open) set U of X containing x such that $f(U) \subseteq Cl(A)$.
- (5) complete continuous [3], if the inverse image of each open set of Y is regular open in X.
- (6) almost continuous [40] (resp., almost α-continuous [35], R-map [10]
) if the inverse image of each regular open subset of Y is open (resp., α-open, regular open) in X.

 $g^{\star}bp$ -CONTINUOUS, ALMOST $g^{\star}bp$ -CONTINUOUS AND WEAKLY $g^{\star}bp$ -CONTINUOUS FUNCTIONS

(7) δ -continuous [33], if for each $x \in X$ and each open set A of Y containing f(x), there exists an open set U of X containing x such that $f(Int(Cl(U))) \subseteq Int(Cl(A)).$

Lemma 2.4. [18] For any subset A of a topological space X, the following statements are true:

- (1) A is regular open \Rightarrow A is regular preopen \Rightarrow A is $p\delta$ -open \Rightarrow A is preopen.
- (2) pIntpCl(A) is regular preopen set.

Lemma 2.5. [21] Let A be a subset of a space (X, τ) . Then $A \in PO(X, \tau)$ if and only if sCl(A) = IntCl(A).

Theorem 2.6. [25] Let $f : X \to Y$ be a function and $\{B_{\alpha} : \alpha \in \Delta\}$ be an indexed family of subsets of Y. Then the induced function $f^{-1} : Y \to X$ has the following properties:

(1) $f^{-1}(\cup(\{B_{\alpha}:\alpha\in\Delta\})) = \cup(f^{-1}(\{B_{\alpha}:\alpha\in\Delta\})).$ (2) $f^{-1}(\cap(\{B_{\alpha}:\alpha\in\Delta\})) = \cap(f^{-1}(\{B_{\alpha}:\alpha\in\Delta\})).$

Definition 2.7. [4] A space X is said to be

- (1) Pre- T_0 if and only if to each pair of distinct points x, y in X, there exists a preopen set containing one of the points but not the other.
- (2) Pre- T_1 if and only if to each pair of distinct points x, y of X, there exists a pair of preopen sets one containing x but not y and other containing y but not x.
- (3) Pre- T_2 if and only if to each pair of distinct points x, y of X, there exists a pair of disjoint preopen sets one containing x and the other containing y.

Professor M. Ganster in 2003, in a private conversation with the third author showed that every topological space is $\text{pre-}T_0$.

Definition 2.8. A topological space (X, τ) is said to be:

- (1) submaximal [21], if the closure of every dense subset of X is open.
- (2) extremally disconnected [27], if the closure of every open set of X is open in X.
- (3) locally indiscrete [13], if every open set of X is closed in X.
- (4) pre- $T_{\frac{1}{2}}$ [28], space if every *pg*-closed set is preclosed.
- (5) r- T_1 [14], if for each pair of distinct points x and y of X, there exists regular open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$.

Definition 2.9. A space X is called:

(1) preregular [7](resp., *p*-regular [31]) if for each preclosed (resp., closed) set F and each point $x \notin F$, there exists disjoint preopen sets U and V such that $x \in U$ and $F \subseteq V$.

- (2) Almost regular [39], if for any regular closed set F of X and any point $x \in X \setminus F$, there exists disjoint open sets U and V such that $x \in U$ and $F \subseteq V$.
- (3) semi-regular [39], if for any open set U of X and each point $x \in U$ there exists a regular open set V of X such that $x \in V \subseteq U$.
- (4) almost *p*-regular [29], if for each $A \in RC(X)$ and each point $x \in X \setminus A$ there exists preopen sets U, V such that $x \in U$ and $U \cap V = \phi$.
- (5) strongly s-regular [16], if for each closed set A and any point $x \in (X \setminus A)$, there exists a $F \in RC(X)$ such that $x \in F$ and $F \cap A = \phi$.

Theorem 2.10. [13] If $R \in RO(X)$ and $P \in PO(X)$, then $R \cap P \in RO(P)$.

Lemma 2.11. [21] A space X is submaximal if and only if every preopen set is open.

Theorem 2.12. [1] Let (Y, τ_Y) be subspace of a space (X, τ) . If $A \in PO(X, \tau)$ and $A \subseteq Y$, then $A \in PO(Y, \tau_Y)$.

Theorem 2.13. [44] Let A be a subset of a topological space (X, τ) , if $A \in \tau$, then $Cl_{\theta}(A) = Cl(A)$.

Definition 2.14. [22] A space X is said to be:

- (1) g^*b - T_0 if for each pair of distinct points x, y in X, there exists a g^*b -open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.
- (2) g^*b - T_1 if for each pair of distinct points x, y in X, there exist two g^*b -open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.
- (3) g^*b - T_2 if for each distinct points x, y in X, there exist two disjoint g^*b -open sets U and V containing x and y respectively.

3. g^*bp -continuous function

In this section, we Introduce the concept of g^*bp -continuous function in topological spaces.

Definition 3.1. Let (X, τ) and (Y, σ) be two topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is called g^*bp -continuous at a point $x \in X$ if for each preopen set A in Y containing f(x), there exists a g^*b -open set U of X containing x such that $f(U) \subseteq A$.

Proposition 3.2. For a function $f : (X, \tau) \to (Y, \sigma)$ the following are equivalent.

- (1) f is g^*bp -continuous.
- (2) $f^{-1}(A)$ is g^*b -open in X, for each preopen set A in Y.
- (3) $f^{-1}(B)$ is g^*b -closed in X, for each preclosed set B in Y.

Proof. (1) \Rightarrow (2). Let A be any preopen set of Y, we have to show that $f^{-1}(A)$ is g^*b -open in X. Let $x \in f^{-1}(A)$. Then $f(x) \in A$. By(1), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq A$ which implies

4

that $x \in U \subseteq f^{-1}(A)$. Therefore, $f^{-1}(A)$ is g^*b -open in X. (2) \Rightarrow (3). Let B be preclosed set of Y. Then $Y \setminus B$ is preopen set of Y. By(2), $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$ is g^*b -open set in X and hence $f^{-1}(B)$ is g^*b -closed in X. (3) \Rightarrow (1). Let A be any preopen set of Y. Then $(Y \setminus A)$ is preclosed in Y.

By(3), $f^{-1}(Y \setminus A)$ is g^*b -closed set in X. But $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$. Thus $X \setminus f^{-1}(A)$ is g^*b -closed in X so $f^{-1}(A)$ is g^*b -open in X. Therefore, we obtain $f(f^{-1}(A)) \subseteq A$, hence f is g^*b -continuous.

Proposition 3.3. If a function $f : (X, \tau) \to (Y, \sigma)$ is g^*bp -continuous, then it is g^*b -continuous.

Proof. Let A be any open set in Y, then its preopen set in Y. Since f is g^*bp continuous, then $f^{-1}(A)$ is g^*b -open set in X. Hence f is g^*b -continuous. \Box

The converse of Proposition 3.3 need not be true in general as it is shown in the following example.

Example 3.4. Let $X = Y = \{a, b, c\}$, and $\tau = \{\phi, \{b\}, \{a, b\}, X\}$, $\sigma = \{\phi, \{c\}, \{a, b\}, Y\}$, and a function $f : (X, \tau) \to (Y, \sigma)$ defined by f(a) = c, f(b) = b, f(c) = a f is g^*b -continuous but not g^*bp -continuous, since for the preclosed set $B = \{a, b\}$ in Y, $f^{-1}(B) = \{b, c\}$ is not g^*b -closed in X.

