SOME FUNDAMENTAL PROPERTIES OF PRESEPARATED SETS

Miguel Caldas

Departamento de Matematica Aplicada Universidade Federal Fluminense Rua Mario Santos Braga, s/n 24020-140, Niteroi RJ Brasil e-mail: gmamccs@vm.uff.br

Erdal Ekici¹

Department of Mathematics Canakkale Onsekiz Mart University Terzioglu Campus, 17020 Canakkale Turkey e-mail: eekici@comu.edu.tr

Saeid Jafari

College of Vestsjaelland South Herrestraede 11, 4200 Slagelse Denmark e-mail: jafari@stofanet.dk

Abstract. In this paper, we offer the new notion of preseparatedness in topological spaces and we study some of its fundamental properties.

Keywords and Phrases: Topological spaces, preopen set, preclosed sets, preseparated sets, pre-symmetric.

2000 Math. Subject Classification: 54C10, 54D10.

1. Introduction

Throughout the paper (X, τ) (or simply X) will always denote a topological space. For a subset A of X, the closure, interior and complement of A in X are denoted by Cl(A), Int(A) and X - A, respectively. By $PO(X, \tau)$ and $PC(X, \tau)$ we denote the collection of all preopen sets and the collection of all preclosed sets of (X, τ) , respectively. Let A be a subset of a topological space (X, τ) . A is preopen [4] (or

¹Corresponding Author.

locally dense [1]) if $A \subset Int(Cl(A))$. The complement of a preopen set A is called preclosed [4] or equivalently A is preclosed if $Cl(Int(A)) \subset A$. The intersection of all preclosed sets containing A is called the preclosure of A [2] and is denoted by pCl(A). Recall that a function $f: X \to Y$ is said to be precontinuous [4] if for each $x \in X$ and each open set V of Y containing f(x), there exists a preopen set U of X containing x such that $f(U) \subset V$. A topological space X is pre- T_1 [3], if for each pair of distinct points x and y of X, there exists a pair of preopen sets one containing x but not y and the other containing y but not x. A topological space X is pre- T_0 [5] if for any pair of distinct points x and y of X, there exists a preopen set containing x but not y or a preopen set containing y but not x.

2. Some properties

Definition 2.1. Let X be a topological space and A, $B \subset X$. Then A and B are said to be preseparated if $A \cap pCl(B) = \emptyset$ and $pCl(A) \cap B = \emptyset$.

Remark 2.1.

- (1) If A and B are preseparated, then A and B are disjoint.
- (2) If $A \neq \emptyset$ is a subset of B and B is preseparated from C, then A and C are preseparated.
- (3) If A and B are preseparated and A and C are preseparated, then A and $B \cup C$ are preseparated.

Definition 2.2. Let X be a topological space. Points are called preseparated from preclosed sets in X if for all preclosed sets $C \subset X$ and for each $x \in X - C$, $\{x\}$ and C are preseparated.

Recall that a topological space X is pre-regular [6] if for each preclosed set F and each point $x \in X - F$, there exist disjoint preopen sets U and V such that $x \in U$ and $F \subset V$.

Remark 2.2.

- (1) If X is pre- T_1 , then points are preseparated from preclosed sets. Hence, this is a weaker separation axiom than pre- T_1 .
- (2) If X is pre-regular, then points are preseparated from preclosed sets. Hence, pre-regularity is a stronger condition.

This axiom enables us to determine the family of preopen sets of the topology of a space from its preseparated sets. **Theorem 2.1.** Let X be a topological space in which points are preseparated from preclosed sets and let S be the pairs of preseparated sets in X. Then, for each subset A of X, the preclosure of A is

$$pCl(A) = \{x \in X : \{\{x\}, A\} \notin S\}.$$

Proof. Let $x \notin \{x \in X : \{\{x\}, A\} \notin S\}$. Then $\{\{x\}, A\} \in S$. We have $\{x\} \cap pCl(A) = \emptyset$. Thus, $x \notin pCl(A)$ and hence $pCl(A) \subset \{x \in X : \{\{x\}, A\} \notin S\}$.

