Operations on Neutrosophic Vague Graphs

N. Durga ${ }^{1}$, S. Satham Hussain ${ }^{2, *}$, Saeid Jafari ${ }^{3}$ and Said Broumi ${ }^{4}$
${ }^{1}$ Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, India.
E-mail: durga1992mdu@gmail.com
${ }^{2}$ Department of Mathematics, Jamal Mohamed College, Trichy, Tamil Nadu, India. E-mail: sathamhussain5592@gmail.com
${ }^{3}$ College of Vestsjaelland South, Slagelse, Denmark and Mathematical and Physical Science Foundation, Slagelse, Denmark. E-mail: jafaripersia@gmail.com
${ }^{4}$ Laboratory of Information Processing, Faculty of Science Ben MSik, University Hassan II, Casablanca, Morocco.
E-mail: broumisaid78@gmail.com

Abstract

In this manuscript, the operations on neutrosophic vague graphs are introduced. Moreover, Cartesian product, cross product, lexicographic product, strong product and composition of neutrosophic vague graph are investigated and the proposed concepts are illustrated with examples.

Keywords: Neutrosophic vague graph, operations of neutrosophic vague graph, Cartesian product.
2010 Mathematics Subject Classification: 05C72; 05C76; 03E72.

1. Introduction

Vague sets are regarded as a special case of context-dependent fuzzy sets. Initially, vague set theory was first investigated by Gau and Buehrer [25] which is an extension of fuzzy set theory. In order to handle the indeterminate and inconsistent information, the neutrosophic set is introduced by Florentin Smarandache and has been studied extensively (see [5] - 24]). Neutrosophic set and related notions have shown applications in many different fields. In the definition of neutrosophic set, the indeterminacy value is quantified explicitly and truth-membership, indeterminacy membership, and false-membership are defined completely independent, if the sum of these values lies between 0 and 3. Neutrosophic vague set is introduced in [6]. Al-Quran and Hassan in 2] introduced the concept of neutrosophic vague soft expert set as a combination of neutrosophic vague set and soft expert set in order to improve the reasonability of decision making in reality. Neutrosophic vague
graphs are investigated in (16. Motivated by papers [6. 16], we introduce the concept of operations on neutrosophic vague graphs. The major contributions of this work are as follows:

- Operations on neutrosophic vague graphs are established.
- Cartesian product, cross product, lexicographic product, strong product and composition of neutrosophic vague graph are explained with examples.

2. Preliminaries

Definition 2.1. 25] A vague set A on a non empty set X is a pair $\left(T_{A}, F_{A}\right)$, where $T_{A}: X \rightarrow[0,1]$ and $F_{A}: X \rightarrow[0,1]$ are true membership and false membership functions, respectively, such that

$$
0 \leq T_{A}(x)+F_{A}(y) \leq 1 \text { for any } x \in X .
$$

Let X and Y be two non-empty sets. A vague relation R of X to Y is a vague set R on $X \times Y$ that is $R=\left(T_{R}, F_{R}\right)$, where $T_{R}: X \times Y \rightarrow[0,1], F_{R}: X \times Y \rightarrow[0,1]$ and satisfy the condition:

$$
0 \leq T_{R}(x, y)+F_{R}(x, y) \leq 1 \text { for any } x \in X
$$

Definition 2.2. [7] Let $G^{*}=(V, E)$ be a graph. A pair $G=(J, K)$ is called a vague graph on G^{*}, where $J=\left(T_{J}, F_{J}\right)$ is a vague set on V and $K=\left(T_{K}, F_{K}\right)$ is a vague set on $E \subseteq V \times V$ such that for each $x y \in E$,

$$
T_{K}(x y) \leq \min \left(T_{J}(x), T_{J}(y)\right) \text { and } F_{K}(x y) \geq \max \left(T_{J}(x), F_{J}(y)\right) .
$$

Definition 2.3. 177 A Neutrosophic set A is contained in another neutrosophic set B, (i.e) $A \subseteq B$ if $\forall x \in X, T_{A}(x) \leq T_{B}(x), I_{A}(x) \geq I_{B}(x)$ and $F_{A}(x) \geq F_{B}(x)$.

Definition 2.4. [11. 17] Let X be a space of points (objects), with a generic elements in X denoted by x. A single valued neutrosophic set A in X is characterised by truth-membership function $T_{A}(x)$, indeterminacy-membership function $I_{A}(x)$ and falsity-membership-function $F_{A}(x)$,

For each point x in $X, T_{A}(x), F_{A}(x), I_{A}(x) \in[0,1]$. Also

$$
A=\left\{x, T_{A}(x), F_{A}(x), I_{A}(x)\right\} \text { and } 0 \leq T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3 .
$$

Definition 2.5. [1, 22] A neutrosophic graph is defined as a pair $G^{*}=(V, E)$ where
(i) $V=\left\{v_{1}, v_{2}, . ., v_{n}\right\}$ such that $T_{1}=V \rightarrow[0,1], I_{1}=V \rightarrow[0,1]$ and $F_{1}=V \rightarrow[0,1]$ denote the degree of truth-membership function, indeterminacy function and falsity-membership function, respectively and

$$
0 \leq T_{1}(v)+I_{1}(v)+F_{1}(v) \leq 3
$$

(ii) $E \subseteq V \times V$ where $T_{2}=E \rightarrow[0,1], I_{2}=E \rightarrow[0,1]$ and $F_{2}=E \rightarrow[0,1]$ are such that

$$
\begin{aligned}
& T_{2}(u v) \leq \min \left\{T_{1}(u), T_{1}(v)\right\}, \\
& I_{2}(u v) \leq \min \left\{I_{1}(u), I_{1}(v)\right\}, \\
& F_{2}(u v) \leq \max \left\{F_{1}(u), F_{1}(v)\right\}, \\
& \text { and } 0 \leq T_{2}(u v)+I_{2}(u v)+F_{2}(u v) \leq 3, \quad \forall u v \in E
\end{aligned}
$$

Definition 2.6. [6] A neutrosophic vague set $A_{N V}$ (NVS in short) on the universe of discourse X written as

$$
A_{N V}=\left\{\left\langle x, \hat{T}_{A_{N V}}(x), \hat{I}_{A_{N V}}(x), \hat{F}_{A_{N V}}(x)\right\rangle, x \in X\right\}
$$

whose truth-membership, indeterminacy membership and falsity-membership function is defined as

$$
\hat{T}_{A_{N V}}(x)=\left[T^{-}(x), T^{+}(x)\right], \hat{I}_{A_{N V}}(x)=\left[I^{-}(x), I^{+}(x)\right] \text { and } \hat{F}_{A_{N V}}(x)=\left[F^{-}(x), F^{+}(x)\right] \text {, }
$$

where $T^{+}(x)=1-F^{-}(x), F^{+}(x)=1-T^{-}(x)$, and $0 \leq T^{-}(x)+I^{-}(x)+F^{-}(x) \leq 2$.

Definition 2.7. [6] The complement of $N V S A_{N V}$ is denoted by $A_{N V}^{c}$ and it is defined by

$$
\begin{aligned}
& \hat{T}_{A_{N V}}^{c}(x)=\left[1-T^{+}(x), 1-T^{-}(x)\right], \\
& \hat{I}_{A_{N V}}^{c}(x)=\left[1-I^{+}(x), 1-I^{-}(x)\right], \\
& \hat{F}_{A_{N V}}^{c}(x)=\left[1-F^{+}(x), 1-F^{-}(x)\right],
\end{aligned}
$$

Definition 2.8. $\sqrt{6]}$ Let $A_{N V}$ and $B_{N V}$ be two NVSs of the universe U. If for all $u_{i} \in U$,

$$
\hat{T}_{A_{N V}}\left(u_{i}\right) \leq \hat{T}_{B_{N V}}\left(u_{i}\right), \hat{I}_{A_{N V}}\left(u_{i}\right) \geq \hat{I}_{B_{N V}}\left(u_{i}\right), \hat{F}_{A_{N V}}\left(u_{i}\right) \geq \hat{F}_{B_{N V}}\left(u_{i}\right)
$$

then the $N V S, A_{N V}$ are included in $B_{N V}$, denoted by $A_{N V} \subseteq B_{N V}$ where $1 \leq i \leq n$.

