BIOPERATIONS ON α -SEPARATIONS AXIOMS IN TOPOLOGICAL SPACES

ALIAS B. KHALAF, SAEID JAFARI, AND HARIWAN Z. IBRAHIM

ABSTRACT. In this paper, we consider the class of $\alpha_{[\gamma,\gamma']}$ -generalized closed set in topological spaces and investigate some of their properties. We also present and study new separation axioms by using the notions of α -open and α -bioperations. Also, we analyze the relations with some well known separation axioms.

1. Introduction

The study of α -open sets was initiated by Njåstad [3]. Maheshwari [8] and Maki [9] introduced and studied a new separation axiom called α -separation axiom. Kasahara [2] defined the concept of an operation on topological spaces and introduced α -closed graphs of an operation. Ogata [4] called the operation α as γ operation and introduced the notion of γ -open sets and used it to investigate some new separation axioms. For two operations on τ some bioperation-separation axioms were defined [7], [5]. Moreover, Hariwan [6] defined the concept of an operation on $\alpha O(X, \tau)$ and introduced α_{γ} -open sets and α_{γ} - T_i ($i = 0, \frac{1}{2}, 1, 2$) in topological spaces. In this paper, In Section 3, we introduce the concept of $\alpha_{[\gamma,\gamma']}$ -generalized closed sets and investigate some of its important properties. The notion of new bioperation α -separation axioms is introduced in section 4. We compare these separation axioms with the separation axioms in [10], [4], [6], [7] and [5].

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let (X, τ) be a topological space and A be a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be α -open [3] if $A \subseteq Int(Cl(Int(A)))$. The complement of an α -open set is said to be α -closed. The intersection of all α -closed sets containing A is called the α -closure of A and is denoted by $\alpha Cl(A)$. The family of all α -open (resp. α -closed) sets in a topological space (X, τ) is denoted by $\alpha O(X, \tau)$ (resp. $\alpha C(X, \tau)$). An operation γ [2] on a topology τ is a mapping from τ in to

²⁰⁰⁰ Mathematics Subject Classification. Primary: 54A05, 54A10; Secondary: 54C05. Key words and phrases. Bioperation; α -open set; $\alpha_{[\gamma,\gamma']}$ -open set; $\alpha_{[\gamma,\gamma']}$ -g.closed set.

power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [4] if for each $x \in A$, there exists an open set U such that $x \in U$ and $U^{\gamma} \subseteq A$. An operation $\gamma : \alpha O(X, \tau) \to P(X)$ [6] is a mapping satisfying the following property, $V \subseteq V^{\gamma}$ for each $V \in \alpha O(X, \tau)$. We call the mapping γ an operation on $\alpha O(X,\tau)$. A subset A of X is called an α_{γ} -open set [6] if for each point $x \in A$, there exists an α -open set U of X containing x such that $U^{\gamma} \subseteq A$. We denote the set of all α_{γ} -open sets of (X, τ) by $\alpha O(X,\tau)_{\gamma}$. An operation γ on $\alpha O(X,\tau)$ is said to be α -regular [6] if for every α -open sets U and V containing $x \in X$, there exists an α -open set W of X containing x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$. An operation γ on $\alpha O(X, \tau)$ is said to be α -open [6] if for every α -open set U of each $x \in X$, there exists an α_{γ} -open set V such that $x \in V$ and $V \subseteq U^{\gamma}$. A subset A of X is said to be $\alpha_{[\gamma,\gamma']}$ -open [1] if for each $x \in A$ there exist α -open sets U and V of X containing x such that $U^{\gamma} \cap V^{\gamma'} \subseteq A$. The set of all $\alpha_{[\gamma,\gamma']}$ -open sets of (X,τ) is denoted by $\alpha O(X,\tau)_{[\gamma,\gamma']}$. A subset F of (X,τ) is said to be $\alpha_{[\gamma,\gamma']}$ -closed if its complement $X \setminus F$ is $\alpha_{[\gamma,\gamma']}$ -open. The intersection of all $\alpha_{[\gamma,\gamma']}$ -closed sets containing A is called the $\alpha_{[\gamma,\gamma']}$ -closure of A and denoted by $\alpha_{[\gamma,\gamma']}$ -Cl(A). The union of all $\alpha_{[\gamma,\gamma']}$ -open sets contained in A is called the $\alpha_{[\gamma,\gamma']}$ -interior of A and denoted by $\alpha_{[\gamma,\gamma']}$ -Int(A).

In the remainder of this section all the definitions and results are from [1].

Proposition 2.1. Let A be any subset of a topological space (X, τ) . Then, $X \setminus \alpha_{[\gamma,\gamma']}$ -Int $(A) = \alpha_{[\gamma,\gamma']}$ -Cl $(X \setminus A)$.

Theorem 2.2. If γ and γ' are α -open operations and A a subset of (X, τ) . Then, we have $\alpha Cl_{[\gamma,\gamma']}(\alpha Cl_{[\gamma,\gamma']}(A)) = \alpha Cl_{[\gamma,\gamma']}(A)$.

Proposition 2.3. Let A be any subset of a topological space (X, τ) . If A is $[\gamma, \gamma']$ -open [5], then A is $\alpha_{[\gamma, \gamma']}$ -open.

Remark 2.4. If γ and γ' are α -regular operations, then $\alpha O(X, \tau)_{[\gamma, \gamma']}$ form a topology on X.

Proposition 2.5. Let A and B be any subsets of a topological space (X, τ) . If A is α_{γ} -open and B is $\alpha_{\gamma'}$ -open, then $A \cap B$ is $\alpha_{[\gamma,\gamma']}$ -open.

Definition 2.6. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ continuous if for each point $x \in X$ and each α -open sets W and S of Ycontaining f(x) there exist α -open sets U and V of X containing x such that $f(U^{\gamma} \cap V^{\gamma'}) \subseteq W^{\beta} \cap S^{\beta'}$.

Definition 2.7. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ closed if for $\alpha_{[\gamma, \gamma']}$ -closed set A of X, f(A) is $\alpha_{[\beta, \beta']}$ -closed in Y.

3

3. $\alpha_{[\gamma,\gamma']}$ -g.Closed Sets

In this section, we define and study some properties of $\alpha_{[\gamma,\gamma']}$ -g.closed sets.

Definition 3.1. A subset A of X is said to be an $\alpha_{[\gamma,\gamma']}$ -generalized closed (briefly, $\alpha_{[\gamma,\gamma']}$ -g.closed) set if $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an $\alpha_{[\gamma,\gamma']}$ -open set in (X, τ) .