Note: If Y is submaximal, then by Lemma 2.11 we have $PO(X) = \tau$. Hence, every g^*b -continuous function is g^*bp -continuous.

Proposition 3.5. If a function $f : (X, \tau) \to (Y, \sigma)$ is g^*b -irresolute, then it is g^*bp -continuous but not conversely.

Proof. Let A be preclosed set in Y, then it is g^*b -closed in Y. Since f is g^*b -irresolute, then $f^{-1}(A)$ is g^*b -closed in X. Hence it is g^*bp -continuous. \Box

The converse of Proposition 3.5 is not true in general.

Example 3.6. Let $X = Y = \{a, b, c\}$ and let $\tau = \{\phi, \{a\}, \{a, b\}, X\}$, $\sigma = \{\phi, \{c\}, \{a, c\}, Y\}$. The identity function $f : (X, \tau) \to (Y, \sigma)$ is g^*bp -continuous but not g^*b -irresolute because $B = \{a, b\}$ is g^*b -closed set in Y and $f^{-1}(B) = \{a, b\}$ is not g^*b -closed in X.

Proposition 3.7. Let $X = R_1 \cup R_2$, where R_1 and R_2 are g^*b -closed set in X. Let $f : R_1 \to Y$ and $g : R_2 \to Y$ be g^*bp -continuous. If f(x) = g(x) for each $x \in R_1 \cap R_2$. Then $h : R_1 \cup R_2 \to Y$ such that

$$h(x) = \begin{cases} f(x) & \text{if } x \in R_1 \\ g(x) & \text{if } x \in R_2 \end{cases}$$

is g^*bp -continuous.

Proof. Let A be any preopen set in Y. Clearly $h^{-1}(A) = f^{-1}(A) \cup g^{-1}(A)$. Since f is g^*bp -continuous, then $f^{-1}(A)$ is g^*b -open in R_1 . But R_1 is g^*b -open in X. Then by Theorem 3.30 [43], $f^{-1}(A)$ is g^*b -open in X. Similarly, $g^{-1}(A)$ is g^*b -open in R_2 and hence a g^*b -open in X. Since a union of two g^*b -open sets is g^*b -open. Therefore, $h^{-1}(A) = f^{-1}(A) \cup g^{-1}(A)$ is g^*b -open in X. Hence h is g^*b -continuous.

Theorem 3.8. For a function $f : (X, \tau) \to (Y, \sigma)$ the following are equivalent:

- (1) f is g^*bp -continuous.
- (2) $f(g^*bCl(B)) \subseteq pCl(f(B))$, for every subset B of X.
- (3) $g^{\star}bCl(f^{-1}(A)) \subseteq f^{-1}(pCl(A))$, for each subset A of Y.
- (4) $f^{-1}(pInt(A)) \subseteq g^*bInt(f^{-1}(A))$, for each subset A of Y.
- (5) $pInt(f(B)) \subseteq f(g^*bInt(B))$, for each subset B of X.

Proof. (1) ⇒ (2). Let *B* be any subset of *X*. Then $f(B) \subseteq pCl(f(B))$ and pClf(B) is preclosed in *Y*. Hence $B \subseteq f^{-1}(pClf(B))$, since *f* is g^*bp continuous. By Proposition 3.2, $f^{-1}(pClf(B))$ is g^*b -closed set in *X*. Therefore, $g^*bCl(B) \subseteq f^{-1}(pCl(f(B)))$. Hence $f(g^*bCl(B)) \subseteq (pCl(f(B)))$.

(2) \Rightarrow (3). Let A be any subset of Y, then $f^{-1}(A)$ is a subset of X. By (2) we have $f(g^*bClf^{-1}(A)) \subseteq pCl(f(f^{-1}(A))) = pCl(A)$. It follow that $g^*b(Clf^{-1}(A)) \subseteq f^{-1}(pCl(A))$.

 $(3) \Rightarrow (4)$. Let A be any subset of Y. Then apply(3) to $(Y \setminus A)$ we obtain $g^*bCl(f^{-1}(Y \setminus A)) \subseteq f^{-1}(pCl(Y \setminus A)) \Leftrightarrow g^*bCl(X \setminus f^{-1}(A)) \subseteq f^{-1}(Y \setminus pInt(A)) \Leftrightarrow X \setminus g^*bInt(f^{-1}(A)) \subseteq X \setminus f^{-1}(pInt(A)) \Leftrightarrow f^{-1}(pInt(A) \subseteq g^*bInt(f^{-1}(A)).$

 $(4) \Rightarrow (5)$. Let B be any subset of X, Then f(B) is a subset of Y. By(4), we have $f^{-1}(pInt(f(A))) \subseteq g^{\star}bInt(f^{-1}(f(A))) = g^{\star}bInt(A)$. Therefore, $pInt(f(A)) \subseteq f(g^{\star}bInt(A))$.

 $(5) \Rightarrow (1).$ Let $x \in X$ and let A be any preopen set of Y containing f(x). Then $x \in f^{-1}(A)$ and $f^{-1}(A)$ is a subset of X. By(5), we have $pInt(f(f^{-1}(A))) \subseteq f(g^*bInt(f^{-1}(A)))$. Then $pInt(A) \subseteq f(g^*bInt(f^{-1}(A)))$, since A is preopen, then $A \subseteq f(g^*bInt(f^{-1}(A)))$ implies that $f^{-1}(A) \subseteq g^*bInt(f^{-1}(A))$. Therefore $f^{-1}(A)$ is g^*b -open in X containing x and clearly $f(f^{-1}(A)) \subseteq A$. Hence f is g^*bp -continuous. \Box

Proposition 3.9. Let $f : X \to Y$ be g^*bp -continuous and $Y \subseteq Z$. If Y is preclosed subset of a topological space Z, then $f : X \to Z$ is g^*bp -continuous.

Proof. Let F be any preclosed set in Z. Then $F \cap Y$ is preclosed in Z, by Theorem 2.22 [1], $F \cap Y$ is preclosed in Y. Since f is g^*bp -continuous, so $f^{-1}(F \cap Y)$ is g^*b -closed in X but $f(x) \in Y$ for each $x \in X$, and thus $f^{-1}(F) = f^{-1}(F \cap Y)$ is g^*b -closed subset of X. Therefore, by Proposition 3.2 $f: X \to Z$ is g^*bp -continuous. \Box

Theorem 3.10. If $f : (X, \tau) \to (Y, \sigma)$ is g^*bp -continuous and A is g^*b closed set in X, then $f|A : A \to Y$ is g^*bp -continuous.

Proof. Let B be preclosed set in Y, since f is g^*bp -continuous, then $f^{-1}(B)$ is g^*b -closed in X. Since $(f|A)^{-1}(B)=f^{-1}(B)\cap A$, so Since $(f|A)^{-1}(B)$ is g^*b -closed in X because the intersection of two g^*b -closed sets is g^*b -closed.

Hence by Theorem 3.30 [43], $(f|A)^{-1}(B)$ is g^*b -closed set in A. Therefore f|A is g^*bp -continuous.

Theorem 3.11. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \delta)$ be any two functions, then $g \circ f : (X, \tau) \to (Z, \delta)$ is g^*bp -continuous if g is preirresolute function and f is g^*bp -continuous.

Proof. Let A be any preclosed set in Z. Since g is preirresolute function, then $g^{-1}(A)$ is preclosed in Y. Since f is g^*bp -continuous, then $f^{-1}(g^{-1}(A))$ is g^*b -closed in X. Hence $g \circ f$ is g^*bp -continuous.