Definition 2.9. [6] The union of two NVSs $A_{N V}$ and $B_{N V}$ is a $N V S s, C_{N V}$, written as $C_{N V}=A_{N V} \cup$ $B_{N V}$, whose truth membership function, indeterminacy-membership function and false-membership function are related to those of $A_{N V}$ and $B_{N V}$ by

$$
\begin{aligned}
& \hat{T}_{C_{N V}}(x)=\left[\max \left(T_{A_{N V}}^{-}(x), T_{B_{N V}}^{-}(x)\right), \max \left(T_{A_{N V}}^{+}(x), T_{B_{N V}}^{+}(x)\right)\right] \\
& \hat{I}_{C_{N V}}(x)=\left[\min \left(I_{A_{N V}}^{-}(x), I_{B_{N V}}^{-}(x)\right), \min \left(I_{A_{N V}}^{+}(x), I_{B_{N V}}^{+}(x)\right)\right] \\
& \hat{F}_{C_{N V}}(x)=\left[\min \left(F_{A_{N V}}^{-}(x), F_{B_{N V}}^{-}(x)\right), \min \left(F_{A_{N V}}^{+}(x), F_{B_{N V}}^{+}(x)\right)\right]
\end{aligned}
$$

Definition 2.10. [6] The intersection of two NVSs, $A_{N V}$ and $B_{N V}$ is a NVSs $C_{N V}$, written as $C_{N V}=A_{N V} \cap B_{N V}$, whose truth-membership function, indeterminacy-membership function and falsemembership function are related to those of $A_{N V}$ and $B_{N V}$ by

$$
\begin{aligned}
& \hat{T}_{C_{N V}}(x)=\left[\min \left(T_{A_{N V}}^{-}(x), T_{B_{N V}}^{-}(x)\right), \min \left(T_{A_{N V}}^{+}(x), T_{B_{N V}}^{+}(x)\right)\right] \\
& \hat{I}_{C_{N V}}(x)=\left[\max \left(I_{A_{N V}}^{-}(x), I_{B_{N V}}^{-}(x)\right), \max \left(I_{A_{N V}}^{+}(x), I_{B_{N V}}^{+}(x)\right)\right] \\
& \hat{F}_{C_{N V}}(x)=\left[\max \left(F_{A_{N V}}^{-}(x), F_{B_{N V}}^{-}(x)\right), \max \left(F_{A_{N V}}^{+}(x), F_{B_{N V}}^{+}(x)\right)\right]
\end{aligned}
$$

Definition 2.11. 16] Let $G^{*}=(R, S)$ be a graph. A pair $G=(A, B)$ is called a neutrosophic vague graph (NVG) on G^{*} or a neutrosophic vague graph where $A=\left(\hat{T}_{A}, \hat{I}_{A}, \hat{F}_{A}\right)$ is a neutrosophic vague set on R and $B=\left(\hat{T}_{B}, \hat{I}_{B}, \hat{F}_{B}\right)$ is a neutrosophic vague set $S \subseteq R \times R$ where
(1) $R=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $T_{A}^{-}: R \rightarrow[0,1], I_{A}^{-}: R \rightarrow[0,1], F_{A}^{-}: R \rightarrow[0,1]$ which satisfies the

$$
\text { condition } F_{A}^{-}=\left[1-T_{A}^{+}\right]
$$

$$
T_{A}^{+}: R \rightarrow[0,1], I_{A}^{+}: R \rightarrow[0,1], F_{A}^{+}: R \rightarrow[0,1] \text { which satisfies the condition } F_{A}^{+}=\left[1-T_{A}^{-}\right]
$$

denotes the degree of truth membership function, indeterminacy membership and falsity membership of the element $v_{i} \in R$, and

$$
\begin{aligned}
& 0 \leq T_{A}^{-}\left(v_{i}\right)+I_{A}^{-}\left(v_{i}\right)+F_{A}^{-}\left(v_{i}\right) \leq 2 \\
& 0 \leq T_{A}^{+}\left(v_{i}\right)+I_{A}^{+}\left(v_{i}\right)+F_{A}^{+}\left(v_{i}\right) \leq 2
\end{aligned}
$$

(2) $S \subseteq R \times R$ where

$$
\begin{aligned}
& T_{B}^{-}: R \times R \rightarrow[0,1], I_{B}^{-}: R \times R \rightarrow[0,1], F_{B}^{-}: R \times R \rightarrow[0,1] \\
& T_{B}^{+}: R \times R \rightarrow[0,1], I_{B}^{+}: R \times R \rightarrow[0,1], F_{B}^{+}: R \times R \rightarrow[0,1]
\end{aligned}
$$

denotes the degree of truth membership function, indeterminacy membership and falsity membership of the element $v_{i}, v_{j} \in S$, respectively and such that,

$$
\begin{aligned}
& 0 \leq T_{B}^{-}\left(v_{i} v_{j}\right)+I_{B}^{-}\left(v_{i} v_{j}\right)+F_{B}^{-}\left(v_{i} v_{j}\right) \leq 2 \\
& 0 \leq T_{B}^{+}\left(v_{i} v_{j}\right)+I_{B}^{+}\left(v_{i} v_{j}\right)+F_{B}^{+}\left(v_{i} v_{j}\right) \leq 2
\end{aligned}
$$

such that

$$
\begin{aligned}
T_{B}^{-}\left(v_{i} v_{j}\right) & \leq \min \left\{T_{A}^{-}\left(v_{i}\right), T_{A}^{-}\left(v_{j}\right)\right\} \\
I_{B}^{-}\left(v_{i} v_{j}\right) & \leq \min \left\{I_{A}^{-}\left(v_{i}\right), I_{A}^{-}\left(v_{j}\right)\right\} \\
F_{B}^{-}\left(v_{i} v_{j}\right) & \leq \max \left\{F_{A}^{-}\left(v_{i}\right), F_{A}^{-}\left(v_{j}\right)\right\}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
T_{B}^{+}\left(v_{i} v_{j}\right) & \leq \min \left\{T_{A}^{+}\left(v_{i}\right), T_{A}^{+}\left(v_{j}\right)\right\} \\
I_{B}^{+}\left(v_{i} v_{j}\right) & \leq \min \left\{I_{A}^{+}\left(v_{i}\right), I_{A}^{+}\left(v_{j}\right)\right\} \\
F_{B}^{+}\left(v_{i} v_{j}\right) & \leq \max \left\{F_{A}^{+}\left(v_{i}\right), F_{A}^{+}\left(v_{j}\right)\right\} .
\end{aligned}
$$

Example 2.1. Consider a neutrosophic vague graph $G=(R, S)$ such that $A=\{a, b, c\}$ and $B=$ $\{a b, b c, c a\}$ are defined by
$\hat{a}=T[0.5,0.6], I[0.4,0.3], F[0.4,0.5], \quad \hat{b}=T[0.4,0.6], I[0.7,0.3], F[0.4,0.6]$,
$\hat{c}=T[0.4,0.4], I[0.5,0.3], F[0.6,0.6]$
$a^{-}=(0.5,0.4,0.4), b^{-}=(0.4,0.7,0.4), c^{-}=(0.4,0.5,0.6)$
$a^{+}=(0.6,0.3,0.5), b^{+}=(0.6,0.3,0.6), c^{+}=(0.4,0.3,0.6)$