Remark 3.2. It is clear that every $\alpha_{[\gamma,\gamma']}$ -closed set is $\alpha_{[\gamma,\gamma']}$ -g.closed. But the converse is not true in general as it is shown in the following example.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. For each $A \in \alpha O(X)$, we define two operations γ and γ' , respectively, by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } A = \{b\} \text{ or } \{a, c\}, \\ X & \text{otherwise.} \end{cases}$$

Now, if we let $A = \{a\}$, since the only $\alpha_{[\gamma,\gamma']}$ -open supersets of A are $\{a, c\}$ and X, then A is $\alpha_{[\gamma,\gamma']}$ -g.closed. But it is easy to see that A is not $\alpha_{[\gamma,\gamma']}$ -closed.

Proposition 3.4. If A is γ -open and $\alpha_{[\gamma,\gamma']}$ -g.closed then A is $\alpha_{[\gamma,\gamma']}$ -closed. Proof. Suppose that A is γ -open and $\alpha_{[\gamma,\gamma']}$ -g.closed. As every γ -open is $\alpha_{[\gamma,\gamma']}$ -open and $A \subseteq A$, we have $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq A$, also $A \subseteq \alpha_{[\gamma,\gamma']}$ -Cl(A), therefore $\alpha_{[\gamma,\gamma']}$ -Cl(A) = A. That is A is $\alpha_{[\gamma,\gamma']}$ -closed. \Box

Remark 3.5. If A is $\alpha_{[\gamma,\gamma']}$ -open and $\alpha_{[\gamma,\gamma']}$ -g.closed then A is $\alpha_{[\gamma,\gamma']}$ -closed. **Proposition 3.6.** The intersection of an $\alpha_{[\gamma,\gamma']}$ -g.closed set and an $\alpha_{[\gamma,\gamma']}$ -closed set is always $\alpha_{[\gamma,\gamma']}$ -g.closed.

 $\begin{array}{l} \textit{Proof. Let } A \text{ be } \alpha_{[\gamma,\gamma']}\text{-g.closed and } F \text{ be } \alpha_{[\gamma,\gamma']}\text{-closed. Assume that } U \text{ is } \\ \alpha_{[\gamma,\gamma']}\text{-open set such that } A \cap F \subseteq U, \text{ set } G = X \setminus F. \text{ Then } A \subseteq U \cup G, \text{ since } \\ G \text{ is } \alpha_{[\gamma,\gamma']}\text{-open, then } U \cup G \text{ is } \alpha_{[\gamma,\gamma']}\text{-open and since } A \text{ is } \alpha_{[\gamma,\gamma']}\text{-g.closed, } \\ \text{then } \alpha_{[\gamma,\gamma']}\text{-}Cl(A) \subseteq U \cup G. \text{ Now, } \alpha_{[\gamma,\gamma']}\text{-}Cl(A \cap F) \subseteq \alpha_{[\gamma,\gamma']}\text{-}Cl(A) \cap \alpha_{[\gamma,\gamma']}\text{-}\\ Cl(F) = \alpha_{[\gamma,\gamma']}\text{-}Cl(A) \cap F \subseteq (U \cup G) \cap F = (U \cap F) \cup (G \cap F) = (U \cap F) \cup \phi \subseteq U. \end{array}$

Remark 3.7. The intersection of two $\alpha_{[\gamma,\gamma']}$ -g.closed sets need not be $\alpha_{[\gamma,\gamma']}$ -g.closed in general. It is shown by the following example.

Example 3.8. Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } A = \{a\}, \\ X & \text{if } A \neq \{a\}. \end{cases}$$

Set $A = \{a, b\}$ and $B = \{a, c\}$. Clearly, A and B are $\alpha_{[\gamma, \gamma']}$ -g.closed sets, since X is their only $\alpha_{[\gamma, \gamma']}$ -open superset. But $C = \{a\} = A \cap B$ is not $\alpha_{[\gamma, \gamma']}$ -g.closed, since $C \subseteq \{a\} \in \alpha O(X, \tau)_{[\gamma, \gamma']}$ and $\alpha_{[\gamma, \gamma']}$ - $Cl(C) = X \not\subseteq \{a\}$.

Proposition 3.9. If γ and γ' are α -regular operations on $\alpha O(X)$. Then the finite union of $\alpha_{[\gamma,\gamma']}$ -g.closed sets is always an $\alpha_{[\gamma,\gamma']}$ -g.closed set.

 $\begin{array}{l} \textit{Proof. Let } A \textit{ and } B \textit{ be two } \alpha_{[\gamma,\gamma']} \textit{-}g.\textit{closed sets, and let } A \cup B \subseteq U, \textit{ where } U \textit{ is } \alpha_{[\gamma,\gamma']} \textit{-}open. \textit{ Since } A \textit{ and } B \textit{ are } \alpha_{[\gamma,\gamma']} \textit{-}g.\textit{closed sets, therefore } \alpha_{[\gamma,\gamma']} \textit{-}Cl(A) \subseteq U \textit{ and } \alpha_{[\gamma,\gamma']} \textit{-}Cl(B) \subseteq U \textit{ implies } \alpha_{[\gamma,\gamma']} \textit{-}Cl(A) \cup \alpha_{[\gamma,\gamma']} \textit{-}Cl(B) \subseteq U. \\ \textit{ But, we have } \alpha_{[\gamma,\gamma']} \textit{-}Cl(A) \cup \alpha_{[\gamma,\gamma']} \textit{-}Cl(B) = \alpha_{[\gamma,\gamma']} \textit{-}Cl(A \cup B). \textit{ Therefore } \alpha_{[\gamma,\gamma']} \textit{-}Cl(A \cup B) \subseteq U. \\ \textit{ Hence } A \cup B \textit{ is an } \alpha_{[\gamma,\gamma']} \textit{-}g.\textit{closed set. } \Box \end{array}$

Remark 3.10. The union of two $\alpha_{[\gamma,\gamma']}$ -g.closed sets need not be $\alpha_{[\gamma,\gamma']}$ -g.closed in general. It is shown by the following example.

Example 3.11. Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \text{ or } \{b, c\}, \\ X & \text{otherwise,} \end{cases}$$

and $A^{\gamma'} = X$. Let $A = \{a\}$ and $B = \{b\}$. Here A and B are $\alpha_{[\gamma,\gamma']}$ -g.closed but $A \cup B = \{a, b\}$ is not $\alpha_{[\gamma,\gamma']}$ -g.closed, since $\{a, b\}$ is $\alpha_{[\gamma,\gamma']}$ -open and $\alpha_{[\gamma,\gamma']}$ - $Cl(\{a, b\}) = X$.

Proposition 3.12. If a subset A of X is $\alpha_{[\gamma,\gamma']}$ -g.closed and $A \subseteq B \subseteq \alpha_{[\gamma,\gamma']}$ -Cl(A), then B is an $\alpha_{[\gamma,\gamma']}$ -g.closed set in X.