Proposition 3.12. If a function $f : X \to Y$ is g^*b -continuous and Y is p-regular, then f is g^*bp -continuous.

Proof. Let $x \in X$ and A be any preopen set of Y containing f(x). Since Y is *p*-regular then there exists an open set G of Y such that $f(x) \in G \subseteq A$, since f is g^*b -continuous, then there exists a g^*b -open set U of X containing x such that $f(U) \subseteq G \subseteq A$. Therefore, f is g^*b -continuous.

Theorem 3.13. If $f : X \to Y$ is a g^*bp -continuous injection and Y is pre- T_1 , then X is g^*b - T_1 .

Proof. Assume that Y is pre- T_1 . For any distinct points x and y in X, there exist preopen sets A and W such that $f(x) \in A$, $f(y) \notin A$, $f(x) \notin W$ and $f(y) \in W$. Since f is g^*bp -continuous, so there exist g^*b -open sets G and H such that $x \in G$, $y \in H$, $f(G) \subseteq A$ and $f(H) \subseteq W$. Thus we obtain $y \notin G$, $x \notin H$. This shows that X is g^*b - T_1 .

Theorem 3.14. If $f : X \to Y$ is g^*bp -continuous injection and Y is pre- T_2 then X is g^*b - T_2 .

Proof. For any pair of distinct points x and y in X, there exist disjoint preopen sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since fis g^*bp -continuous, there exist g^*b -open sets G and H in X containing xand y, respectively, such that $f(G) \subseteq U$ and $f(H) \subseteq V$. Since U and Vare disjoint, we have $U \cap V = \phi$, hence $G \cap H = \phi$. This shows that X is g^*b-T_2 .

4. Almost g^*bp -continuous function

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called almost g^*bp continuous at a point $x \in X$ if for each preopen set A of Y containing f(x), there exists a g^*b -open set U of X containing x such that $f(U) \subseteq IntClA$. If f is almost g^*bp -continuous at every point of X, then it is called almost g^*bp -continuous.

Definition 4.2. A function $f : X \to Y$ is said to be almost g^*bp -open if $f(U) \subseteq IntCl(f(U))$ for every g^*b -open set U in X.

Theorem 4.3. For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (1) f is almost g^*bp -continuous,
- (2) For each $x \in X$ and each preopen set A of Y containing f(x), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq sCl(A)$.
- (3) For each $x \in X$ and each regular open set A of Y containing f(x), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq A$.
- (4) For each $x \in X$ and each δ -open set A of Y containing f(x), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq A$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and A be any preopen set of Y containing f(x). By (1) there exists a g^*b -open set U in X containing x such that $f(U) \subseteq IntCl(A)$. Since A is preopen by Lemma 2.5, $f(U) \subseteq sCl(A)$.

 $(2) \Rightarrow (3)$. Let $x \in X$ and A be any regular open set of Y containing f(x), then A is preopen set in Y. By (2), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq sCl(A)$, then by Lemma 2.5, $f(U) \subseteq IntCl(A)$. Since A is regular open, then $f(U) \subseteq A$.

 $(3) \Rightarrow (4)$. Let $x \in X$ and let A be any δ -open set of Y containing f(x). Then for each $f(x) \in A$, there exists an open set G containing f(x) such that $G \subseteq IntCl(G) \subseteq A$. Since IntCl(G) is regular open set of Y containing f(x). By(3), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq IntCl(G) \subseteq A$.

 $(4) \Rightarrow (1)$. Let $x \in X$ and A be any preopen set of Y containing f(x), then IntCl(A) is δ -open set of Y containing f(x). By(4), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq IntCl(A)$. Therefore, f is almost g^*bp -continuous.

Theorem 4.4. A function $f : X \to Y$ is almost g^*bp -continuous if and only if for each $x \in X$ and each regular open set A containing f(x), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq A$.

Proof. For every $x \in X$ and let A be any regular open set containing f(x), then A is preopen set containing f(x). Since f is almost g^*bp -continuous, then there exists a g^*b -open set U in X containing x such that $f(U) \subseteq IntCl(A) = A$. Conversely. Obvious. \Box

Theorem 4.5. For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (1) f almost g^*bp -continuous.
- (2) $f^{-1}(IntCl(A))$ is g*b-open set in X, for each preopen set A in Y.
- (3) $f^{-1}(ClInt(F))$ is g*b-closed set in X, for each preclosed set F in Y.
- (4) $f^{-1}(F)$ is g^*b -closed set in X, for each regular closed set F in Y.
- (5) $f^{-1}(A)$ is g^*b -open set in X, for each regular open set A in Y.

Proof. (1) \Rightarrow (2). Let A be any preopen set in Y. We have to show that $f^{-1}(IntCl(A))$ is g^*b -open set in X. Let $x \in f^{-1}(IntCl(A))$. Then $f(x) \in IntCl(A)$ and IntCl(A) is regular open set in Y. Since f is almost g^*b -continuous. By Theorem 4.3, there exists a g^*b -open set U of X containing x such that $f(U) \subseteq IntCl(A)$. Which implies that $x \in U \subseteq f^{-1}(IntCl(A))$.

Therefore, $f^{-1}(IntCl(A))$ is g^*b -open set in X.

 $(2) \Rightarrow (3).$ Let F be any preclosed set of Y. Then $Y \setminus F$ is preopen set of Y. By $(2), f^{-1}(IntCl(Y \setminus F))$ is g^*b -open set in X and $f^{-1}(IntCl(Y \setminus F)) = f^{-1}(Int(Y \setminus Int(F))) = f^{-1}(Y \setminus ClInt(F)) = X \setminus f^{-1}(ClInt(F))$ is g^*b -open set in X and hence $f^{-1}(ClInt(F))$ is g^*b -closed set in X.

 $(3) \Rightarrow (4)$. Let F be any regular closed set of Y. Then F is preclosed set of Y. By (3). $f^{-1}(ClInt(F))$ is g^*b -closed set in X since F is regular closed set, then $f^{-1}(ClInt(F)) = f^{-1}(F)$. Therefore $f^{-1}(F)$ is g^*b -closed set in X.

 $(4) \Rightarrow (5)$. Let A be any regular open set of Y. Then $Y \setminus A$ is regular closed set of Y and by (4), we have $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$ is g^*b -closed set in X and hence $f^{-1}(A)$ is g^*b -open set in X.

 $(5) \Rightarrow (1)$. Let $x \in X$ and let A be any regular open set of Y containing f(x), so $x \in f^{-1}(A)$. By (5), we have $f^{-1}(A)$ is g^*b -open set in X. Therefore we obtain $f(f^{-1}(A)) \subseteq A$. Hence by Theorem 4.3, f is almost g^*bp -continuous.

Proposition 4.6. If a function $f : (X, \tau) \to (Y, \sigma)$ is g^*bp -continuous, then it is almost g^*bp -continuous.

Proof. Let A be any regular open set in Y, so A is preopen. Since f is g^*bp -continuous, then $f^{-1}(A)$ is g^*b -open in X. Hence by Theorem 4.5, f is almost g^*bp -continuous.

The converse of Proposition 4.6 is not true in general as it is shown by the following example.

Example 4.7. Consider $X = Y = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}, \sigma = \{\phi, \{a\}, Y\}$. The identity function $f : (X, \tau) \to (Y, \sigma)$ is almost g^*bp -continuous but not g^*bp -continuous since the subset $B = \{b, c\}$ is preclosed in Y and $f^{-1}(B) = \{b, c\}$ is not g^*b -closed in X.