Figure 1 NEUTROSOPHIC VAGUE GRAPH

3. Operations on Neutrosophic Vague Graphs

Definition 3.1. The Cartesian product of two $N V G s G_{1}$ and G_{2} is denoted by the pair $G_{1} \times G_{2}=$ ($R_{1} \times R_{2}, S_{1} \times S_{2}$) and defined as

$$
\begin{gathered}
T_{A_{1} \times A_{2}}^{-}(k l)=T_{A_{1}}^{-}(k) \wedge T_{A_{2}}^{-}(l) \\
I_{A_{1} \times A_{2}}^{-}(k l)=I_{A_{1}}^{-}(k) \wedge I_{A_{2}}^{-}(l) \\
F_{A_{1} \times A_{2}}^{-}(k l)=F_{A_{1}}^{-}(k) \vee F_{A_{2}}^{-}(l) \\
T_{A_{1} \times A_{2}}^{+}(k l)=T_{A_{1}}^{+}(k) \wedge T_{A_{2}}^{+}(l) \\
I_{A_{1} \times A_{2}}^{+}(k l)=I_{A_{1}}^{+}(k) \wedge I_{A_{2}}^{+}(l) \\
F_{A_{1} \times A_{2}}^{+}(k l)=F_{A_{1}}^{+}(k) \vee F_{A_{2}}^{+}(l)
\end{gathered}
$$

for all $(k, l) \in R_{1} \times R_{2}$.
The membership value of the edges in $G_{1} \times G_{2}$ can be calculated as,

$$
\begin{aligned}
(1) T_{B_{1} \times B_{2}}^{-}\left(k l_{1}\right)\left(k l_{2}\right) & =T_{A_{1}}^{-}(k) \wedge T_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
T_{B_{1} \times B_{2}}^{+}\left(k l_{1}\right)\left(k l_{2}\right) & =T_{A_{1}}^{+}(k) \vee T_{B_{2}}^{+}\left(l_{1} l_{2}\right), \\
(2) I_{B_{1} \times B_{2}}^{-}\left(k l_{1}\right)\left(k l_{2}\right) & =I_{A_{1}}^{-}(k) \wedge I_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
I_{B_{1} \times B_{2}}^{+}\left(k l_{1}\right)\left(k l_{2}\right) & =I_{A_{1}}^{+}(k) \vee I_{B_{2}}^{+}\left(l_{1} l_{2}\right), \\
(3) F_{B_{1} \times B_{2}}^{-}\left(k l_{1}\right)\left(k l_{2}\right) & =F_{A_{1}}^{-}(k) \vee F_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
F_{B_{1} \times B_{2}}^{+}\left(k l_{1}\right)\left(k l_{2}\right) & =F_{A_{1}}^{+}(k) \wedge F_{B_{2}}^{+}\left(l_{1} l_{2}\right),
\end{aligned}
$$

for all $k \in R_{1}, l_{1} l_{2} \in S_{2}$.

$$
\begin{aligned}
& (4) T_{B_{1} \times B_{2}}^{-}\left(k_{1} l\right)\left(k_{2} l\right)=T_{A_{2}}^{-}(l) \wedge T_{B_{2}}^{-}\left(k_{1} k_{2}\right) \\
& T_{B_{1} \times B_{2}}^{+}\left(k_{1} l\right)\left(k_{2} l\right)=T_{A_{2}}^{+}(l) \vee T_{B_{2}}^{+}\left(k_{1} k_{2}\right), \\
& \text { (5) } I_{B_{1} \times B_{2}}^{-}\left(k_{1} l\right)\left(k_{2} l\right)=I_{A_{2}}^{-}(l) \wedge I_{B_{2}}^{-}\left(k_{1} k_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
I_{B_{1} \times B_{2}}^{+}\left(k_{1} l\right)\left(k_{2} l\right)=I_{A_{2}}^{+}(l) \vee I_{B_{2}}^{+}\left(k_{1} k_{2}\right), \\
(6) F_{B_{1} \times B_{2}}^{-}\left(k_{1} l\right)\left(k_{2} l\right)=F_{A_{2}}^{-}(l) \vee F_{B_{2}}^{-}\left(k_{1} k_{2}\right) \\
F_{B_{1} \times B_{2}}^{+}\left(k_{1} l\right)\left(k_{2} l\right)=F_{A_{2}}^{+}(l) \wedge F_{B_{2}}^{+}\left(k_{1} k_{2}\right),
\end{gathered}
$$

for all $k_{1} k_{2} \in S_{1}, l \in R_{2}$.

Example 3.1. Consider $G_{1}=\left(R_{1}, S_{1}\right)$ and $G_{2}=\left(R_{2}, S_{2}\right)$ are two $N V G s$ of $G=(R, S)$, as represented in Figure 2, now we get $G_{1} \times G_{2}$ as follows Figure 3.
$\hat{k}_{1}=T[0.5,0.6], I[0.6,0.4], F[0.4,0.5], \hat{k}_{2}=T[0.4,0.6], I[0.7,0.3], F[0.4,0.6]$, $\hat{k}_{3}=T[0.6,0.4], I[0.3,0.7], F[0.6,0.4], \hat{k}_{4}=T[0.4,0.4], I[0.4,0.6], F[0.6,0.6]$
$\hat{l}_{1}=T[0.4,0.4], I[0.5,0.3], F[0.6,0.6], \hat{l}_{2}=T[0.5,0.6], I[0.4,0.3], F[0.4,0.5]$,
$\hat{l}_{3}=T[0.4,0.6], I[0.7,0.3], F[0.4,0.6]$
$k_{1}^{-}=(0.5,0.6,0.4), k_{2}^{-}=(0.4,0.7,0.4), k_{3}^{-}=(0.6,0.3,0.6), k_{4}^{-}=(0.4,0.4,0.6)$
$k_{1}^{+}=(0.6,0.4,0.5), k_{2}^{+}=(0.6,0.3,0.6), k_{3}^{+}=(0.4,0.7,0.4), k_{4}^{-}=(0.4,0.6,0.6)$
$l_{1}^{-}=(0.4,0.5,0.6), l_{2}^{-}=(05,0.4,0.4), l_{3}^{-}=(0.4,0.7,0.4)$
$l_{1}^{+}=(0.4,0.3,0.6), l_{2}^{+}=(0.6,0.3,0.5), l_{3}^{+}=(0.6,0.3,0.6)$

Figure 2
NEUTROSOPHIC VAGUE GRAPH
Theorem 3.2. The Cartesian product $G_{1} \times G_{2}=\left(R_{1} \times R_{2}, S_{1} \times S_{2}\right)$ of two $N V G G_{1}$ and G_{2} also an $N V G$ of $G_{1} \times G_{2}$.

Proof. We consider,
Case 1: for $k \in R_{1}, l_{1} l_{2} \in S_{2}$,

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \times B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{T}_{A_{1}}(k) \wedge \hat{T}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq \hat{T}_{A_{1}}(k) \wedge\left[\hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{1}}(k) \wedge \hat{T}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{1}}(k) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \times A_{2}\right)}\left(k, l_{1}\right) \wedge \hat{T}_{\left(A_{1} \times A_{2}\right)}\left(k, l_{2}\right) \\
\hat{I}_{\left(B_{1} \times B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{I}_{A_{1}}(k) \wedge \hat{I}_{B_{2}}\left(l_{1} l_{2}\right)
\end{aligned}
$$

Figure 3
CARTESIAN PRODUCT OF NEUTROSOPHIC VAGUE GRAPH

$$
\begin{aligned}
& \leq \hat{I}_{A_{1}}(k) \wedge\left[\hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{I}_{A_{1}}(k) \wedge \hat{I}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{1}}(k) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \times A_{2}\right)}\left(k, l_{1}\right) \wedge \hat{I}_{\left(A_{1} \times A_{2}\right)}\left(k, l_{2}\right)
\end{aligned}
$$

$$
\hat{F}_{\left(B_{1} \times B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right)=\hat{F}_{A_{1}}(k) \vee \hat{F}_{B_{2}}\left(l_{1} l_{2}\right)
$$

$$
\leq \hat{F}_{A_{1}}(k) \vee\left[\hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right]
$$

$$
\begin{aligned}
& =\left[\hat{F}_{A_{1}}(k) \vee \hat{F}_{A_{2}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{1}}(k) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \times A_{2}\right)}\left(k, l_{1}\right) \vee \hat{F}_{\left(A_{1} \times A_{2}\right)}\left(k, l_{2}\right)
\end{aligned}
$$

for all $k l_{1}, k l_{2} \in G_{1} \times G_{2}$.
Case 2: for $k \in R_{2}, l_{1} l_{2} \in S_{1}$.