Proof. Let A be an $\alpha_{[\gamma,\gamma']}$ -g.closed set such that $A \subseteq B \subseteq \alpha_{[\gamma,\gamma']}$ -Cl(A). Let U be an $\alpha_{[\gamma,\gamma']}$ -open set of X such that $B \subseteq U$. Since A is $\alpha_{[\gamma,\gamma']}$ -g.closed, we have $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq U$. Now $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(B) \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl[\alpha_{[\gamma,\gamma']}$ - $Cl(A)] = \alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq U$. That is $\alpha_{[\gamma,\gamma']}$ - $Cl(B) \subseteq U$, where U is $\alpha_{[\gamma,\gamma']}$ -open. Therefore B is an $\alpha_{[\gamma,\gamma']}$ -g.closed set in X.

Proposition 3.13. For each $x \in X$, $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed or $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -g.closed in (X,τ) .

Proof. Suppose that $\{x\}$ is not $\alpha_{[\gamma,\gamma']}$ -closed, then $X \setminus \{x\}$ is not $\alpha_{[\gamma,\gamma']}$ open. Let U be any $\alpha_{[\gamma,\gamma']}$ -open set such that $X \setminus \{x\} \subseteq U$, implies U = X.
Therefore $\alpha_{[\gamma,\gamma']}$ - $Cl(X \setminus \{x\}) \subseteq U$. Hence $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -g.closed.

Proposition 3.14. A subset A of X is $\alpha_{[\gamma,\gamma']}$ -g.closed if and only if $\alpha_{[\gamma,\gamma']}$ -Cl({x}) $\cap A \neq \phi$, holds for every $x \in \alpha_{[\gamma,\gamma']}$ -Cl(A).

Proof. Let U be an $\alpha_{[\gamma,\gamma']}$ -open set such that $A \subseteq U$ and let $x \in \alpha_{[\gamma,\gamma']}$ -Cl(A). By assumption, there exists a point $z \in \alpha_{[\gamma,\gamma']}$ - $Cl(\{x\})$ and $z \in A \subseteq U$. It follows that $U \cap \{x\} \neq \phi$, hence $x \in U$, this implies $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq U$. Therefore A is $\alpha_{[\gamma,\gamma']}$ -g.closed.

Conversely, suppose that $x \in \alpha_{[\gamma,\gamma']}$ -Cl(A) such that $\alpha_{[\gamma,\gamma']}$ - $Cl(\{x\}) \cap A = \phi$. Since, $\alpha_{[\gamma,\gamma']}$ - $Cl(\{x\})$ is $\alpha_{[\gamma,\gamma']}$ -closed. Therefore, $X \setminus \alpha_{[\gamma,\gamma']}$ - $Cl(\{x\})$ is an

5

 $\alpha_{[\gamma,\gamma']}$ -open set in X. Since $A \subseteq X \setminus (\alpha_{[\gamma,\gamma']} - Cl(\{x\}))$ and A is $\alpha_{[\gamma,\gamma']}$ -g.closed implies that $\alpha_{[\gamma,\gamma']} - Cl(A) \subseteq X \setminus \alpha_{[\gamma,\gamma']} - Cl(\{x\})$ holds, and hence $x \notin \alpha_{[\gamma,\gamma']} - Cl(A)$. This is a contradiction. Therefore $\alpha_{[\gamma,\gamma']} - Cl(\{x\}) \cap A \neq \phi$. \Box

Proposition 3.15. A set A of a space X is $\alpha_{[\gamma,\gamma']}$ -g.closed if and only if $\alpha_{[\gamma,\gamma']}$ -Cl(A) \ A does not contain any non-empty $\alpha_{[\gamma,\gamma']}$ -closed set.

Proof. Necessity. Suppose that A is an $\alpha_{[\gamma,\gamma']}$ -g.closed set in X. We prove the result by contradiction. Let F be an $\alpha_{[\gamma,\gamma']}$ -closed set such that $F \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A$ and $F \neq \phi$. Then $F \subseteq X \setminus A$ which implies $A \subseteq X \setminus F$. Since A is $\alpha_{[\gamma,\gamma']}$ -g.closed and $X \setminus F$ is $\alpha_{[\gamma,\gamma']}$ -open, therefore $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq X \setminus F$, that is $F \subseteq X \setminus \alpha_{[\gamma,\gamma']}$ -Cl(A). Hence $F \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap (X \setminus \alpha_{[\gamma,\gamma']}$ - $Cl(A)) = \phi$. This shows that, $F = \phi$ which is a contradiction. Hence $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A$ does not contain any non-empty $\alpha_{[\gamma,\gamma']}$ -closed set in X. Sufficiency. Let $A \subseteq U$, where U is $\alpha_{[\gamma,\gamma']}$ -open in X. If $\alpha_{[\gamma,\gamma']}$ -Cl(A)is not contained in U, then $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap X \setminus U \neq \phi$. Now, since $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap X \setminus U \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A$ and $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap X \setminus U$ is a non-empty $\alpha_{[\gamma,\gamma']}$ -closed set, then we obtain a contradication and therefore A is $\alpha_{[\gamma,\gamma']}$ g.closed.

Proposition 3.16. If A is an $\alpha_{[\gamma,\gamma']}$ -g.closed set of a space X, then the following are equivalent:

(1) A is $\alpha_{[\gamma,\gamma']}$ -closed. (2) $\alpha_{[\gamma,\gamma']}$ -Cl(A) \ A is $\alpha_{[\gamma,\gamma']}$ -closed.

 $\begin{array}{l} \textit{Proof.} \ (1) \Rightarrow (2). \ \text{If} \ A \ \text{is an} \ \alpha_{[\gamma,\gamma']}\text{-}g. \text{closed set which is also} \ \alpha_{[\gamma,\gamma']}\text{-}\text{closed}, \\ \text{then by Proposition 3.15, } \ \alpha_{[\gamma,\gamma']}\text{-}Cl(A) \setminus A = \phi, \ \text{which is} \ \alpha_{[\gamma,\gamma']}\text{-}\text{closed}. \\ (2) \Rightarrow (1). \ \text{Let} \ \alpha_{[\gamma,\gamma']}\text{-}Cl(A) \setminus A \ \text{be an} \ \alpha_{[\gamma,\gamma']}\text{-}\text{closed set and} \ A \ \text{be} \ \alpha_{[\gamma,\gamma']}\text{-}g. \\ \text{closed.} \ \text{Then by Proposition 3.15, } \ \alpha_{[\gamma,\gamma']}\text{-}Cl(A) \setminus A \ \text{does not contain any} \\ \text{non-empty} \ \alpha_{[\gamma,\gamma']}\text{-}\text{closed subset.} \ \text{Since} \ \alpha_{[\gamma,\gamma']}\text{-}Cl(A) \setminus A \ \text{is} \ \alpha_{[\gamma,\gamma']}\text{-}\text{closed and} \\ \alpha_{[\gamma,\gamma']}\text{-}Cl(A) \setminus A = \phi, \ \text{this shows that} \ A \ \text{is} \ \alpha_{[\gamma,\gamma']}\text{-}\text{closed.} \end{array}$

Proposition 3.17. For a space (X, τ) , the following are equivalent:

(1) Every subset of X is $\alpha_{[\gamma,\gamma']}$ -g.closed. (2) $\alpha O(X,\tau)_{[\gamma,\gamma']} = \alpha C(X,\tau)_{[\gamma,\gamma']}$.