Proposition 4.8. If a function $f : X \to Y$ is almost α -continuous, then f is almost g^*bp -continuous.

Proof. Let A be any regular open set in Y. Since f is almost α -continuous, then $f^{-1}(A)$ is α -open set in X, hence by Theorem 3.8 [43], $f^{-1}(A)$ is g^*b -open in X. Therefore, f is almost g^*bp -continuous.

Theorem 4.9. If a function $f : X \to Y$ is δ -continuous, then f is almost g^*bp -continuous.

Proof. Let $x \in X$ and A be any preopen set in Y, then $A \subseteq IntCl(A)$. Since f is δ -continuous, there exists an open set U of X containing x such that $f(IntCl(U)) \subseteq IntCl(IntCl(A))$, then $f(IntCl(U)) \subseteq IntCl(A)$. Since IntCl(U) is regular open set, so by Lemma 2.4, IntCl(U) is preopen and by Theorem 3.12 [43], IntCl(U) is g^*b -open set of X. Therefore, f is almost g^*bp -continuous.

Theorem 4.10. If $f : X \to Y$ is an almost g^*bp -continuous function and Y is locally indescrete, then f is g^*b -continuous.

Proof. Let $x \in X$ and let A be any open set of Y, hence A is preopen in Y. Since f is almost g^*bp -continuous, there exists a g^*b -open set U in X containing x such that $f(U) \subseteq IntCl(A) \subseteq Cl(A) = A$ and hence f is g^*b -continuous.

Theorem 4.11. For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (1) f is almost g^*bp -continuous.
- (2) $f(g^{\star}bCl(A)) \subseteq Cl_{\delta}(f(A))$ for every subset A of X.
- (3) $g^{\star}bCl(f^{-1}(B)) \subseteq f^{-1}(Cl_{\delta}(B))$ for every subset B of Y.
- (4) $f^{-1}(B)$ is g^*b -closed for every δ -closed set B of Y.
- (5) $f^{-1}(A)$ is g^*b -open for every δ -open set A of Y.

Proof. (1) \Rightarrow (2). Let A be a subset of X, since $Cl_{\delta}(f(A))$ is δ -closed in Yand it is equal to $\cap \{F_{\alpha} : F_{\alpha} \text{ is regular closed in } Y, \alpha \in \Delta\}$ where Δ is an index set. By Theorem 2.6, we have $A \subseteq f^{-1}(Cl_{\delta}(f(A))) = f^{-1}(\cap \{F_{\delta} : \alpha \in \Delta\}) = \cap \{f^{-1}(F_{\alpha}) : \alpha \in \Delta\}$. By(1), $f^{-1}(Cl_{\delta}f(A))$ is $g^{\star}b$ -closed in X. Hence $g^{\star}bCl(A) \subseteq f^{-1}(Cl_{\delta}(f(A)))$. This shows that $f(g^{\star}bCl(A)) \subseteq Cl_{\delta}(f(A))$. (2) \Rightarrow (3). Taking $A = f^{-1}(B)$ in(2), then we have

 $f(g^{\star}bCl(f^{-1}(B))) \subseteq Cl_{\delta}(f(f^{-1}(B))) \subseteq Cl_{\delta}(B)$ and hence $g^{\star}bCl(f^{-1}(B)) \subseteq f^{-1}(Cl_{\delta}(B))$.

 $(3) \Rightarrow (4)$. Let F be δ -closed set of Y, then $g^*bCl(f^{-1}(F)) \subseteq f^{-1}(F)$ so $f^{-1}(F)$ is g^*b -closed.

(4) \Rightarrow (5). Let A be δ -open set of Y, then $Y \setminus A$ is δ -closed in Y. By(4), we have $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$ is g^*b -closed in X. Hence $f^{-1}(A)$ is g^*b -open in X.

 $(5) \Rightarrow (1)$. Let A be any regular open set of Y. Since A is δ -open in Y then $f^{-1}(A)$ is g^*b -open and hence from $f(f^{-1}(A) \subseteq A = IntCl(A)$. Thus f is almost g^*bp -continuous.

Theorem 4.12. If $f : X \to Y$ is almost g^*bp -continuous function, then we have $f^{-1}(A) \subseteq g^*bInt(f^{-1}(IntCl(A)))$ for every preopen set A in Y.

Proof. Let A be any preopen set in Y, then $A \subseteq IntCl(A)$. Since IntCl(A) is regular open set in Y, and Since f is almost g^*bp -continuous function, so by Theorem 4.5, $f^{-1}(intCl(A))$ is g^*b -open set in X. Hence $f^{-1}(A) \subseteq f^{-1}(intCl(A)) = g^*bInt(f^{-1}(IntCl(A)))$.

Corollary 4.13. If $f: X \to Y$ is almost g^*bp -continuous function, then we have $f^{-1}(A) \subseteq g^*bInt(f^{-1}(sCl(A)))$, for every preopen set A in Y.

Proof. Follows from Lemma 2.5 and Theorem 4.12.

Corollary 4.14. If $f : X \to Y$ is almost g^*bp -continuous function, then we have $g^*bCl(f^{-1}(ClInt(E))) \subseteq f^{-1}(E)$, for every preclosed set E in Y.

Proof. Let E be any preclosed set in Y, so $Y \setminus E$ is preopen. By Theorem 4.12, $f^{-1}(Y \setminus E) \subseteq g^*bInt(f^{-1}(IntCl(Y \setminus E)))$ this implies that $X \setminus f^{-1}(E) \subseteq g^*bInt(f^{-1}(Y \setminus ClInt(E)))$, then $X \setminus f^{-1}(E) \subseteq g^*bInt(X \setminus f^{-1}(ClInt(E)))$. It follows that $X \setminus f^{-1}(E) \subseteq X \setminus g^*bCl(f^{-1}(ClInt(E)))$. Hence $g^*bCl(f^{-1}(ClInt(E))) \subseteq f^{-1}(E)$.

Corollary 4.15. If $f: X \to Y$ is almost g^*bp -continuous function, then we have $g^*bCl(f^{-1}(sInt(E))) \subseteq f^{-1}(E)$, for every preclosed set E in Y.

Proof. Follows from Lemma2.5 and Corollary 4.14.

Theorem 4.16. Let $f : X \to Y$ be an almost g^*bp -continuous. If Y is preopen set in Z, then $f : X \to Z$ is almost g^*bp -continuous.

Proof. Let A be any regular open set of Z. Since Y is preopen, then by Theorem 2.10, $A \cap Y$ is regular open set in Y. Since f is almost g^*bp -continuous then $f^{-1}(A \cap Y)$ is g^*b -open set in X. But $f(x) \in Y$ for each $x \in X$. Thus $f^{-1}(A) = f^{-1}(A \cap Y)$ is a g^*b -open set in X. Therefore f is almost g^*bp -continuous.

Theorem 4.17. If $f : X \to Y$ be a g^*b -irresolute and $g : Y \to Z$ is an almost g^*bp -continuous function, then $g \circ f : X \to Z$ is almost g^*bp continuous function.

Proof. Let A be any preopen set in Z. Since g is almost g^*bp -continuous function, then $g^{-1}(A)$ is g^*b -open set in Y. Since f is g^*b -irresolute, then by Theorem 4.2 [43], $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is g^*b -open set in X. Hence $g \circ f$ is almost g^*bp -continuous function.