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \times B_{2}\right)}\left(\left(l_{1} k\right)\left(l_{2} k\right)\right) & =\hat{T}_{A_{2}}(k) \wedge \hat{T}_{B_{1}}\left(l_{1} l_{2}\right) \\
& \leq \hat{T}_{A_{2}}(k) \wedge\left[\hat{T}_{A_{1}}\left(l_{1}\right) \wedge \hat{T}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{2}}(k) \wedge \hat{T}_{A_{1}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{2}}(k) \wedge \hat{T}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \times A_{2}\right)}\left(l_{1}, k\right) \wedge \hat{T}_{\left(A_{1} \times A_{2}\right)}\left(l_{2}, k\right) \\
\left.\hat{I}_{\left(B_{1} \times B_{2}\right)}\right)\left(\left(l_{1} k\right)\left(l_{2} k\right)\right) & =\hat{I}_{A_{2}}(k) \wedge \hat{I}_{B_{1}}\left(l_{1} l_{2}\right) \\
& \leq \hat{I}_{A_{2}}(k) \wedge\left[\hat{I}_{A_{1}}\left(l_{1}\right) \wedge \hat{I}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{I}_{A_{2}}(k) \wedge \hat{I}_{A_{1}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{2}}(k) \wedge \hat{I}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \times A_{2}\right)}\left(l_{1}, k\right) \wedge \hat{I}_{\left(A_{1} \times A_{2}\right)}\left(l_{2}, k\right) \\
& \leq \hat{F}_{A_{2}}(k) \vee\left[\hat{F}_{A_{1}}\left(l_{1}\right) \vee \hat{F}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{2}}(k) \vee \hat{F}_{A_{1}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{2}}(k) \vee \hat{F}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \times A_{2}\right)}\left(l_{1}, k\right) \vee \hat{F}_{\left(A_{1} \times A_{2}\right)}\left(l_{2}, k\right)
\end{aligned}
$$

for all $l_{1} k, l_{2} k \in G_{1} \times G_{2}$ and hence the proof.

Definition 3.3. The Cross product of two NVGs G_{1} and G_{2} is denoted by the pair $G_{1} \times G_{2}=$ ($R_{1} \times R_{2}, S_{1} \times S_{2}$) and is defined as

$$
\begin{aligned}
(i) T_{A_{1} \times A_{2}}^{-}(k l) & =T_{A_{1}}^{-}(k) \wedge T_{A_{2}}^{-}(l) \\
I_{A_{1} \times A_{2}}^{-}(k l) & =I_{A_{1}}^{-}(k) \wedge I_{A_{2}}^{-}(l) \\
F_{A_{1} \times A_{2}}^{-}(k l) & =F_{A_{1}}^{-}(k) \vee F_{A_{2}}^{-}(l)
\end{aligned}
$$

$$
\begin{aligned}
T_{A_{1} \times A_{2}}^{+}(k l) & =T_{A_{1}}^{+}(k) \wedge T_{A_{2}}^{+}(l) \\
I_{A_{1} \times A_{2}}^{+}(k l) & =I_{A_{1}}^{+}(k) \wedge I_{A_{2}}^{+}(l) \\
F_{A_{1} \times A_{2}}^{+}(k l) & =F_{A_{1}}^{+}(k) \vee F_{A_{2}}^{+}(l)
\end{aligned}
$$

for all $k, l \in R_{1} \times R_{2}$.

$$
\begin{aligned}
(i i) T_{\left(B_{1} \times B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =T_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge T_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \times B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =I_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge I_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \times B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =F_{B_{1}}^{-}\left(k_{1} k_{2}\right) \vee F_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
(i i i) T_{\left(B_{1} \times B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =T_{B_{1}}^{+}\left(k_{1} k_{2}\right) \wedge T_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \times B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =I_{B_{1}}^{+}\left(k_{1} k_{2}\right) \wedge I_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \times B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =F_{B_{1}}^{+}\left(k_{1} k_{2}\right) \vee F_{B_{2}}^{+}\left(l_{1} l_{2}\right)
\end{aligned}
$$

for all $k_{1} k_{2} \in S_{1}, l_{1} l_{2} \in S_{2}$.

Example 3.2. Consider $G_{1}=\left(R_{1}, S_{1}\right)$ and $G_{2}=\left(R_{2}, S_{2}\right)$ as two $N V G$ of $G=(R, S)$ respectively, (see Figure 2). We obtain the cross product of $G_{1} \times G_{2}$ as follows (see Figure 4).

Figure 4
CROSS PRODUCT OF NEUTROSOPHIC VAGUE GRAPH

Theorem 3.4. The cross product $G_{1} \times G_{2}=\left(R_{1} \times R_{2}, S_{1} \times S_{2}\right)$ of two NVG of NVG G_{1} and G_{2} is an $N V G$ of $G_{1} \times G_{2}$.

Proof. For all $k_{1} l_{1}, k_{2} l_{2} \in G_{1} \times G_{2}$

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \times B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{T}_{B_{1}}\left(k_{1} k_{2}\right) \wedge \hat{T}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq\left[\hat{T}_{A_{1}}\left(k_{1}\right) \wedge \hat{T}_{A_{1}}\left(k_{2}\right)\right] \wedge\left[\hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{1}}\left(k_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{1}}\left(k_{2}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \times A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \hat{T}_{\left(A_{1} \times A_{2}\right)}\left(k_{2}, l_{2}\right) \\
& =\left[\hat{I}_{A_{1}}\left(k_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{1}}\left(k_{2}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \times A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \hat{I}_{\left(A_{1} \times A_{2}\right)}\left(k_{2}, l_{2}\right) \\
\hat{I}_{\left(B_{1} \times B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{I}_{B_{1}}\left(k_{1} k_{2}\right) \wedge \hat{I}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \left.\leq \hat{I}_{A_{1}}\left(k_{2}\right)\right] \wedge\left[\hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& \leq\left[\hat{F}_{A_{1}}\left(k_{1}\right) \vee \hat{F}_{A_{1}}\left(k_{2}\right)\right] \vee\left[\hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{1}}\left(k_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{1}}\left(k_{2}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
\hat{F}_{\left(B_{1} \times B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{F}_{B_{1}}\left(k_{1} k_{2}\right) \vee \hat{F}_{B_{2}}\left(l_{1} l_{2}\right) \\
& =\hat{F}_{\left(A_{1} \times A_{2}\right)}\left(k_{1} l_{1}\right) \vee \hat{F}_{\left(A_{1} \times A_{2}\right)}\left(k_{2}, l_{2}\right)
\end{aligned}
$$

This completes the proof.

Definition 3.5. The lexicographic product of two $N V G s G_{1}$ and G_{2} is denoted by the pair $G_{1} \bullet G_{2}=$ $\left(R_{1} \bullet R_{2}, S_{1} \bullet S_{2}\right)$ and defined as

$$
\begin{aligned}
(i) T_{\left(A_{1} \bullet A_{2}\right)}^{-}(k l) & =T_{A_{1}}^{-}(k) \wedge T_{A_{2}}^{-}(l) \\
I_{\left(A_{1} \bullet A_{2}\right)}^{-}(k l) & =I_{A_{1}}^{-}(k) \wedge I_{A_{2}}^{-}(l) \\
F_{\left(A_{1} \bullet A_{2}\right)}^{-}(k l) & =F_{A_{1}}^{-}(k) \vee F_{A_{2}}^{-}(l) \\
T_{\left(A_{1} \bullet A_{2}\right)}^{+}(k l) & =T_{A_{1}}^{+}(k) \wedge T_{A_{2}}^{+}(l) \\
I_{\left(A_{1} \bullet A_{2}\right)}^{+}(k l) & =I_{A_{1}}^{+}(k) \wedge I_{A_{2}}^{+}(l)
\end{aligned}
$$

$$
F_{\left(A_{1} \bullet A_{2}\right)}^{+}(k l)=F_{A_{1}}^{+}(k) \vee F_{A_{2}}^{+}(l),
$$

for all $k l \in R_{1} \times R_{2}$

$$
\begin{array}{r}
(i i) T_{\left(B_{1} \bullet B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right)=T_{A_{1}}^{-}(k) \wedge T_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \bullet B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right)=I_{A_{1}}^{-}(k) \wedge I_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \bullet B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right)=F_{A_{1}}^{-}(k) \vee F_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
T_{\left(B_{1} \bullet B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right)=T_{A_{1}}^{+}(k) \wedge T_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \bullet B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right)=I_{A_{1}}^{+}(k) \wedge I_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \bullet B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right)=F_{A_{1}}^{+}(k) \vee F_{B_{2}}^{+}\left(l_{1} l_{2}\right),
\end{array}
$$

for all $k \in R_{1}, l_{1} l_{2} \in S_{2}$.

$$
\begin{aligned}
(i i i) T_{\left(B_{1} \bullet B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =T_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge T_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \bullet B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =I_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge I_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \bullet B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =F_{B_{1}}^{-}\left(k_{1} k_{2}\right) \vee F_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
T_{\left(B_{1} \bullet B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =T_{B_{1}}^{+}\left(k_{1} k_{2}\right) \wedge T_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \bullet B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =I_{B_{1}}^{+}\left(k_{1} k_{2}\right) \wedge I_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \bullet B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right) & =F_{B_{1}}^{+}\left(k_{1} k_{2}\right) \vee F_{B_{2}}^{+}\left(l_{1} l_{2}\right)
\end{aligned}
$$

for all $k_{1} k_{2} \in S_{1}, l_{1} l_{2} \in S_{2}$.