Proof. (1) \Rightarrow (2). Let $U \in \alpha O(X, \tau)_{[\gamma, \gamma']}$. Then by hypothesis, U is $\alpha_{[\gamma, \gamma']}$ -g.closed which implies that $\alpha_{[\gamma, \gamma']}$ - $Cl(U) \subseteq U$, so, $\alpha_{[\gamma, \gamma']}$ -Cl(U) = U, therefore $U \in \alpha C(X, \tau)_{[\gamma, \gamma']}$. Also let $V \in \alpha C(X, \tau)_{[\gamma, \gamma']}$. Then $X \setminus V \in \alpha O(X, \tau)_{[\gamma, \gamma']}$, hence by hypothesis $X \setminus V$ is $\alpha_{[\gamma, \gamma']}$ -g.closed and then $X \setminus V \in \alpha C(X, \tau)_{[\gamma, \gamma']}$, thus $V \in \alpha O(X, \tau)_{[\gamma, \gamma']}$ according to the above we have $\alpha O(X, \tau)_{[\gamma, \gamma']} = \alpha C(X, \tau)_{[\gamma, \gamma']}$.

 $(2) \Rightarrow (1)$. If A is a subset of a space X such that $A \subseteq U$ where $U \in$

 $\alpha O(X,\tau)_{[\gamma,\gamma']}$, then $U \in \alpha C(X,\tau)_{[\gamma,\gamma']}$ and therefore $\alpha_{[\gamma,\gamma']} - Cl(U) \subseteq U$ which shows that A is $\alpha_{[\gamma,\gamma']}$ -g.closed. \Box

Definition 3.18. A subset A of X is $\alpha_{[\gamma,\gamma']}$ -g.open if its complement $X \setminus A$ is $\alpha_{[\gamma,\gamma']}$ -g.closed in X.

Remark 3.19. It is clear that every $\alpha_{[\gamma,\gamma']}$ -open set is $\alpha_{[\gamma,\gamma']}$ -g.open. But the converse is not true in general as it is shown in the following example.

Example 3.20. Consider Example 3.3, if $A = \{b, c\}$ then A is $\alpha_{[\gamma, \gamma']}$ -g.open but not $\alpha_{[\gamma, \gamma']}$ -open.

Proposition 3.21. A subset A of X is $\alpha_{[\gamma,\gamma']}$ -g.open if and only if $F \subseteq \alpha_{[\gamma,\gamma']}$ -Int(A) whenever $F \subseteq A$ and F is $\alpha_{[\gamma,\gamma']}$ -closed in (X,τ) .

Proof. Let A be $\alpha_{[\gamma,\gamma']}$ -g.open and $F \subseteq A$ where F is $\alpha_{[\gamma,\gamma']}$ -closed. Since $X \setminus A$ is $\alpha_{[\gamma,\gamma']}$ -g.closed and $X \setminus F$ is an $\alpha_{[\gamma,\gamma']}$ -open set containing $X \setminus A$ implies $\alpha_{[\gamma,\gamma']}$ - $Cl(X \setminus A) \subseteq X \setminus F$. By Proposition 2.1, $X \setminus \alpha_{[\gamma,\gamma']}$ - $Int(A) \subseteq X \setminus F$. That is $F \subseteq \alpha_{[\gamma,\gamma']}$ -Int(A).

Conversely, suppose that F is $\alpha_{[\gamma,\gamma']}$ -closed and $F \subseteq A$ implies $F \subseteq \alpha_{[\gamma,\gamma']}$ - Int(A). Let $X \setminus A \subseteq U$ where U is $\alpha_{[\gamma,\gamma']}$ -open. Then $X \setminus U \subseteq A$ where $X \setminus U$ is $\alpha_{[\gamma,\gamma']}$ -closed. By hypothesis $X \setminus U \subseteq \alpha_{[\gamma,\gamma']}$ -Int(A). That is $X \setminus \alpha_{[\gamma,\gamma']}$ - $Int(A) \subseteq U$. By Proposition 2.1, $\alpha_{[\gamma,\gamma']}$ - $Cl(X \setminus A) \subseteq U$. This implies $X \setminus A$ is $\alpha_{[\gamma,\gamma']}$ -g.closed and A is $\alpha_{[\gamma,\gamma']}$ -g.open. \Box

Remark 3.22. The union of two $\alpha_{[\gamma,\gamma']}$ -g.open sets need not be $\alpha_{[\gamma,\gamma']}$ -g.open in general. It is shown by the following example.

Example 3.23. Consider Example 3.8, if $A = \{b\}$ and $B = \{c\}$ then A and B are $\alpha_{[\gamma,\gamma']}$ -g.open sets in X, but $A \cup B = \{b, c\}$ is not an $\alpha_{[\gamma,\gamma']}$ -g.open set in X.

Proposition 3.24. Let γ and γ' be an α -regular operations on $\alpha O(X)$, and let A and B be two $\alpha_{[\gamma,\gamma']}$ -g.open sets in a space X. Then $A \cap B$ is also $\alpha_{[\gamma,\gamma']}$ -g.open.

Proof. If A and B are $\alpha_{[\gamma,\gamma']}$ -g.open sets in a space X, then $X \setminus A$ and $X \setminus B$ are $\alpha_{[\gamma,\gamma']}$ -g.closed sets in X. By Proposition 3.9, $X \setminus A \cup X \setminus B$ is also an $\alpha_{[\gamma,\gamma']}$ -g.closed set in X. That is $X \setminus A \cup X \setminus B = X \setminus (A \cap B)$ is an $\alpha_{[\gamma,\gamma']}$ -g.closed set in X. Therefore $A \cap B$ is an $\alpha_{[\gamma,\gamma']}$ -g.open set in X. \Box

Proposition 3.25. Every singleton point set in a space X is either $\alpha_{[\gamma,\gamma']}$ -g.open or $\alpha_{[\gamma,\gamma']}$ -closed.

Proof. Suppose that $\{x\}$ is not $\alpha_{[\gamma,\gamma']}$ -g.open, then by definition $X \setminus \{x\}$ is not $\alpha_{[\gamma,\gamma']}$ -g.closed. This implies that by Proposition 3.13, the set $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed.