Suppose that $x \notin pCl(A)$. Then pCl(A) is a preclosed set disjoint from $\{x\}$ and thus, by hypothesis, $\{\{x\}, A\} \in S$. Hence, $x \notin \{x \in X : \{\{x\}, A\} \notin S\}$.

In general, if $x \in pCl(\{y\})$ in a topological space, then it need not be the case that $y \in pCl(\{x\})$. However, when points are preseparated from preclosed sets, this is the case; in fact, this provides us with alternate characterizations of the axiom.

Definition 2.3. A topological space X is called pre-symmetric if topologically distinct points in X are preseparated.

Observe that a topological space X is pre-symmetric if and only if X is T_1 . Since every topological space is pre- T_0 , this makes sense.

Theorem 2.2. Let X be a topological space. Then the following are equivalent:

- (1) Points are preseparated from preclosed sets in X.
- (2) For all $x, y \in X$, $x \in pCl(\{y\})$ if and only if $y \in pCl(\{x\})$.
- (3) X is pre-symmetric.

Proof. Suppose that (1) holds. If $x \in pCl(\{y\})$, then $\{x\}$ and $\{y\}$ are not preseparated and hence, $y \in pCl(\{x\})$. If $\{x\}$ and $\{y\}$ are topologically distinct, then one of them, say x, has a preopen neighborhood U which does not contain y. We have $pCl(\{y\}) \subset X - U$. This implies that $\{x\}$ and $pCl(\{y\})$ are preseparated and $\{x\}$ and $\{y\}$ are preseparated. Hence, (1) implies (2) and (1) implies (3).

Suppose that (2) is true. Let $C \subset X$ be preclosed and let $x \in X - C$. For each $y \in C$, $x \notin pCl(\{y\})$ and hence $y \notin pCl(\{x\})$. Thus, $pCl(\{x\}) \cap C = \emptyset$. Hence, (2) implies (1).

Finally, suppose that (3) is true and suppose that $x \notin pCl(\{y\})$. Then $\{x\}$ and $\{y\}$ are topologically distinct and hence preseparated. Thus, $pCl(\{x\}) \cap \{y\} = \emptyset$, that is, $y \notin pCl(\{x\})$. Hence, (3) implies (2).

Theorem 2.1 tells us that when X is pre-symmetric, the collection of preseparated sets uniquely determines the family of preopen sets of the topology of X. Note that presymmetry really is necessary.

Example 2.1. Let $X = \{a, b\}$ and suppose that no pair of nonempty subsets are preseparated in X. Then the family of preopen sets of the pre-symmetric topology on X must be the power set of X, but the nonpre-symmetric topology $\{\emptyset, \{a\}, X\}$ also preseparates no pair of nonempty subsets of X.

In fact, pre-symmetric spaces can be presented without reference to preopen sets at all.

Theorem 2.3. Let S be a set of unordered pairs of subsets of a set X such that

- (1) if $\{A, B\} \in S$, then A and B are disjoint,
- (2) if $A \subset B$ and $\{B, C\} \in S$, then $\{A, C\} \in S$,
- (3) if $\{A, B\} \in S$ and $\{A, C\} \in S$, then $\{A, B \cup C\} \in S$,
- (4) if $\{\{x\}, B\} \in S$ for each $x \in A$ and $\{\{y\}, A\} \in S$ for each $y \in B$, then $\{A, B\} \in S$ and
- (5) if $\{\{x\}, B\} \notin S$ and for each $y \in B$, $\{\{y\}, A\} \notin S$, then $\{\{x\}, A\} \notin S$.

Then there exists a unique pre-symmetric family of the preopen sets of the topology on X for which S is the collection of preseparated sets.