Example 3.3. The lexicographic product of $N V G G_{1}=\left(S_{1}, T_{1}\right)$ and $G_{2}=\left(S_{2}, T_{2}\right)$ shown in Figure 2 is defined as $G_{1} \bullet G_{2}=\left(S_{1} \bullet S_{2}, T_{1} \bullet T_{2}\right)$ and is presented in Figure 5.

Theorem 3.6. The lexicographic product $G_{1} \bullet G_{2}=\left(R_{1} \bullet R_{2}, S_{1} \bullet S_{2}\right)$ of two $N V G$ of $N V G G_{1}$ and G_{2} is an $N V G$ of $G_{1} \bullet G_{2}$.

Proof. We have two cases.
Case 1: For $k \in R_{1}, l_{1} l_{2} \in S_{2}$,

$$
\hat{T}_{\left(B_{1} \bullet B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right)=\hat{T}_{A_{1}}(k) \wedge \hat{T}_{B_{2}}\left(l_{1} l_{2}\right)
$$

Figure 5
LEXICOGRAPHIC PRODUCT OF NEUTROSOPHIC VAGUE GRAPH

$$
\begin{aligned}
& \leq \hat{T}_{A_{1}}(k) \wedge\left[\hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{1}}(k) \wedge \hat{T}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{1}}(k) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \bullet A_{2}\right)}\left(k, l_{1}\right) \wedge \hat{T}_{\left(A_{1} \bullet A_{2}\right)}\left(k, l_{2}\right) \\
\hat{I}_{\left(B_{1} \bullet B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{I}_{A_{1}}(k) \wedge \hat{I}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq \hat{I}_{A_{1}}(k) \wedge\left[\hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\hat{I}_{A_{1}}(k) \wedge \hat{I}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{1}}(k) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \bullet A_{2}\right)}\left(k, l_{1}\right) \wedge \hat{I}_{\left(A_{1} \bullet A_{2}\right)}\left(k, l_{2}\right) \\
\hat{F}_{\left(B_{1} \bullet B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{F}_{A_{1}}(k) \vee \hat{F}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq \hat{F}_{A_{1}}(k) \vee\left[\hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{1}}(k) \vee \hat{F}_{A_{2}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{1}}(k) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \bullet A_{2}\right)}\left(k, l_{1}\right) \vee \hat{F}_{\left(A_{1} \bullet A_{2}\right)}\left(k, l_{2}\right)
\end{aligned}
$$

for all $k l_{1}, k l_{2} \in S_{1} \times S_{2}$.
Case 2: For all $k_{1} l_{1} \in S_{1}, k_{2} l_{2} \in S_{2}$,

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \bullet B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{T}_{B_{1}}\left(k_{1} k_{2}\right) \wedge \hat{T}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq\left[\hat{T}_{A_{1}}\left(k_{1}\right) \wedge \hat{T}_{A_{1}}\left(k_{2}\right)\right] \wedge\left[\hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{1}}\left(k_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{1}}\left(k_{2}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \bullet A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \hat{T}_{\left(A_{1} \bullet A_{2}\right)}\left(k_{2}, l_{2}\right) \\
& \leq\left[\hat{I}_{A_{1}}\left(k_{1}\right) \wedge \hat{I}_{A_{1}}\left(k_{2}\right)\right] \wedge\left[\hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{I}_{A_{1}}\left(k_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{1}}\left(k_{2}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \bullet A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \hat{I}_{\left(A_{1} \bullet A_{2}\right)}\left(k_{2}, l_{2}\right) \\
\left.\hat{I}_{1}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{I}_{B_{1}}\left(k_{1} k_{2}\right) \wedge \hat{I}_{B_{2}}\left(l_{1} l_{2}\right) \\
\hat{F}_{\left(B_{1} \bullet B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{F}_{B_{1}}\left(k_{1} k_{2}\right) \vee \hat{F}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq\left[\hat{F}_{A_{1}}\left(k_{1}\right) \vee \hat{F}_{A_{1}}\left(k_{2}\right)\right] \vee\left[\hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{1}}\left(k_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{1}}\left(k_{2}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \bullet A_{2}\right)}\left(k_{1} l_{1}\right) \vee \hat{F}_{\left(A_{1} \bullet A_{2}\right)}\left(k_{2}, l_{2}\right)
\end{aligned}
$$

for all $k_{1}, l_{1} \in k_{2}, l_{2} \in R_{1} \bullet R_{2}$.

Definition 3.7. The strong product of two $N V G G_{1}$ and G_{2} is denoted by the pair $G_{1} \boxtimes G_{2}=$ $\left(R_{1} \boxtimes R_{2}, S_{1} \boxtimes S_{2}\right)$ and defined as

$$
\begin{aligned}
(i) T_{\left(A_{1} \boxtimes A_{2}\right)}^{-}(k l) & =T_{A_{1}}^{-}(k) \wedge T_{A_{2}}^{-}(l) \\
I_{\left(A_{1} \boxtimes A_{2}\right)}^{-}(k l) & =I_{A_{1}}^{-}(k) \wedge I_{A_{2}}^{-}(l) \\
F_{\left(A_{1} \boxtimes A_{2}\right)}^{-}(k l) & =F_{A_{1}}^{-}(k) \vee F_{A_{2}}^{-}(l) \\
T_{\left(A_{1} \boxtimes A_{2}\right)}^{+}(k l) & =T_{A_{1}}^{+}(k) \wedge T_{A_{2}}^{+}(l) \\
I_{\left(A_{1} \boxtimes A_{2}\right)}^{+}(k l) & =I_{A_{1}}^{+}(k) \wedge I_{A_{2}}^{+}(l) \\
F_{\left(A_{1} \boxtimes A_{2}\right)}^{+}(k l) & =F_{A_{1}}^{+}(k) \vee F_{A_{2}}^{+}(l)
\end{aligned}
$$

for all $k l \in R_{1} \boxtimes R_{2}$

$$
\begin{aligned}
(i i) T_{\left(B_{1} \boxtimes B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right) & =T_{A_{1}}^{-}(k) \wedge T_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \boxtimes B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right) & =I_{A_{1}}^{-}(k) \wedge I_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \boxtimes B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right) & =F_{A_{1}}^{-}(k) \vee F_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
T_{\left(B_{1} \boxtimes B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right) & =T_{A_{1}}^{+}(k) \wedge T_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \boxtimes B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right) & =I_{A_{1}}^{+}(k) \wedge I_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \boxtimes B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right) & =F_{A_{1}}^{+}(k) \vee F_{B_{2}}^{+}\left(l_{1} l_{2}\right)
\end{aligned}
$$

for all $k \in R_{1}, l_{1} l_{2} \in S_{2}$.

$$
\begin{aligned}
(i i i) T_{B_{1} \boxtimes B_{2}}^{-}\left(k_{1} l\right)\left(k_{2} l\right) & =T_{A_{2}}^{-}(l) \wedge T_{B_{2}}^{-}\left(k_{1} k_{2}\right) \\
I_{B_{1} \boxtimes B_{2}}^{-}\left(k_{1} l\right)\left(k_{2} l\right) & =I_{A_{2}}^{-}(l) \wedge I_{B_{2}}^{-}\left(k_{1} k_{2}\right) \\
F_{B_{1} \boxtimes B_{2}}^{-}\left(k_{1} l\right)\left(k_{2} l\right) & =F_{A_{2}}^{-}(l) \vee F_{B_{2}}^{-}\left(k_{1} k_{2}\right) \\
T_{B_{1} \boxtimes B_{2}}^{+}\left(k_{1} l\right)\left(k_{2} l\right) & =T_{A_{2}}^{+}(l) \wedge T_{B_{2}}^{+}\left(k_{1} k_{2}\right) \\
I_{B_{1} \boxtimes B_{2}}^{+}\left(k_{1} l\right)\left(k_{2} l\right) & =I_{A_{2}}^{+}(l) \wedge I_{B_{2}}^{+}\left(k_{1} k_{2}\right) \\
F_{B_{1} \boxtimes B_{2}}^{+}\left(k_{1} l\right)\left(k_{2} l\right) & =F_{A_{2}}^{+}(l) \vee F_{B_{2}}^{+}\left(k_{1} k_{2}\right)
\end{aligned}
$$

for all $k_{1} k_{2} \in S_{1}, l \in R_{2}$.