7

Proposition 3.26. If $\alpha_{[\gamma,\gamma']}$ -Int $(A) \subseteq B \subseteq A$ and A is $\alpha_{[\gamma,\gamma']}$ -g.open, then B is $\alpha_{[\gamma,\gamma']}$ -g.open.

 $\begin{array}{l} \textit{Proof. } \alpha_{[\gamma,\gamma']}\text{-}\textit{Int}(A) \subseteq B \subseteq A \text{ implies } X \setminus A \subseteq X \setminus B \subseteq X \setminus \alpha_{[\gamma,\gamma']}\text{-}\textit{Int}(A). \\ \text{That is, } X \setminus A \subseteq X \setminus B \subseteq \alpha_{[\gamma,\gamma']}\text{-}\textit{Cl}(X \setminus A) \text{ by Proposition 2.1. Since } X \setminus A \\ \text{is } \alpha_{[\gamma,\gamma']}\text{-}\texttt{g.closed, by Proposition 3.12, } X \setminus B \text{ is } \alpha_{[\gamma,\gamma']}\text{-}\texttt{g.closed and } B \text{ is } \\ \alpha_{[\gamma,\gamma']}\text{-}\texttt{g.open.} \end{array}$

4. $\alpha_{[\gamma,\gamma']}$ -Separations Spaces

In this section we introduce $\alpha_{[\gamma,\gamma']} T_i$ spaces $(i = 0, \frac{1}{2}, 1, 2)$ and investigate relations among these spaces.

Definition 4.1. A topological space (X, τ) is said to be $\alpha_{[\gamma,\gamma']} T_{\frac{1}{2}}$ if every $\alpha_{[\gamma,\gamma']}$ -g.closed set is $\alpha_{[\gamma,\gamma']}$ -closed.

Remark 4.2. It follows from Remark 3.2 that (X, τ) is $\alpha_{[\gamma,\gamma']} T_{\frac{1}{2}}$ if and only if the $\alpha_{[\gamma,\gamma']}$ -g.closedness coincides with the $\alpha_{[\gamma,\gamma']}$ -closedness.

Definition 4.3. A topological space (X, τ) is said to be $\alpha_{[\gamma, \gamma']} T_0$ if for each pair of distinct points x, y in X, there exist an α -open sets U and V such that $x \in U \cap V$ and $y \notin U^{\gamma} \cap V^{\gamma'}$, or $y \in U \cap V$ and $x \notin U^{\gamma} \cap V^{\gamma'}$.

Definition 4.4. A topological space (X, τ) is said to be $\alpha_{[\gamma, \gamma']} T_1$ if for each pair of distinct points x, y in X, there exist α -open sets U and V containing x and α -open sets W and S containing y such that $y \notin U^{\gamma} \cap V^{\gamma'}$ and $x \notin W^{\gamma} \cap S^{\gamma'}$.

Definition 4.5. A topological space (X, τ) is said to be $\alpha_{[\gamma, \gamma']} T_2$ if for each pair of distinct points x, y in X, there exist α -open sets U and V containing x and α -open sets W and S containing y such that $(U^{\gamma} \cap V^{\gamma'}) \cap (W^{\gamma} \cap S^{\gamma'}) = \phi$.

Remark 4.6. For given two distinct points x and y, the $\alpha_{[\gamma,\gamma']}$ - T_0 -axiom requires that there exist α -open sets U, V, W and S satisfying one of conditions (1), (2), (3) and (4):

- (1) $x \in U \cap V, y \in W \cap S, y \notin U^{\gamma} \cap V^{\gamma'}$ and $x \notin W^{\gamma} \cap S^{\gamma'}$.
- (2) $x \in U \cap V, x \in W \cap S, y \notin U^{\gamma} \cap V^{\gamma'}$ and $y \notin W^{\gamma} \cap S^{\gamma'}$.
- (3) $y \in U \cap V, y \in W \cap S, x \notin U^{\gamma} \cap V^{\gamma'}$ and $x \notin W^{\gamma} \cap S^{\gamma'}$.
- (4) $y \in U \cap V, x \in W \cap S, x \notin U^{\gamma} \cap V^{\gamma'}$ and $y \notin W^{\gamma} \cap S^{\gamma'}$.

Remark 4.7. A space X is $\alpha_{[\gamma,\gamma']}$ - T_0 if and only if for each pair of distinct points x, y in X, there exists an α -open sets W such that $x \in W$ and $y \notin W^{\gamma} \cap W^{\gamma'}$, or $y \in W$ and $x \notin W^{\gamma} \cap W^{\gamma'}$.

Proposition 4.8. A topological space (X, τ) is $\alpha_{[\gamma,\gamma']} - T_{\frac{1}{2}}$ if and only if for each $x \in X$, $\{x\}$ is either $\alpha_{[\gamma,\gamma']}$ -closed or $\alpha_{[\gamma,\gamma']}$ -open.

Proof. Necessity. Suppose $\{x\}$ is not $\alpha_{[\gamma,\gamma']}$ -closed. Then by Proposition 3.13, $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -g.closed. Since (X,τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$, $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed, that is $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open.

Sufficiency. Let A be any $\alpha_{[\gamma,\gamma']}$ -g.closed set in (X,τ) and $x \in \alpha_{[\gamma,\gamma']}$ -Cl(A). It suffices to prove it for the following two cases:

Case 1. Suppose that $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed, then $x \notin A$ will imply $x \in \alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A$, which is not possible by Proposition 3.15. Hence $x \in A$. Therefore, $\alpha_{[\gamma,\gamma']}$ -Cl(A) = A, that is A is $\alpha_{[\gamma,\gamma']}$ -closed.

Case 2. Suppose that $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open then as $x \in \alpha_{[\gamma,\gamma']}$ -Cl(A), $\{x\} \cap A \neq \phi$. Hence $x \in A$ and A is $\alpha_{[\gamma,\gamma']}$ -closed. So, (X, τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$. \Box

Proposition 4.9. Let γ and γ' be α -open operations. Then, a topological space (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_0 if and only if for each pair of distinct points x, y of $X, \alpha Cl_{[\gamma, \gamma']}(\{x\}) \neq \alpha Cl_{[\gamma, \gamma']}(\{y\}).$

Proof. Necessity. Let (X, τ) be an $\alpha_{[\gamma,\gamma']} T_0$ space and x, y be any two distinct points of X, then there exist an α -open sets U and V such that $x \in U \cap V$ and $y \notin U^{\gamma} \cap V^{\gamma'}$. Then $(U^{\gamma} \cap V^{\gamma'}) \cap \{y\} = \phi$ this implies that $x \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$. Consequently $\alpha Cl_{[\gamma,\gamma']}(\{x\}) \neq \alpha Cl_{[\gamma,\gamma']}(\{y\})$.