Theorem 4.18. If $f : X \to Y$ be almost g^*bp -continuous and $g : Y \to Z$ is completely continuous function and Z is submaximal, then $g \circ f : X \to Z$ is g^*bp -continuous function.

Proof. Let A be any preopen set in Z since Z is submaximal then A is open in Z, since g is completely continuous, then $g^{-1}(A)$ is regular open in Y. Since f is almost g^*bp -continuous then $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$ is g^*b -open in X. Hence $g \circ f$ is g^*bp -continuous.

Theorem 4.19. If $f: X \to Y$ be almost g^*bp -continuous and $g: Y \to Z$ is *R*-map, then $g \circ f: X \to Z$ is almost g^*bp -continuous.

Proof. Let A be any regular open set in Z. Since g is R-map then $g^{-1}(A)$ is regular open in Y. Since f is almost g^*bp -continuous $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$ is almost g^*bp -continuous.

Theorem 4.20. If $f : X \to Y$ is an almost g^*b -continuous function and A is g^*b -closed set of X, then the restriction function $f|A : A \to Y$ is almost g^*b -continuous function.

Proof. Let B be any regular closed set of Y. Since f is almost g^*bp continuous function, then by Theorem 4.5, $f^{-1}(B)$ is g^*b -closed set in X

and $(f|A)^{-1}(B) = A \cap f^{-1}(B)$. Since A is g^*b -closed, so by Theorem 3.30 [43], $A \cap f^{-1}(B)$ is g^*b -closed set in A. Hence f|A is almost g^*bp -continuous function.

Theorem 4.21. Let $f : X \to Y$ be a function and $x \in X$. If A is both g^{*b} -closed and g-open set and the restriction f|A is almost g^{*bp} -continuous function then f is almost g^{*bp} -continuous.

Proof. Suppose that B is any regular closed set in Y containing f(x). Since f|A is almost g^*bp -continuous, there exists a g^*b -closed set G of A containing x such that $f(G) = (f|A)(G) \subseteq B$. Since A is both g^*b -closed and g-open set in X, it follows from Theorem 3.31[43], that G is g^*b -closed in X. This shows that f is almost g^*bp -continuous.

Theorem 4.22. If $f : X \to Y$ is an almost g^*bp -continuous injection and Y is r- T_1 , then X is $g^*b - T_1$.

Proof. Assume that Y is $r - T_1$, then for any distinct points x and y in X, there exist regular open sets A and W such that $f(x) \in A$, $f(y) \notin A$, $f(x) \notin W$ and $f(y) \in W$. Since f is almost g^*bp -continuous there exist g^*b -open sets G and H such that $x \in G$, $y \in H$, $f(G) \subseteq A$ and $f(H) \subseteq W$. Thus we obtain $y \notin G$, $x \notin H$. This shows that X is $g^*b - T_1$.

Theorem 4.23. If $f : X \to Y$ is almost g^*bp -continuous injection and Y is pre- T_2 then X is $g^*b - T_2$.

Proof. For any pair of distinct points x and y in X, there exist disjoint preopen sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is almost g^*bp -continuous, there exists g^*b -open sets G and H in X containing x and y, respectively, such that $f(G) \subseteq IntCl(U)$ and $f(H) \subseteq IntCl(V)$. Since U and V are disjoint, we have $IntCl(U) \cap IntCl(V) = \phi$, hence $G \cap H = \phi$. This shows that X is $g^*b - T_2$.

5. Weakly g^*bp -continuous function

Definition 5.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called weakly g^*bp continuous at a point $x \in X$ if for each preopen set A of Y containing f(x), , there exists a g^*b -open set U of X containing x such that $f(U) \subseteq ClA$. If f is weakly g^*bp -continuous at every point of X, then it is called weakly g^*bp -continuous.

Theorem 5.2. Let $f : X \to Y$ be a function. If $f^{-1}(ClA)$ is g^*b -open set in X for each preopen set A in Y, then f is weakly g^*bp -continuous.

Proof. Let $x \in X$ and A be any preopen set of Y containing f(x). Then $x \in f^{-1}(A) \subseteq f^{-1}(ClA)$. By hypothesis, we have $f^{-1}(ClA)$ is g^*b -open set in X containing x. Therefore, we obtain $f(f^{-1}(ClA)) \subseteq ClA$. Hence f is weakly g^*bp -continuous.

 $g^{\star}bp$ -CONTINUOUS, ALMOST $g^{\star}bp$ -CONTINUOUS AND WEAKLY $g^{\star}bp$ -CONTINUOUS FUNCTIONS

It is obvious that if the function f is almost g^*bp -continuous, then it is weakly g^*bp -continuous. However, the converse is not true in general as it shown in the following example.

Example 5.3. Consider $X = Y = \{a, b, c, d\}$ with the topology $\tau = \sigma = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$, with identity function $f : (X, \tau) \to (Y, \sigma)$ f is weakly g^*bp -continuous but not almost g^*b -continuous since for a preopen set $B = \{a, b\}$ in $Y f^{-1}(IntClB) = \{a, b\}$ which is not g^*b -open in X.

Theorem 5.4. If $f : X \to Y$ is weakly g^*bp -continuous function and Y is almost p-regular, then f is almost g^*bp -continuous.

Proof. Let $x \in X$ and let A be preopen set of Y. By the almost p-regularity of Y there exists a regular open set G of Y such that $f(x) \in G \subseteq Cl(G) \subseteq IntCl(A)$. Since f is weakly g^*bp -continuous, there exists a g^*b -open set U in X such that $f(U) \subseteq Cl(G) \subseteq IntCl(A)$. Therefore f is almost g^*bp -continuous.

Theorem 5.5. If $f : X \to Y$ is almost g^*bp -open and weakly g^*bp -continuous function, then f is almost g^*bp -continuous function.

Proof. Let $x \in X$ and A be preopen set of Y containing f(x). Since f is weakly g^*bp -continuous, then there exists a g^*b -open set U in X containing x such that $f(U) \subseteq Cl(A)$. since f is almost g^*bp -open function, then $f(U) \subseteq IntCl(f(U)) \subseteq IntCl(A)$. Hence f is almost g^*bp -continuous. \Box

Corollary 5.6. Let $f : X \to Y$ be a function. If $f^{-1}(IntF)$ is g^*b -closed set in X for each preclosed set F in Y, then f is weakly g^*b -continuous.

Theorem 5.7. Let $f : X \to Y$ be a function. If for each $x \in X$ and each regular closed set R of Y containing f(x), there exists a g^*b -open set U in X containing x such that $f(U) \subseteq R$, then f is weakly g^*bp -continuous.

Proof. Let $x \in X$ and A be any preopen set of Y containing f(x). Then put R = Cl(A) which is a regular closed set of Y containing f(x). By hypothesis, there exists a g^*b -open set U in X containing x such that $f(U) \subseteq R$. Hence f is weakly g^*bp -continuous.

Theorem 5.8. Let $f : X \to Y$ be a function. If the inverse image of each regular closed set of Y is a g^*b -open set in X, then f is weakly g^*bp -continuous.

Proof. Let A be any preopen set of Y. Then Cl(A) is a regular closed set in Y. By hypothesis, we have $f^{-1}(Cl(A))$ is a g^*b -open set in X. Therefore by theorem 5.2, f is weakly g^*bp -continuous.

Corollary 5.9. Let $f : X \to Y$ be a function. If the inverse image of each regular open set of Y is a g^*b -closed set in X, then f is weakly g^*bp -continuous.