$$
\begin{array}{r}
(i v) T_{\left(B_{1} \boxtimes B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=T_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge T_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \boxtimes B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=I_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge I_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \boxtimes B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=F_{B_{1}}^{-}\left(k_{1} k_{2}\right) \vee F_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
T_{\left(B_{1} \boxtimes B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=T_{B_{1}}^{+}\left(k_{1} k_{2}\right) \wedge T_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
I_{\left(B_{1} \boxtimes B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=I_{B_{1}}^{+}\left(k_{1} k_{2}\right) \wedge I_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
F_{\left(B_{1} \boxtimes B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=F_{B_{1}}^{+}\left(k_{1} k_{2}\right) \vee F_{B_{2}}^{N}\left(l_{1} l_{2}\right)
\end{array}
$$

for all $k_{1} k_{2} \in S_{1}, l_{1} l_{2} \in S_{2}$.

Example 3.4. The strong product of $N V G G_{1}=\left(R_{1}, S_{1}\right)$ and $G_{2}=\left(R_{2}, S_{2}\right)$ shown in Figure 2 is defined as $G_{1} \boxtimes G_{2}=\left(S_{1} \boxtimes S_{2}, T_{1} \boxtimes T_{2}\right)$ and is presented in Figure 6.

Theorem 3.8. The strong product $G_{1} \boxtimes G_{2}=\left(R_{1} \boxtimes R_{2}, S_{1} \boxtimes S_{2}\right)$ of two $N V G$ of $N V G G_{1}$ and G_{2} is a $N V G$ of $G_{1} \boxtimes G_{2}$.

Proof. There are three cases:
Case 1: for $k \in R_{1}, l_{1} l_{2} \in S_{2}$,

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{T}_{A_{1}}(k) \wedge \hat{T}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq \hat{T}_{A_{1}}(k) \wedge\left[\hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{1}}(k) \wedge \hat{T}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{1}}(k) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k, l_{1}\right) \wedge \hat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k, l_{2}\right) \\
\hat{I}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{I}_{A_{1}}(k) \wedge \hat{I}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq \hat{I}_{A_{1}}(k) \wedge\left[\hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{I}_{A_{1}}(k) \wedge \hat{I}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{1}}(k) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k, l_{1}\right) \wedge \hat{I}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k, l_{2}\right) \\
& \\
\hat{F}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{F}_{A_{1}}(k) \vee \hat{F}_{B_{2}}\left(l_{1} l_{2}\right)
\end{aligned}
$$

Figure 6
STRONG PRODUCT NEUTROSOPHIC VAGUE GRAPH

$$
\begin{aligned}
& \leq \hat{F}_{A_{1}}(k) \vee\left[\hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{1}}(k) \vee \hat{F}_{A_{2}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{1}}(k) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k, l_{1}\right) \vee \hat{F}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k, l_{2}\right)
\end{aligned}
$$

for all $k l_{1}, k l_{2} \in R_{1} \boxtimes R_{2}$.
Case 2: for $k \in R_{2}, l_{1} l_{2} \in S_{1}$,

$$
\begin{aligned}
& \hat{T}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(l_{1} k\right)\left(l_{2} k\right)\right)=\hat{T}_{A_{2}}(k) \wedge \hat{T}_{B_{1}}\left(l_{1} l_{2}\right) \\
& \leq \hat{T}_{A_{2}}(k) \wedge\left[\hat{T}_{A_{1}}\left(l_{1}\right) \wedge \hat{T}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{2}}(k) \wedge \hat{T}_{A_{1}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{2}}(k) \wedge \hat{T}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(l_{1}, k\right) \wedge \hat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(l_{2}, k\right) \\
& \hat{I}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(l_{1} k\right)\left(l_{2} k\right)\right)=\hat{I}_{A_{2}}(k) \wedge \hat{I}_{B_{1}}\left(l_{1} l_{2}\right) \\
& \leq \hat{I}_{A_{2}}(k) \wedge\left[\hat{I}_{A_{1}}\left(l_{1}\right) \wedge \hat{I}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{I}_{A_{2}}(k) \wedge \hat{I}_{A_{1}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{2}}(k) \wedge \hat{I}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \boxtimes A_{2}\right)}\left(l_{1}, k\right) \wedge \hat{I}_{\left(A_{1} \boxtimes A_{2}\right)}\left(l_{2}, k\right) \\
& \hat{F}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(l_{1} k\right)\left(l_{2} k\right)\right)=\hat{F}_{A_{2}}(k) \vee \hat{F}_{B_{1}}\left(l_{1} l_{2}\right) \\
& \leq \hat{F}_{A_{2}}(k) \vee\left[\hat{F}_{A_{1}}\left(l_{1}\right) \vee \hat{F}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{2}}(k) \vee \hat{F}_{A_{1}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{2}}(k) \vee \hat{F}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \boxtimes A_{2}\right)}\left(l_{1}, k\right) \vee \hat{F}_{\left(A_{1} \boxtimes A_{2}\right)}\left(l_{2}, k\right)
\end{aligned}
$$

for all $l_{1} k, l_{2} k \in R_{1} \boxtimes R_{2}$.
Case 3: for $k_{1}, k_{2} \in S_{1}, l_{1} l_{2} \in S_{2}$

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{T}_{B_{1}}\left(k_{1} k_{2}\right) \wedge \hat{T}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq\left[\hat{T}_{A_{1}}\left(k_{1}\right) \wedge \hat{T}_{A_{1}}\left(k_{2}\right)\right] \wedge\left[\hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{1}}\left(k_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{1}}\left(k_{2}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \hat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k_{2}, l_{2}\right) \\
\hat{I}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{I}_{B_{1}}\left(k_{1} k_{2}\right) \wedge \hat{I}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq\left[\hat{I}_{A_{1}}\left(k_{1}\right) \wedge \hat{I}_{A_{1}}\left(k_{2}\right)\right] \wedge\left[\hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\hat{I}_{A_{1}}\left(k_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{1}}\left(k_{2}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \hat{I}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k_{2}, l_{2}\right) \\
\hat{F}_{\left(B_{1} \boxtimes B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{F}_{B_{1}}\left(k_{1} k_{2}\right) \vee \hat{F}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq\left[\hat{F}_{A_{1}}\left(k_{1}\right) \vee \hat{F}_{A_{1}}\left(k_{2}\right)\right] \vee\left[\hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{1}}\left(k_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{1}}\left(k_{2}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k_{1} l_{1}\right) \vee \hat{F}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k_{2}, l_{2}\right)
\end{aligned}
$$

for all $l_{1} k_{1}, l_{2} k_{1} \in R_{1} \boxtimes R_{2}$. Hence the proof.