Proof. Let $pCl(A) = \{x \in X : \{\{x\}, A\} \notin S\}$ for every subset A of X. If $x \notin pCl(A)$, then $\{\{x\}, A\} \in S$ and hence $x \notin A$. Thus, $A \subset pCl(A)$ for each subset A.

If $x \in pCl(A)$, then $\{\{x\}, A\} \notin S$ and hence, $\{\{x\}, B\} \notin S$, that is, $x \in pCl(B)$. Thus, $pCl(A) \subset pCl(B)$ whenever $A \subset B$. In particular, since $A \subset pCl(A), pCl(A) \subset pCl(pCl(A))$.

If $x \in pCl(pCl(A))$, then $\{\{x\}, pCl(A)\} \notin S$ and hence, $\{\{x\}, A\} \notin S$. Furthermore, by the final condition, $pCl(pCl(A)) \subset pCl(A)$ and thus, pCl(pCl(A)) = pCl(A) for each $A \subset X$.

(1) Since $X \subset pCl(X) \subset X$, then pCl(X) = X.

(2) If $pCl(A_{\alpha}) = A_{\alpha}$, $\forall \alpha \in \Phi$, then $pCl(\bigcap_{\alpha \in \Phi} A_{\alpha}) \subset pCl(A_{\alpha}) = A_{\alpha}$ for each $\alpha \in \Phi$, since $\bigcap_{\alpha \in \Phi} A_{\alpha} \subset A_{\alpha}$ for each $\alpha \in \Phi$. Hence, $pCl(\bigcap_{\alpha \in \Phi} A_{\alpha}) \subset \bigcap A_{\alpha}$. Also, since $\bigcap_{\alpha \in \Phi} A_{\alpha} \subset pCl(\bigcap_{\alpha \in \Phi} A_{\alpha})$, then $pCl(\bigcap_{\alpha \in \Phi} A_{\alpha}) = \bigcap_{\alpha \in \Phi} A_{\alpha}$.

(3) If pCl(A) = A and pCl(B) = B, then

$$pCl(A \cup B) = \{x \in X : \{\{x\}, A \cup B\} \notin S\} \\= \{x \in X : \{\{x\}, A\} \notin S \text{ or } \{\{x\}, B\} \notin S\} \\= \{x \in X : \{\{x\}, A\} \notin S\} \cup \{x \in X : \{\{x\}, B\} \notin S\} \\= pCl(A) \cup pCl(B) \\= A \cup B.$$

Hence, pCl is the preclosure operator of a topology τ on X. If $y \notin C = \{x \in X : \{\{x\}, C\} \notin S\}$, then $\{\{y\}, C\} \in S$. Thus, points are preseparated from preclosed sets in X.

Suppose that $\{A, B\} \in S$. Then

$$A \cap pCl(B) = A \cap \{x \in X : \{\{x\}, B\} \notin S\}$$
$$= \{x \in A : \{\{x\}, B\} \notin S\}$$
$$= \emptyset.$$

Similarly, $pCl(A) \cap B = \emptyset$. Hence, if $\{A, B\} \in S$, then A and B are preseparated in τ .

Now suppose that A and B are preseparated. Then $\{x \in A : \{\{x\}, B\} \notin S\} = A \cap pCl(B) = \emptyset$ and $\{x \in A : \{\{x\}, B\} \notin S\} = pCl(A) \cap B = \emptyset$. Hence, $\{\{x\}, B\} \in S$ for each $x \in A$ and $\{\{y\}, A\} \in S$ for each $y \in B$. Thus, $\{A, B\} \in S$. Hence, S is the collection of pairs of sets preseparated by PO(X) and by Theorem 2.1, S determines PO(X) uniquely.

Example 2.2. Let X = R be the set of real numbers with $S = \{\{A, B\} : \forall x \in A, \exists \varepsilon > 0 \text{ such that } |x - y| \ge \varepsilon, \forall y \in B\}$. Since $x \in pCl(A)$ if and only if for each $\varepsilon > 0, |x - a| < \varepsilon$, for some $a \in A$.

 pCl_X will denote the preclosure operator of X and S_X will denote the collection of preseparated sets of X.