Proof. Follows from Theorem 5.8

Theorem 5.10. Let $f : X \to Y$ be weakly g^* bp-continuous function, if A is g*b-closed subset of X, then the restriction $f|A: A \to Y$ is weakly g^*bp -continuous in the subspace A.

Proof. Let $x \in A$ and B be a preclosed set of Y containing f(x). Since f is weakly g^*bp -continuous, so by Corollary 5.9, $f^{-1}(IntB)$ is g^*b -closed set in X, and $(f|A)^{-1}(IntB) = A \cap f^{-1}(IntB)$ is g^*b -closed in X. Hence, by Theorem 3.30 [43], $(f|A)^{-1}(IntB)$ is q^{*b} -closed in A. Therefore, f|A is weakly g^*bp -continuous.

Theorem 5.11. Let $f: X \to Y$ be weakly g^* bp-continuous function and for each $x \in X$. If Y is any subset of Z containing f(x), then $f: X \to Z$ is weakly g*bp-continuous.

Proof. Let $x \in X$ and A be any preopen set of Z containing f(x). Then $A \cap Y$ is preopen in Y containing f(x). Since $f: X \to Y$ is weakly g^*bp continuous, there exists a g^*b -open set U of X containing x such that $f(U) \subseteq f(U)$ $Cl(A \cap Y)$ and hence $f(U) \subseteq ClA$. Therefore, $f: X \to Z$ is weakly g^*bp continuous.

Theorem 5.12. Let $f: X \to Y$ and $q: Y \to Z$ be functions. Then the composition function $g \circ f : X \to Z$ is weakly g^*bp -continuous if f is $q^{\star}b$ -irresolute and q is weakly $q^{\star}bp$ -continuous.

Proof. Let $x \in X$ and A be preopen set of Z containing g(f(x)). Since q is weakly $q^{\star}bp$ -continuous, there exists a $q^{\star}b$ -open set U of Y containing f(x) such that $g(U) \subseteq ClA$. It is clear that $g^{-1}(ClA)$ is g^*b -open set of Y containing f(x). Since f is q^*b -continuous, then $f^{-1}(q^{-1}(ClA)) =$ $(q \circ f)^{-1}(ClA)$ is q^*b -open set in X containing x and Clearly $(q \circ f)(q \circ f)$ $(f)^{-1}(ClA) \subseteq ClA$. Hence $(g \circ f)$ is weakly g^*bp -continuous.

Theorem 5.13. For a function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (1) f is weakly g^*bp -continuous.
- (2) $g^*bClf^{-1}(IntpClB) \subseteq f^{-1}(pClB)$, for each $B \subseteq Y$.
- (3) $f^{-1}(pIntB) \subseteq g^* bIntf^{-1}(ClpIntB)$, for each $B \subseteq Y$.
- (4) $f^{-1}(pIntpClA) \subseteq g^* bIntf^{-1}(ClA)$, for each preopen set A of Y.
- (5) $f^{-1}(A) \subseteq q^* bInt f^{-1}(ClA)$, for each regular preopen set A of Y.
- (6) $g^*bClf^{-1}(IntF) \subseteq f^{-1}(F)$, for each regular preclosed set F of Y.
- (c) $g^*bClf^{-1}(IntF) \subseteq f^{-1}(ClIntF)$, for each preclosed set F of Y. (8) $g^*bClf^{-1}(A) \subseteq f^{-1}(ClA)$, for each preopen set A of Y.
- (9) $f^{-1}(IntF) \subseteq g^* bIntf^{-1}(F)$, for each preclosed set F of Y.

Proof. (1) \Rightarrow (2). Let B be any subset of Y. Assume that $x \notin f^{-1}(pClB)$. Then $f(x) \notin pClB$ and there exists a preopen set A containing f(x) such that $A \cap B = \phi$, hence $A \cap IntpClB = \phi$, then $A \subseteq (IntpClB)^c$ then $ClA \cap IntpClB = \phi$ By(1), there exists a g^*b -open set U of X containing x such that $f(U) \subseteq ClA$. Therefore, we have $f(U) \cap IntpClB = \phi$ which implies $U \cap f^{-1}(IntpClB) = \phi$ and hence $x \notin g^*bClf^{-1}(IntpClB)$. Therefore, we obtain $g^*bClf^{-1}(IntpClB) \subseteq f^{-1}(pClB)$.

 $(2) \Rightarrow (3).$ Let *B* be any subset of *Y*. Then apply(2) to $Y \setminus B$, we obtain $g^*bClf^{-1}(IntpCl(Y \setminus B)) \subseteq f^{-1}(pCl(Y \setminus B)) \Rightarrow g^*bClf^{-1}(Int(Y \setminus pIntB)) \subseteq f^{-1}(Y \setminus pIntB) \Rightarrow g^*bClf^{-1}(Y \setminus ClpIntB) \subseteq f^{-1}(Y \setminus pIntB) \Rightarrow g^*bCl(X \setminus f^{-1}(ClpIntB) \subseteq X \setminus f^{-1}(pIntB) \Rightarrow X \setminus g^*bInt(f^{-1}(ClpIntB)) \subseteq X \setminus f^{-1}(pIntB) \Rightarrow f^{-1}(pIntB) \subseteq g^*bInt(f^{-1}(ClpIntB)).$ Therefore, we obtain $f^{-1}(pIntB) \subseteq g^*bInt(f^{-1}(ClpIntB)).$

 $(3) \Rightarrow (4)$. Let A be any preopen set of Y. Then apply(3) to pClA, we obtain $f^{-1}(pIntpClA) \subseteq g^*bInt(f^{-1}(ClpIntpClA)) \subseteq g^*bInt(f^{-1}(ClIntClA)) = g^*bIntf^{-1}(ClA)$. Therefore we obtain $f^{-1}(pIntpClA) \subseteq g^*bIntf^{-1}(ClA)$. (4) \Rightarrow (5). Let A be any regular preopen set of Y. Then A is preopen set of Y. By(4), we have $f^{-1}(A) = f^{-1}(pIntpClA) \subseteq g^*bIntf^{-1}(ClA)$. Therefore we obtain $f^{-1}(A) \subseteq g^*bIntf^{-1}(ClA)$.

 $(5) \Rightarrow (6)$. Let F be any regular preclosed set of Y. Then $Y \setminus F$ is a regular preopen set of Y. By(5), we have $f^{-1}(Y \setminus F) \subseteq g^* bIntf^{-1}(Cl(Y \setminus F)) \Rightarrow X \setminus f^{-1}(F) \subseteq g^* bIntf^{-1}(Y \setminus IntF) \Rightarrow X \setminus f^{-1}(F) \subseteq g^* bInt(X \setminus f^{-1}(IntF)) \Rightarrow X \setminus f^{-1}(F) \subseteq X \setminus g^* bClf^{-1}(IntF) \Rightarrow g^* bClf^{-1}(IntF) \subseteq f^{-1}(F)$. Hence $g^* bClf^{-1}(IntF) \subseteq f^{-1}(F)$.