Definition 3.9. The composition of two $N V G G_{1}$ and G_{2} is denoted by the pair $G_{1} \circ G_{2}=\left(R_{1} \boxtimes\right.$ $\left.R_{2}, S_{1} \circ S_{2}\right)$ and defined as

$$
\begin{aligned}
(i) T_{\left(A_{1} \circ A_{2}\right)}^{-}(k l) & =T_{A_{1}}^{-}(k) \wedge T_{A_{2}}^{-}(l) \\
I_{\left(A_{1} \circ A_{2}\right)}^{-}(k l) & =I_{A_{1}}^{-}(k) \wedge I_{A_{2}}^{-}(l) \\
F_{\left(A_{1} \circ A_{2}\right)}^{-}(k l) & =F_{A_{1}}^{-}(k) \vee F_{A_{2}}^{-}(l) \\
T_{\left(A_{1} \circ A_{2}\right)}^{+}(k l) & =T_{A_{1}}^{+}(k) \wedge T_{A_{2}}^{+}(l) \\
I_{\left(A_{1} \circ A_{2}\right)}^{+}(k l) & =I_{A_{1}}^{+}(k) \wedge I_{A_{2}}^{+}(l) \\
F_{\left(A_{1} \circ A_{2}\right)}^{+}(k l) & =F_{A_{1}}^{+}(k) \vee F_{A_{2}}^{+}(l)
\end{aligned}
$$

for all $k l \in R_{1} \circ R_{2}$.

$$
\begin{aligned}
(i i) T_{\left(B_{1} \circ B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right) & =T_{A_{1}}^{-}(k)
\end{aligned} \wedge T_{B_{2}}^{-}\left(l_{1} l_{2}\right), ~ \begin{aligned}
&- \\
& I_{\left(B_{1} \circ B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right)=I_{A_{1}}^{-}(k)
\end{aligned} I_{B_{2}}^{-}\left(l_{1} l_{2}\right), ~ \begin{aligned}
&- \\
& F_{\left(B_{1} \circ B_{2}\right)}^{-}\left(k l_{1}\right)\left(k l_{2}\right)=F_{A_{1}}^{-}(k) \vee F_{B_{2}}^{-}\left(l_{1} l_{2}\right) \\
& T_{\left(B_{1} \circ B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right)=T_{A_{1}}^{+}(k) \wedge T_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
& I_{\left(B_{1} \circ B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right)=I_{A_{1}}^{+}(k) \wedge I_{B_{2}}^{+}\left(l_{1} l_{2}\right) \\
& F_{\left(B_{1} \circ B_{2}\right)}^{+}\left(k l_{1}\right)\left(k l_{2}\right)=F_{A_{1}}^{+}(k) \vee F_{B_{2}}^{+}\left(l_{1} l_{2}\right),
\end{aligned}
$$

for all $k \in R_{1}, l_{1} l_{2} \in S_{2}$.

$$
\begin{array}{r}
(i i i) T_{B_{1} \circ B_{2}}^{-}\left(k_{1} l\right)\left(k_{2} l\right)=T_{A_{2}}^{-}(l) \wedge T_{B_{2}}^{-}\left(k_{1} k_{2}\right) \\
I_{B_{1} \circ B_{2}}^{-}\left(k_{1}, l\right)\left(k_{2}, l\right)=I_{A_{2}}^{-}(l) \wedge I_{B_{2}}^{-}\left(k_{1} k_{2}\right) \\
F_{B_{1} \circ B_{2}}^{-}\left(k_{1}, l\right)\left(k_{2}, l\right)=F_{A_{2}}^{-}(l) \vee F_{B_{2}}^{-}\left(k_{1} k_{2}\right) \\
T_{B_{1} \circ B_{2}}^{+}\left(k_{1}, l\right)\left(k_{2}, l\right)=T_{A_{2}}^{+}(l) \wedge T_{B_{2}}^{+}\left(k_{1} k_{2}\right) \\
I_{B_{1} \circ B_{2}}^{+}\left(k_{1}, l\right)\left(k_{2}, l\right)=I_{A_{2}}^{+}(l) \wedge I_{B_{2}}^{+}\left(k_{1} k_{2}\right) \\
F_{B_{1} \circ B_{2}}^{+}\left(k_{1}, l\right)\left(k_{2}, l\right)=F_{A_{2}}^{+}(l) \vee F_{B_{2}}^{+}\left(k_{1} k_{2}\right),
\end{array}
$$

for all $k_{1} k_{2} \in S_{1}, l \in R_{2}$.

$$
\begin{array}{r}
(i v) T_{\left(B_{1} \circ B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=T_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge T_{A_{2}}^{-}\left(l_{1}\right) \wedge T_{A_{2}}^{-}\left(l_{2}\right) \\
I_{\left(B_{1} \circ B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=I_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge I_{A_{2}}^{-}\left(l_{1}\right) \wedge I_{A_{2}}^{-}\left(l_{2}\right) \\
F_{\left(B_{1} \circ B_{2}\right)}^{-}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=F_{B_{1}}^{-}\left(k_{1} k_{2}\right) \vee F_{A_{2}}^{-}\left(l_{1}\right) \vee F_{A_{2}}^{-}\left(l_{2}\right) \\
T_{\left(B_{1} \circ B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=T_{B_{1}}^{-}\left(k_{1} k_{2}\right) \wedge T_{A_{2}}^{+}\left(l_{1}\right) \wedge T_{A_{2}}^{+}\left(l_{2}\right) \\
I_{\left(B_{1} \circ B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=I_{B_{1}}^{+}\left(k_{1} k_{2}\right) \wedge I_{A_{2}}^{+}\left(l_{1}\right) \wedge I_{A_{2}}^{+}\left(l_{2}\right) \\
F_{\left(B_{1} \circ B_{2}\right)}^{+}\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)=F_{B_{1}}^{+}\left(k_{1} k_{2}\right) \vee F_{A_{2}}^{+}\left(l_{1}\right) \vee F_{A_{2}}^{+}\left(l_{2}\right)
\end{array}
$$

for all $k_{1} k_{2} \in S_{1}, l_{1} l_{2} \in S_{2}$.

Example 3.5. The composition of $N V G G_{1}=\left(R_{1}, S_{1}\right)$ and $G_{2}=\left(R_{2}, S_{2}\right)$ shown in Figure 2 is defined as $G_{1} \circ G_{2}=\left(R_{1} \circ R_{2}, S_{1} \circ S_{2}\right)$ and is presented in Figure 7.

Theorem 3.10. Composition $G_{1} \circ G_{2}=\left(R_{1} \circ R_{2}, S_{1} \circ S_{2}\right)$ of two $N V G$ of $N V G G_{1}$ and G_{2} is an $N V G$ of $G_{1} \circ G_{2}$.

Proof. There are three cases: Case:1 For $k \in R_{1}, l_{1} l_{2} \in S_{2}$,

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \circ B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) 7 & =\hat{T}_{A_{1}}(k) \wedge \hat{T}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq \hat{T}_{A_{1}}(k) \wedge\left[\hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{1}}(k) \wedge \hat{T}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{1}}(k) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right]
\end{aligned}
$$

Figure 7
COMPOSITION OF NEUTROSOPHIC VAGUE GRAPH

$$
\begin{aligned}
& =\hat{T}_{\left(A_{1} \circ A_{2}\right)}\left(k, l_{1}\right) \wedge \hat{T}_{\left(A_{1} \circ A_{2}\right)}\left(k, l_{2}\right) \\
\hat{I}_{\left(B_{1} \circ B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{I}_{A_{1}}(k) \wedge \hat{I}_{B_{2}}\left(l_{1} l_{2}\right) \\
& \leq \hat{I}_{A_{1}}(k) \wedge\left[\hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{I}_{A_{1}}(k) \wedge \hat{I}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{1}}(k) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \circ A_{2}\right)}\left(k, l_{1}\right) \wedge \hat{I}_{\left(A_{1} \circ A_{2}\right)}\left(k, l_{2}\right) \\
\hat{F}_{\left(B_{1} \circ B_{2}\right)}\left(\left(k l_{1}\right)\left(k l_{2}\right)\right) & =\hat{F}_{A_{1}}(k) \vee \hat{F}_{B_{2}}\left(l_{1} l_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \hat{F}_{A_{1}}(k) \vee\left[\hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{1}}(k) \vee \hat{F}_{A_{2}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{1}}(k) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \circ A_{2}\right)}\left(k, l_{1}\right) \vee \hat{F}_{\left(A_{1} \circ A_{2}\right)}\left(k, l_{2}\right)
\end{aligned}
$$

for all $k l_{1}, k l_{2} \in R_{1} \circ R_{2}$.
Case 2: for $k \in R_{2}, l_{1} l_{2} \in S_{1}$,