Sufficiency. Suppose that $x, y \in X, x \neq y$ and $\alpha Cl_{[\gamma,\gamma']}(\{x\}) \neq \alpha Cl_{[\gamma,\gamma']}(\{y\})$. Let z be a point of X such that $z \in \alpha Cl_{[\gamma,\gamma']}(\{x\})$ but $z \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$. We claim that $x \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$. For, if $x \in \alpha Cl_{[\gamma,\gamma']}(\{y\})$ then $\alpha Cl_{[\gamma,\gamma']}(\{x\}) \subseteq \alpha Cl_{[\gamma,\gamma']}(\{y\})$ by Theorem 2.2. This contradicts the fact that $z \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$. Consequently $x \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$, then there exist an α -open sets U and V such that $x \in U \cap V$ and $(U^{\gamma} \cap V^{\gamma'}) \cap \{y\} = \phi$, this implies that $y \notin U^{\gamma} \cap V^{\gamma'}$. Therefore, (X, τ) is $\alpha_{[\gamma,\gamma']}^{-}T_0$.

Proposition 4.10. A topological space (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_1 if and only if for each $x \in X$, $\{x\}$ is $\alpha_{[\gamma, \gamma']}$ -closed.

Proof. Let (X, τ) be $\alpha_{[\gamma, \gamma']} T_1$ and x any point of X. Suppose $y \in X \setminus \{x\}$, then $x \neq y$ and so there exist α -open sets W and S containing y and $x \notin W^{\gamma} \cap S^{\gamma'}$. Consequently $y \in W^{\gamma} \cap S^{\gamma'} \subseteq X \setminus \{x\}$, that is $X \setminus \{x\}$ is $\alpha_{[\gamma, \gamma']}$ -open.

Conversely, suppose $\{p\}$ is $\alpha_{[\gamma,\gamma']}$ -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \setminus \{x\}$ and $x \in X \setminus \{y\}$. Hence $X \setminus \{y\}$ is an $\alpha_{[\gamma,\gamma']}$ -open set contains x, so there exist α -open sets U and V containing x such that $U^{\gamma} \cap V^{\gamma'} \subseteq X \setminus \{y\}$. Similarly $X \setminus \{x\}$ is an $\alpha_{[\gamma,\gamma']}$ -open set contains y, so there exist α -open sets W and S containing ysuch that $W^{\gamma} \cap S^{\gamma'} \subseteq X \setminus \{x\}$. Accordingly X is an $\alpha_{[\gamma,\gamma']}$ - T_1 space. \Box **Proposition 4.11.** The following statements are equivalent for a topological space (X, τ) with an operations γ and γ' on $\alpha O(X)$:

- (1) X is $\alpha_{[\gamma,\gamma']}$ -T₂.
- (2) Let $x \in X$. For each $y \neq x$, there exist an α -open sets U and V containing x such that $y \notin \alpha Cl_{[\gamma, \gamma']}(U^{\gamma} \cap V^{\gamma'})$.
- (3) For each $x \in X$, $\cap \{ \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'}) : U, V \in \alpha O(X) \text{ and } x \in U \cap V \} = \{x\}.$

Proof. (1) \Rightarrow (2). Since X is $\alpha_{[\gamma,\gamma']}$ -T₂, there exist α -open sets U and V containing x and α -open sets W and S containing y such that $(U^{\gamma} \cap V^{\gamma'}) \cap (W^{\gamma} \cap S^{\gamma'}) = \phi$, implies that $y \notin \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'})$.

(2) \Rightarrow (3). If possible for some $y \neq x$, we have $y \in \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'})$ for every α -open sets U and V containing x, which then contradicts (2).

(3) \Rightarrow (1). Let $x, y \in X$ and $x \neq y$. Then there exist α -open sets U and V containing x such that $y \notin \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'})$, implies that $(U^{\gamma} \cap V^{\gamma'}) \cap (W^{\gamma} \cap S^{\gamma'}) = \phi$ for some α -open sets W and S containing y.

Proposition 4.12. (1) If (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_2 , then it is $\alpha_{[\gamma,\gamma']}$ - T_1 . (2) If (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_1 , then it is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$.

(3) If (X, τ) is $\alpha_{[\gamma, \gamma']}^{(\gamma, \gamma']} T_{\frac{1}{2}}$, then it is $\alpha_{[\gamma, \gamma']}^{(\gamma, \gamma']} T_{0}^{2}$.

Proof. (1) The proof is straightforward from the Definitions 4.4 and 4.5.(2) The proof is obvious by Proposition 4.10.

- (3) Let x and y be any two distinct points of X. By Proposition 4.8, the singleton set $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed or $\alpha_{[\gamma,\gamma']}$ -open.
 - (a) If $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed, then $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open containing y and there exist α -open sets W and S containing y such that $W^{\gamma} \cap S^{\gamma'} \subseteq X \setminus \{x\}$, implies that $y \in W \cap S$ and $x \notin W^{\gamma} \cap S^{\gamma'}$.
 - (b) If $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open, then there exist α -open sets U and V containing x such that $U^{\gamma} \cap V^{\gamma'} \subseteq \{x\}$, implies that $x \in U \cap V$ and $y \notin U^{\gamma} \cap V^{\gamma'}$. Therefore, we have X is $\alpha_{[\gamma,\gamma']}$ - T_0 .

Remark 4.13. The following series of examples show that all converses of Proposition 4.12 can not be reserved.

Example 4.14. Let (X, τ) , γ and γ' be the same space and the same operations as in Example 3.11. Then, it is shown directly that each singleton is $\alpha_{[\gamma,\gamma']}$ -closed in (X, τ) . By Proposition 4.10, (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_1 . But, we can show that $(U^{\gamma} \cap V^{\gamma'}) \cap (W^{\gamma} \cap S^{\gamma'}) \neq \phi$ holds for any α -open sets U, V, W and S. This implies (X, τ) is not $\alpha_{[\gamma,\gamma']}$ - T_2

Example 4.15. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ be a topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$. Then, it is shown directly that each singleton is $\alpha_{[\gamma,\gamma']}$ -closed or $\alpha_{[\gamma,\gamma']}$ -open in (X, τ) . By Proposition 4.8, (X, τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$. However, by Proposition 4.10, (X, τ) is not $\alpha_{[\gamma,\gamma']}$ - T_1 , in fact, a singleton $\{a\}$ is not $\alpha_{[\gamma,\gamma']}$ -closed.

Example 4.16. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ be a topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$. Then, (X, τ) is not $\alpha_{[\gamma, \gamma']} T_{\frac{1}{2}}$ because a singleton $\{b\}$ is neither $\alpha_{[\gamma, \gamma']}$ -open nor $\alpha_{[\gamma, \gamma']}$ -closed. It is shown directly that (X, τ) is $\alpha_{[\gamma, \gamma']} T_0$.