 $(6) \Rightarrow (7).$ Let F be any preclosed set of Y. Then pClpIntF is regular preclosed set of Y. By(6), we have $g^*bClf^{-1}(IntpClpIntF) = g^*bClf^{-1}(IntF) \subseteq f^{-1}(pClpIntF).$ Therefore we obtain $g^*bClf^{-1}(IntF) \subseteq f^{-1}(pClpIntF).$ $(7) \Rightarrow (8).$ Let A be any preopen set of Y. Then by(7) we have $g^*bClf^{-1}(A) \subseteq g^*bClf^{-1}(IntClA) \subseteq f^{-1}(pClpIntClA) \subseteq f^{-1}(ClIntClA) = f^{-1}(ClA).$ Therefore, $g^*bClf^{-1}(A) \subseteq f^{-1}(ClA).$

 $(8) \Rightarrow (9)$. Let F be any preclosed set of Y. Then $Y \setminus F$ is preopen set of Y. By(8), we have $g^{\star}bClf^{-1}(Y \setminus F) \subseteq f^{-1}(Cl(Y \setminus F)) \Rightarrow g^{\star}bCl(X \setminus f^{-1}(F) \subseteq f^{-1}(Y \setminus IntF) \Rightarrow X \setminus g^{\star}bIntf^{-1}(F) \subseteq X \setminus f^{-1}(IntF) \Rightarrow f^{-1}(IntF) \subseteq g^{\star}bIntf^{-1}(F)$. Therefor $f^{-1}(IntF) \subseteq g^{\star}bIntf^{-1}(F)$.

 $(9) \Rightarrow (1)$. Let $x \in X$ and let A be any preopen set in Y containing f(x). Then $x \in f^{-1}(A)$ and ClA is a closed set, hence preclosed, in Y. By (9), we have $x \in f^{-1}(A) \subseteq f^{-1}(IntClA) \subseteq g^*bIntf^{-1}(ClA)$. If we put $U = g^*bIntf^{-1}(ClA)$, then we obtain that $x \in U$ and $f(U) \subseteq ClA$. Therefore, f is weakly g^*bp -continuous.

Theorem 5.14. The followings are equivalent for a function $f : X \to Y$.

- (1) f is weakly g^*bp -continuous.
- (2) $f(g^*bCl(A)) \subseteq Cl_{\theta}(f(A))$ for each subset A of X.
- (3) $g^*bCl(f^{-1}(B)) \subseteq f^{-1}(Cl_{\theta}(B))$ for each subset B of Y.
- (4) $g^*bCl(f^{-1}(Int(Cl_{\theta}(B)))) \subseteq f^{-1}(Cl_{\theta}(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2). Let A be any subset of X. Suppose that $f(g^*bCl(A)) \not\subseteq Cl_{\theta}(f(A))$. Then there exists $y \in f(g^*bCl(A))$ such that $y \notin Cl_{\theta}(f(A))$,

then there exists an open set G in Y containing y such that $ClG \cap f(A) = \phi$. If $f^{-1}(y) = \phi$, then there is nothing to prove. Suppose that x be any arbitrary point of $f^{-1}(y)$, so $f(x) \in G$. Since G is open then its preopen set in Y, by(1), there exists a g^*b -open set U of X containing x such that $f(U) \subseteq Cl(G)$. Therefore, we have $f(U) \cap f(A) = \phi$. Then $x \notin g^*bCl(A)$. Hence $y \notin f(g^*bCl(A))$ which is a contradiction. Then $f(g^*bCl(A)) \subseteq Cl_{\theta}(f(A))$.

 $(2) \Rightarrow (3)$. Let *B* be any subset of *Y*. Set $A = f^{-1}(B)$ in (2) then we have $f(g^*bCl(f^{-1}(B))) \subseteq Cl_{\theta}(B)$ and $g^*bCl(f^{-1}(B)) \subseteq f^{-1}(Cl_{\theta}(B))$.

 $(3) \Rightarrow (4)$. Let *B* be any subset of *Y*. Since $Cl_{\theta}(B)$ is closed in *Y* hence is preclosed in *Y*. We have $g^*bCl(f^{-1}(Int(Cl_{\theta}(B)))) \subseteq f^{-1}(Cl_{\theta}(Int(Cl_{\theta}(B)))) \subseteq f^{-1}(Cl(Int(Cl_{\theta}(B)))) \subseteq f^{-1}(Cl_{\theta}(B))$.

 $(4) \Rightarrow (1).$ Let G be any preopen set of Y, then $G \subseteq IntCl(G)$. Apply(4) to IntCl(G), we get $g^*bClf^{-1}(IntCl_{\theta}(IntCl(G))) \subseteq f^{-1}(Cl_{\theta}(IntCl(G)))$. By Theorem 2.13, we have $g^*bClf^{-1}(IntCl(G)) \subseteq f^{-1}(Cl(IntCl(G)))$. So, we get, $g^*bCl(f^{-1}(G)) \subseteq g^*bClf^{-1}(IntCl(G)) \subseteq f^{-1}(Cl(IntCl(G))) \subseteq f^{-1}(Cl(IntCl(G))) \subseteq f^{-1}(ClG)$. Hence, by Theorem 5.13, f is weakly g^*bp -continuous. \Box

Corollary 5.15. If a function $f : X \to Y$ is weakly g^*b -continuous, then $f^{-1}(A)$ is g^*b -closed in X for every θ -closed set A in Y.

Proof. If A is θ -closed, so by Theorem 5.14, we obtain that $g^*bCl(f^{-1}(A)) \subseteq f^{-1}(Cl_{\theta}A) = f^{-1}(A)$. Therefore, $f^{-1}(A)$ is g^*b -closed. \Box

Corollary 5.16. Let $f : X \to Y$ be any function. If $f^{-1}(Cl_{\theta}(B))$ is g^*b closed in X for every subset B of Y, then $f : X \to Y$ is weakly g^*bp continuous.

Proof. Since $f^{-1}(Cl_{\theta}(B))$ is g^*b -closed in X, we have $g^*bCl(f^{-1}(B)) \subseteq g^*bClf^{-1}(Cl_{\theta}(B)) = f^{-1}(Cl_{\theta}(B))$. Therefore, by Theorem 5.14, f is weakly g^*bp -continuous.

Theorem 5.17. A function $f : X \to Y$ is is weakly g^*bp -continuous if and only if $f^{-1}(A) \subseteq g^*bIntf^{-1}(Cl(A))$ for each preopen set A in Y.

Proof. Necessity. Let f be weakly g^*bp -continuous and A be any preopen set of Y, then $A \subseteq IntCl(A)$. Therefore, by Theorem 5.13, we get $f^{-1}(A) \subseteq$ $f^{-1}(IntCl(A)) \subseteq g^*bIntf^{-1}(Cl(A))$. Hence, $f^{-1}(A) \subseteq g^*bIntf^{-1}(Cl(A))$. Sufficiency. Let A be any regular preopen set of Y, then A is preopen set in Y. By hypothesis, we have $f^{-1}(A) \subseteq g^*bIntf^{-1}(Cl(A))$. Therefore, by Theorem 5.13, f is weakly g^*bp -continuous.

Corollary 5.18. A function $f : X \to Y$ is is weakly g^*bp -continuous if and only if $g^*bClf^{-1}(Int(F)) \subseteq f^{-1}(F)$ for each preopen set F in Y.

Theorem 5.19. If $f : X \to Y$ is a weakly g^*bp -continuous function and Y is extremally disconnected space, then f is almost g^*bp -continuous.

Proof. Let $x \in X$ and let A be any preopen set of Y containing f(x). Since f is weakly g^*bp -continuous, there exists a g^*b -open set U of X containing x

such that $f(U) \subseteq Cl(A)$. Since Y is extremally disconnected, then $f(U) \subseteq IntCl(A)$. Therefore, f is almost g^*bp -continuous.

Theorem 5.20. If $f : X \to Y$ is weakly g^*bp -continuous injection and Y is pre- T_1 then X is $g^*b - T_1$.