We have seen that pre-symmetric topological spaces can be viewed entirely in terms of their preseparated sets and it would be nice if we could treat precontinuous functions similarly.

Definition 2.4. Let X and Y be topological spaces and let $f : X \to Y$ be a function. If for all A, B not preseparated in X, f(A) and f(B) are not preseparated in Y, then we say that f is nonpreseparating.

Theorem 2.4. Let X and Y be topological spaces and let $f : X \to Y$ be a function. Then the following are equivalent:

- (1) f is nonpreseparating.
- (2) for all $A, B \subset X$, if f(A) and f(B) are preseparated in Y, then A and B are preseparated.
- (3) for all preseparated $C, D \subset Y, f^{-1}(C)$ and $f^{-1}(D)$ are preseparated in X.

Proof. $(2) \Leftrightarrow (1)$: Obvious.

 $(2) \Rightarrow (3)$: Let C and D be preseparated subsets of Y. Let $A = f^{-1}(C)$ and $B = f^{-1}(D)$. Then $f(A) \subset C$ and $f(B) \subset D$ and hence, f(A) and f(B) are preseparated in Y. By (2), A and B are preseparated in X.

 $(3)\Rightarrow(2)$: Let $A, B \subset X$ such that C = f(A) and D = f(B) are preseparated. Then by (3), $f^{-1}(C)$ and $f^{-1}(D)$ are preseparated and hence, $A \subset f^{-1}(f(A)) = f^{-1}(C)$ and $B \subset f^{-1}(f(B)) = f^{-1}(D)$ are preseparated.

Note that if f is precontinuous, then f is nonpreseparating. Really, for preseparated sets C, D in Y,

$$f^{-1}(C) \cap pCl_X(f^{-1}(D)) \subset f^{-1}(C) \cap f^{-1}(pCl_Y(D))$$

= $f^{-1}(C \cap pCl_Y(D))$
= \emptyset .

Similarly, $pCl_X(f^{-1}(C)) \cap f^{-1}(D) = \emptyset$.

Theorem 2.5. Let X and Y be topological spaces with Y pre-symmetric and let $f: X \to Y$ be a function. Then f is precontinuous if and only if f is nonpreseparating.

Proof. If f is precontinuous, then f is nonpreseparating.

Suppose that f is nonpreseparating. Let $A \subset X$ be nonempty and $y \in f(pCl_X(A))$ and let $x \in pCl_X(A) \cap f^{-1}(\{y\})$. Since $x \in pCl_X(A)$, then $\{\{x\}, A\} \notin S_X$. Since f is nonpreseparating, then $\{\{y\}, f(A)\} \notin S_Y$. Since points are preseparated from disjoint preclosed sets in Y, then $y \in pCl_Y(f(A))$. Thus, $f(pCl_X(A)) \subset pCl_Y(f(A))$ for each $A \subset X$.

References

- CORSON, H. and MICHAEL, E., Metrizability of certain countable unions, Illinois J. Math., 8 (1964), 351-360.
- [2] EL-DEEB, N., HASANEIN, I.A., MASHHOUR, A.S. and NOIRI, T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 27 (1983), 311-315.
- [3] KAR, A. and BHATTACHARYYA, P., Some weak separation axioms, Bull. Calcutta Math. Soc., 82(1990), 415-422.
- [4] MASHHOUR, A.S., ABD EL-MONSEF, M.E. and EL-DEEB, S.N., On precontinuous and weak precontinuous mapping, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [5] NOUR, T.M., Contributions to the Theory of Bitopological Spaces, Ph.D. Thesis, Univ. of Delhi, 1989.
- [6] PAL, M.C. and BHATTACHARYYA, P., Feeble and strong forms of preirresolute functions, Bull. Malaysian Math. Soc., (2) 19 (1996), no. 2, 63-75.

Accepted: 17.01.2007