Remark 4.17. From Proposition 4.12 and Examples 4.14, 4.15 and 4.16, the following implications hold and none of the implications is reversible:

$$\alpha_{[\gamma,\gamma']} - T_2 \longrightarrow \alpha_{[\gamma,\gamma']} - T_1 \longrightarrow \alpha_{[\gamma,\gamma']} - T_{\frac{1}{2}} \longrightarrow \alpha_{[\gamma,\gamma']} - T_0$$

where $A \to B$ represents that A implies B .

where $A \rightarrow D$ represents that A implies D.

Proposition 4.18. If (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_i , then it is α - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs for i = 0, 2 follow from definitions. The proof for i = 1 (resp. $i = \frac{1}{2}$) follows from Proposition 4.10 (resp. Proposition 4.8).

Remark 4.19. The following of example show that all converses of Proposition 4.18 can not be reserved.

Example 4.20. Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = X$. Then, (X, τ) is α - T_i but it is not $\alpha_{[\gamma, \gamma']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proposition 4.21. If (X, τ) is α_{γ} - T_i , then it is $\alpha_{[\gamma, \gamma']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs for i = 0, 1, 2 follow from Definitions 4.3, 4.4, 4.5 and [[6]; Definition 3.6].

The proof for $i = \frac{1}{2}$ is obtained as follows: Let $x \in X$. Then, $\{x\}$ is α_{γ} -open or α_{γ} -closed by [[6]; Theorem 3.2]. So, $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open or $\alpha_{[\gamma,\gamma']}$ -closed because every α_{γ} -open is $\alpha_{[\gamma,\gamma']}$ -open. The proof is completed from Proposition 4.8.

Remark 4.22. The following series of examples show that all converses of Proposition 4.21 can not be reserved.

Example 4.23. Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \text{ or } \{b, c\}, \\ X & \text{otherwise.} \end{cases}$$

Then, (X, τ) is $\alpha_{[\gamma, \gamma']} - T_2$ but not $\alpha_{\gamma} - T_2$.

Example 4.24. Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\}, \\ X & \text{otherwise,} \end{cases}$$

and

$$A^{\gamma'} = \begin{cases} A & \text{if } A = \{b, c\}, \\ X & \text{otherwise.} \end{cases}$$

Then, (X, τ) is $\alpha_{[\gamma, \gamma']} T_i$ but not $\alpha_{\gamma} T_i$, where $i = \frac{1}{2}, 1$.

Example 4.25. Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a\}, \\ X & \text{otherwise,} \end{cases}$$

and

$$A^{\gamma'} = \begin{cases} A & \text{if } A = \{b\}, \\ X & \text{otherwise.} \end{cases}$$

Then, (X, τ) is $\alpha_{[\gamma, \gamma']} - T_0$ but not $\alpha_{\gamma} - T_0$.

Proposition 4.26. If (X, τ) is $[\gamma, \gamma']$ - T_i , then it is $\alpha_{[\gamma, \gamma']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs for i = 0, 2 follow from Definitions 4.3, 4.5 and [[5]; Definitions 5.2, 5.4].

The proof for i = 1 (resp. $i = \frac{1}{2}$) follows from [[5]; Proposition 5.8] (resp. [5]; Proposition 5.7]) and Proposition 2.3.

Remark 4.27. The following example show that the converses of Proposition 4.26 can not be reserved, for $i = 0, \frac{1}{2}$.

Example 4.28. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ be a topology on X. For each $A \in \alpha O(X)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$. Then, (X, τ) is $\alpha_{[\gamma, \gamma']} T_i$ but not $[\gamma, \gamma'] T_i$, where $i = 0, \frac{1}{2}$.

Proposition 4.29. If (X, τ) is $(\gamma, \gamma') - T_i$, then it is $\alpha_{[\gamma, \gamma']} - T_i$, where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs follow from [[5]; Proposition 6.12] and Proposition 4.26. \Box

Remark 4.30. The converse of Proposition 4.29 can not reversible by [[5]; Remark 6.13, Examples 6.14 and 6.15] and Proposition 4.26.

Proposition 4.31. If (X, τ) is γ - T_i , then it is $\alpha_{[\gamma, \gamma']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs follow from [[5]; Proposition 6.1] and Proposition 4.26. \Box

Remark 4.32. The converse of Proposition 4.31 can not reversible by [[5]; Remark 6.2, Examples 6.3, 6.4 and 6.6] and Proposition 4.26.

Remark 4.33. From Propositions 4.12, 4.18, 4.21, 4.26, 4.29, 4.31, [[10]; Remark 2.1], and [[4]; p.180], for distinct operations γ and γ' we have the following diagram. We note that none of the implications in the following diagram is reversible by Remarks 4.13, 4.19, 4.22, 4.30 and 4.32:

where $A \to B$ represents that A implies B.

Remark 4.34. We propose the following two questions since we could not find counter examples :

Are the spaces $\alpha_{[\gamma,\gamma']} - T_1$ and $[\gamma,\gamma'] - T_1$ equivalent or not? What about $\alpha_{[\gamma,\gamma']} - T_2$ and $[\gamma,\gamma'] - T_2$?

Proposition 4.35. Suppose that γ and γ' are α -regular operations on $\alpha O(X)$. A space (X, τ) is $\alpha_{[\gamma, \gamma']} - T_i$ if and only if an associated space $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$ is T_i , where i = 1, 1/2.

Proof. It follows from Remark 2.4 that a subset A is $\alpha_{[\gamma,\gamma']}$ -open in (X,τ) if and only if A is open in $(X, \alpha O(X, \tau)_{[\gamma,\gamma']})$. Therefore, the proof for $i = \frac{1}{2}$ (resp. i = 1) follows from Propositions 4.8 (resp. Proposition 4.10). \Box

Proposition 4.36. If γ and γ' are α -regular operations on $\alpha O(X)$ and $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$ is T_2 , then (X, τ) is $\alpha_{[\gamma, \gamma']} T_2$

Proof. This follows from the Hausdorffness of $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$ and definition of $\alpha_{[\gamma, \gamma']}$ -open and Definition 4.5.

Proposition 4.37. If γ and γ' are α -regular and α -open and (X, τ) is $\alpha_{[\gamma,\gamma']} T_2$, then $(X, \alpha O(X, \tau)_{[\gamma,\gamma']})$ is T_2 .

Proof. Let x and y be distinct points of X. By assumptions there exist α_{γ} -open sets U, W and $\alpha_{\gamma'}$ -open sets V, S such that $x \in U \cap V, y \in$ $W \cap S$ and $(U \cap V) \cap (W \cap S) = \phi$. It follows from Proposition 2.5 that $U \cap V \in \alpha O(X, \tau)_{[\gamma, \gamma']}$ and $W \cap S \in \alpha O(X, \tau)_{[\gamma, \gamma']}$. This implies that $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$ is T_2 .