Proof. Assume that Y is pre- T_1 . For any distinct points x and y in X, there exists preopen set A and W such that $f(x) \in A$, $f(y) \notin A$, $f(x) \notin W$ and $f(y) \in W$. Since f is weakly g^*bp -continuous, there exists a g^*b -open sets G and H in X containing x and y respectively, such that $f(G) \subseteq Cl(U)$, $f(H) \subseteq Cl(A)$, $f(H) \subseteq Cl(W)$ since A and W are disjoint then Cl(A) and Cl(W) are disjoint. Thus we obtain $y \notin G$, $x \notin H$. This show that X is $g^*b - T_1$.

Theorem 5.21. If $f : X \to Y$ is weakly g^*bp -continuous injection and Y is pre- T_2 , then X is $g^*b - T_2$.

Proof. For any pair of distinct points x and y in X, there exist disjoint preopen sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is weakly g^*bp -continuous, there exist g^*b -open sets G and H in X containing x and y, respectively, such that $f(G) \subseteq Cl(U)$ and $f(H) \subseteq Cl(V)$. Since U and V are disjoint, we have $Cl(U) \cap Cl(V) = \phi$, hence $G \cap H = \phi$. This shows that X is $g^*b - T_2$.

References

- N. K. Ahmed, On Some Types of Separation Axioms, M. Sc. Thesis, College of Science, Salahaddin Univ., (1990).
- [2] D. Andrijevic, On b-open set, Mat. Vesink, 48 (1996), 59-64.
- [3] S. P. Arya and R. Gupta , On strongly continuous functions, Kyngpook Math. J., 14(1974), 131-143.
- [4] K. Ashish and P. Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc., 82, (1990), 415-422.
- [5] K. Balachandran, P. Sundaaram and H. Maki, On generalized function in topological spaces, Mem. Fac. Sci. Kochi Univ., 12 (1991), 5-13.
- [6] P. Bhattacharyya and R. Paul, Properties of quasi precontinuous functions, Indian J.Pure Appl. Math., 27(1996), 475-486.
- [7] P. Bhattacharyya and M. Pal, Feeble and strong forms of preirresolute function, Bull. Malaysian Math. Soc. (Socond Series), 19(1996), 63-75.
- [8] N. Biswas, On some mappings in topological spaces, Bull. Cal. Math. Soc., 61 (1969), 127-135.
- [9] M. Caldas, S. Jafari, T. Noiri and S. Sarsak, Weak separation axioms via pre-regular p-open sets, J. Adv. Res. Pure Math., 2(2010), no. 2, 1-13.
- [10] D. A. Carnahan, Some Properties Related to Compactness in Topological Spaces, Ph.D. Thesis, Univ. Arkansas, (1973).
- [11] S. H. Cho and J. K. Park, On regular preopen sets and p^{*}-closed spaces, Appl. Math. and Computting, 18(1-2)(2005),525-537.
- [12] J. Dontchev, on submaximal spaces, Tamkang Math. J., 26(1995), 243-250.

- [13] J. Dontchev, Survey on preopen sets, The Proceedings of the Yatsushiro Topological Conference, (1998), 1-18.
- [14] E. Ekici, Generalization of perfectly continuous, regular set-connected and clopen functions, Acta Math Hungar, 107(3)(2005), 193-206.
- [15] A. A. El-Etik, A Study of Some Types of Mappings on Topological Spaces, M.Sc thesis, Tanta University, Egypt (1997).
- [16] M. Ganster, On strongly s-regular spaces, *Glasnik Mat.*, 25(45)(1990), 195-201.
- [17] J. Husain, Almost continuous mappings, Prace. Mat., 10(1966), 1-7.
- [18] S. A. Hussein, Application of P_{δ} -Open Sets in Topological Spaces, *M.Sc. Thesis*, College of Education, Univ. Salahaddin-Erbil. (2003).
- [19] S. Jafari, Pre-rarely p-continuous functions between topological spaces, Far East J. Math. Sci. Special Volume(2000), Part I(Geometry and Topology), 87-96.
- [20] S. Jafari, On certain types of notions via preopen sets, Tamkang J. Math., 37(4)(2006), 391-398.
- [21] D. S. Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46(1-2)(1985), 83-92.
- [22] A. B. Khalaf and S. N. Dawod, g^*b -separation axioms, Submitted.
- [23] N. Levine, Strong continuity in topology, Amer. Math. Monthly;, 67 (1960), 269.
- [24] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [25] P. E. Long, An Introduction to General Topology, Charles E. Merrill Publishing Company, 1986.
- [26] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, Ser. I., 89 (1975), 395-402.
- [27] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18(3)(1987), 226-233.
- [28] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T¹/₂, Mem. Fac. Sci. Kochi. Univ. Ser. Math., 17(1996), 33-42.
- [29] S. R. Malghan and G. B. Navalagi, Almost p-regular, p-completely regular and almost p-completely regular spaces, Bull. Math. Soc. Sci. Math., R. S. Roumanie, 34(82)(1990), 317-326.
- [30] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and week precontinuous mappings, *Proc. Math. Phys. So. Egypt*, 53 (1982), 47-53. and on α -continuous and α -open function, *Acta Math. Hungar*, 41(1983), 213-218.
- [31] A. S. Mashhour, S.N. El-Deeb, I.A. Hasanein and T. Noiri, On *p*-regular spaces, *Bull. Math. Soc. Sci. Math.*, R. S. R., 27(4)(1983), 311-315.
- [32] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [33] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16(1980), 161-166.
- [34] T. Noiri , Weakly α -continuous functions, Internat. J. Math. and Math. Sci., 10(3)(1987), 483-490.
- [35] T. Noiri, Almost α-continuous functions, Kyungpook Math. J., 28 (1988), 71-77.
- [36] T. Noiri and B. Ahmad, A note on semi-open functions, Math. Sem. Notes, Kobe Univ., 10 (1982), 437 -441.
- [37] A. A. Omari and M. S. M. Noorani, On generalized b-closed sets, Bull. Malays. Math. Sci. Soc. (2), 32(1) (2009), 19 -30.
- [38] I. L. Reilly and M. K. Vamanmurthy, On α-continuity in topological spaces, Acta Math. Hungar., 45(1-2)(1985), 27-32.
- [39] M. K. Singal and S. P. Arya, On almost regular spaces, *Glas. Mat.*, *III. Ser.*, 4(24)(1969), 89-99.
- [40] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16 (1968), 6373.
- [41] J. Tong, Weak almost continuous function and weak nearly compact spaces, Bull. Un. Mat.Ital., 6 (1982), 385 -391.

 $g^{\star}bp$ -CONTINUOUS, ALMOST $g^{\star}bp$ -CONTINUOUS AND WEAKLY $g^{\star}bp$ -CONTINUOUS FUNCTIONS

- [42] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math, 21(2000), 1-19.
- [43] D. Vidhya and R.Parimelazhagan, g*b-closed sets in topological spaces, Int. J. Contemp. Math. Sciences, 7 (2012), 1305 -1312.
- [44] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2) (1968), 103-118.
- [45] J. D. Weston, Some theorems on cluster sets, J. London Math. Soc., 33(1958), 435-441.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF DUHOK, KURDISTAN-REGION, IRAQ

E-mail address: aliasbkhalaf@gmail.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF ZAKHO, KURDISTAN-REGION, IRAQ

E-mail address: suzan.dawod@yahoo.com

College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark *E-mail address*: jafaripersia@gmail.com