Proposition 4.38. If γ and γ' are α -regular and α -open and (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_0 , then $(X, \alpha O(X, \tau)_{[\gamma,\gamma']})$ is T_0 .

Proof. This follows from the Definition 4.3, and Propositon 2.5.

Proposition 4.39. If $f : (X, \tau) \to (Y, \sigma)$ is $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -continuous and $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -closed, then

- (1) f(A) is $\alpha_{[\beta,\beta']}$ -g.closed for every $\alpha_{[\gamma,\gamma']}$ -g.closed set A of (X,τ) .
- (2) $f^{-1}(B)$ is $\alpha_{[\gamma,\gamma']}$ -g.closed for every $\alpha_{[\beta,\beta']}$ -g.closed set B of (Y,σ) .
- - (2) Let U be any $\alpha_{[\gamma,\gamma']}$ -open set such that $f^{-1}(B) \subseteq U$. Let $F = \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(B)) \cap (X \setminus U)$, then F is $\alpha_{[\gamma,\gamma']}$ -closed in (X,τ) . This implies f(F) is $\alpha_{[\beta,\beta']}$ -closed set in (Y,σ) . Since $f(F) = f(\alpha_{[\gamma,\gamma']}$ - $Cl((f^{-1}(B)) \cap (X \setminus U))) \subseteq \alpha_{[\beta,\beta']}$ - $Cl(B) \cap f(X \setminus U) \subseteq \alpha_{[\beta,\beta']}$ - $Cl(B) \cap (Y \setminus B)$. Therefore, $\alpha_{[\beta,\beta']}$ - $Cl(B) \setminus B$ contains an $\alpha_{[\beta,\beta']}$ -closed set f(F). It follows from Proposition 3.15 that $f(F) = \phi$ and hence $F = \phi$. Therefore $\alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(B)) \subseteq U$. This shows that $f^{-1}(B)$ is $\alpha_{[\gamma,\gamma']}$ -g.closed.

Theorem 4.40. Suppose that $f : (X, \tau) \to (Y, \sigma)$ is $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -continuous and $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -closed, then

- (1) If f is injective and (Y,σ) is $\alpha_{[\beta,\beta']} T_{\frac{1}{2}}$, then (X,τ) is $\alpha_{[\gamma,\gamma']} T_{\frac{1}{2}}$.
- (2) If f is surjective and (X, τ) is $\alpha_{[\gamma, \gamma']} \overline{T}_{\frac{1}{2}}$, then (Y, σ) is $\alpha_{[\beta, \beta']} \overline{T}_{\frac{1}{2}}$.
- Proof. (1) Let A be an $\alpha_{[\gamma,\gamma']}$ -g.closed set of (X,τ) . Now to prove that A is $\alpha_{[\gamma,\gamma']}$ -closed. By Propostion 4.39 (1), f(A) is $\alpha_{[\beta,\beta']}$ -g.closed. Since (Y,σ) is $\alpha_{[\beta,\beta']}$ - $T_{\frac{1}{2}}$, this implies that f(A) is $\alpha_{[\beta,\beta']}$ -closed. Since f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -continuous and injective, then, we have $A = f^{-1}(f(A))$ is $\alpha_{[\gamma,\gamma']}$ -closed. Hence (X,τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$.

(2) Let *B* be an $\alpha_{[\beta,\beta']}$ -g.closed set in (Y,σ) . By Propostion 4.39 (2), $f^{-1}(B)$ is $\alpha_{[\gamma,\gamma']}$ -g.closed, since (X,τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$ space, this implies that $f^{-1}(B)$ is $\alpha_{[\gamma,\gamma']}$ -closed. Since *f* is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -closed and surjective, then we have $B = f(f^{-1}(B))$ is $\alpha_{[\gamma,\gamma']}$ -closed. Hence (Y,σ) is $\alpha_{[\beta,\beta']}$ - $T_{\frac{1}{2}}$.

Theorem 4.41. If $f : (X, \tau) \to (Y, \sigma)$ is an $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -continuous injection and if (Y, σ) is $\alpha_{[\beta, \beta']}$ - T_i , then (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_i , where i = 0, 1, 2.

Proof. The proof for i = 1 is as follows: Let $x \in X$. Then, by Proposition 4.10, $\{f(x)\}$ is $\alpha_{[\beta,\beta']}$ -closed in (Y,σ) . By $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -continuous and Proposition 4.10, $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed and hence (X,τ) is $\alpha_{[\gamma,\gamma']}$ - T_1 . The proofs for i = 0, 2 follow from Definitions 4.3, 4.5 and 2.6.

Definition 4.42. A function $f : (X, \tau) \to (Y, \sigma)$ is called an $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ homeomorphism if f is an $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -continuous bijection and f^{-1} : $(Y, \sigma) \to (X, \tau)$ is $(\alpha_{[\beta, \beta']}, \alpha_{[\gamma, \gamma']})$ -continuous.

Theorem 4.43. Suppose that $f : (X, \tau) \to (Y, \sigma)$ is an $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -homeomorphism. Then, (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_i if and only if (Y, σ) is $\alpha_{[\beta, \beta']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. This follows from Theorems 4.40, 4.41 and Definition 4.42.

References

- [1] Alias B. Khalaf, Saeid Jafari and Hariwan Z. Ibrahim, Bioperations on α -open sets in topological spaces, (Submitted).
- [2] S. Kasahara, Operation-compact spaces, Math. Japonica, 24 (1979), 97-105.
- [3] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [4] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 (1) (1991), 175-184.
- [5] H. Maki and T. Noiri, Bioperations and some separation axioms, Scientiae Mathematicae Japonicae Online, 4 (2001), 165-180.
- [6] H. Z. Ibrahim, On a class of α_{γ} -open sets in a topological space, Acta Scientiarum. Technology, 35 (3) (2013), 539-545.
- [7] J. Umehara, H. Maki and T. Noiri, Bioperations on topological spaces and some separation axioms, Mem. Fac. Sci. Kochi Univ. Ser. A (Math.) 13 (1992), 45-59.
- [8] S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11 (1980), 209-214.
- H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13-21.
- [10] M. Caldas, D. N. Georgiou and S. Jafari, Characterizations of low separation axioms via α-open sets and α-closure operator, Bol. Soc. Paran. Mat. 21 (2003), 1-14.

14

Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-Region, Iraq

 $E\text{-}mail\ address: \verb"aliasbkhalaf@gmail.com"$

College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse , DENMARK.

 $E\text{-}mail\ address: \texttt{jafaripersia@gmail.com}$

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq

E-mail address: hariwan_math@yahoo.com