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \circ B_{2}\right)}\left(\left(l_{1} k\right)\left(l_{2} k\right)\right) & =\hat{T}_{A_{2}}(k) \wedge \hat{T}_{B_{1}}\left(l_{1} l_{2}\right) \\
& \leq \hat{T}_{A_{2}}(k) \wedge\left[\hat{T}_{A_{1}}\left(l_{1}\right) \wedge \hat{T}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{2}}(k) \wedge \hat{T}_{A_{1}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{2}}(k) \wedge \hat{T}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{T}_{\left(A_{1} \circ A_{2}\right)}\left(l_{1}, k\right) \wedge \hat{T}_{\left(A_{1} \circ A_{2}\right)}\left(l_{2}, k\right) \\
\hat{I}_{\left(B_{1} \circ B_{2}\right)}\left(\left(l_{1} k\right)\left(l_{2} k\right)\right) & =\hat{I}_{A_{2}}(k) \wedge \hat{I}_{B_{1}}\left(l_{1} l_{2}\right) \\
& \leq \hat{I}_{A_{2}}(k) \wedge\left[\hat{I}_{A_{1}}\left(l_{1}\right) \wedge \hat{I}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{I}_{A_{2}}(k) \wedge \hat{I}_{A_{1}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{2}}(k) \wedge \hat{I}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \circ A_{2}\right)}\left(l_{1}, k\right) \wedge \hat{I}_{\left(A_{1} \circ A_{2}\right)}\left(l_{2}, k\right) \\
& \leq \hat{F}_{A_{2}}(k) \vee\left[\hat{F}_{A_{1}}\left(l_{1}\right) \vee \hat{F}_{A_{1}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{2}}(k) \vee \hat{F}_{A_{1}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{2}}(k) \vee \hat{F}_{A_{1}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \circ A_{2}\right)}\left(l_{1}, k\right) \vee \hat{F}_{\left(A_{1} \circ A_{2}\right)}\left(l_{2}, k\right)
\end{aligned}
$$

for all $l_{1} k, l_{2} k \in R_{1} \circ R_{2}$.
Case 3: For $k_{1} k_{2} \in S_{1}, l_{1}, l_{2} \in R_{2}$ such that $l_{1} \neq l_{2}$,

$$
\begin{aligned}
\hat{T}_{\left(B_{1} \circ B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{T}_{B_{1}}\left(k_{1}, k_{2}\right) \wedge \hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right) \\
& \leq\left[\hat{T}_{A_{1}}\left(k_{1}\right) \wedge \hat{T}_{A_{1}}\left(k_{2}\right)\right] \wedge\left[\hat{T}_{A_{2}}\left(l_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{T}_{A_{1}}\left(k_{1}\right) \wedge \hat{T}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{T}_{A_{1}}\left(k_{2}\right) \wedge \hat{T}_{A_{2}}\left(l_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{T}_{\left(A_{1} \circ A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \hat{T}_{\left(A_{1} \circ A_{2}\right)}\left(k_{2} l_{2}\right) \\
\hat{I}_{\left(B_{1} \circ B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{I}_{B_{1}}\left(k_{1}, k_{2}\right) \wedge \hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right) \\
& \leq\left[\hat{I}_{A_{1}}\left(k_{1}\right) \wedge \hat{I}_{A_{1}}\left(k_{2}\right)\right] \wedge\left[\hat{I}_{A_{2}}\left(l_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{I}_{A_{1}}\left(k_{1}\right) \wedge \hat{I}_{A_{2}}\left(l_{1}\right)\right] \wedge\left[\hat{I}_{A_{1}}\left(k_{2}\right) \wedge \hat{I}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \circ A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \hat{I}_{\left(A_{1} \circ A_{2}\right)}\left(k_{2} l_{2}\right) \\
\hat{F}_{\left(B_{1} \circ B_{2}\right)}\left(\left(k_{1} l_{1}\right)\left(k_{2} l_{2}\right)\right) & =\hat{F}_{B_{1}}\left(k_{1}, k_{2}\right) \vee \hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right) \\
& \leq\left[\hat{F}_{A_{1}}\left(k_{1}\right) \vee \hat{F}_{A_{1}}\left(k_{2}\right)\right] \vee\left[\hat{F}_{A_{2}}\left(l_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\left[\hat{F}_{A_{1}}\left(k_{1}\right) \vee \hat{F}_{A_{2}}\left(l_{1}\right)\right] \vee\left[\hat{F}_{A_{1}}\left(k_{2}\right) \vee \hat{F}_{A_{2}}\left(l_{2}\right)\right] \\
& =\hat{F}_{\left(A_{1} \circ A_{2}\right)}\left(k_{1} l_{1}\right) \vee \hat{F}_{\left(A_{1} \circ A_{2}\right)}\left(k_{2} l_{2}\right)
\end{aligned}
$$

for all $k_{1} l_{1}, k_{2} l_{2} \in R_{1} \circ R_{2}$.

Conclusion

This paper deals with the operations on neutrosophic vague graphs. Moreover, Cartesian product, cross product, lexicographic product, strong product and composition of neutrosophic vague graph are investigated and the proposed concepts are illustrated with examples. Further we are able to extend by investigating the regular and isomorphic properties of the proposed graph.

Conflict of Interest: The authors declare that they have no conflict of interest.

References

[1] Akram M and Shahzadi G, Operations on single-valued neutrosophic graphs, Journal of Uncertain Systems, 11(1) (2017), 1-26.
[2] Al-Quran A and Hassan N, Neutrosophic vague soft expert set theory, Journal of Intelligent \& Fuzzy Systems, 30(6) (2016), 3691-3702.
[3] Ali M, and Smarandache F, Complex neutrosophic set, Neural Computing and Applications, 28 (7) (2017), 18171834.
[4] Ali M, Deli I and Smarandache F, The Theory of Neutrosophic Cubic Sets and Their Applications in Pattern Recognition, Journal of Intelligent and Fuzzy Systems, (In press).
[5] Akram M, Malik H.M, Shahzadi S and Smarandache F, Neutrosophic Soft Rough Graphs with Application. Axioms 7 (14) (2018).
[6] Alkhazaleh S, Neutrosophic vague set theory, Critical Review, 10 (2015) 29-39.
[7] Borzooei A R and Rashmanlou H, Degree of vertices in vague graphs, Journal of Applied Mathematics and Informatics, 33(2015), 545-557.
[8] Borzooei A R and Rashmanlou H, Domination in vague graphs and its applications, Journal of Intelligent \& Fuzzy Systems 29(2015), 1933-1940.
[9] Borzooei A R, Rashmanlou H, Samanta S and Pal M, Regularity of vague graphs, Journal of Intelligent \mathcal{B} Fuzzy Systems, 30(2016), 3681-3689.
[10] Broumi S, Deli I and Smarandache F, Neutrosophic refined relations and their properties: Neutrosophic Theory and Its Applications, Collected Papers, (2014), 228-248.
[11] Deli I and Broumi S, Neutrosophic soft relations and some properties, Annals of Fuzzy Mathematics and Informatics, (2014), 1-14.
[12] Dhavaseelan R, Vikramaprasad R and Krishnaraj V, Certain types of neutrosophic graphs, International Journal of Mathematical Sciences and Applications, 5(2)(2015), 333-339.
[13] Dhavaseelan R, Jafari S, Farahani M. R and Broumi S, On single-valued co-neutrosophic graphs, Neutrosophic Sets and Systems, An International Book Series in Information Science and Engineering, 22, 2018.
[14] Molodtsov D, Soft set theory-first results, Computers and Mathematics with Applications, 37(2) (1999), 19-31.
[15] Hussain S. S, Hussain R. J, Jun Y. B and Smarandache F, Neutrosophic bipolar vague set and its application to neutrosophic bipolar vague graphs. Neutrosophic Sets and Systems, 28 (2019) 69-86.
[16] Hussain S. S, Hussain R. J and Smarandache F, On neutrosophic vague graphs, Neutrosophic Sets and Systems, 28 (2019) 245-258.
[17] Smarandache F, A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. Rehoboth: American Research Press, 1999.
[18] Smarandache F, Neutrosophy, Neutrosophic Probability, Set, and Logic, Amer../ Res. Press, Rehoboth, USA, 105 pages, (1998) http://fs.gallup.unm.edu/eBookneutrosophics4.pdf(4th edition).
[19] Smarandache F, Neutrosophic Graphs, in his book Symbolic Neutrosophic Theory, Europa, Nova.
[20] Said Broumi and Smarandache F, Intuitionistic neutrosophic soft set, Journal of Information and Computer Science, 8(2) (2013), 130-140.
[21] Said Broumi, Smarandache F, Talea M and Bakali, Single-valued neutrosophic graphs: Degree, Order and Size, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
[22] Said Broumi, Mohamed T, Assia B and Smarandache F, Single-valued neutrosophic graphs, The Journal of New Theory, 2016(10), 861-101.
[23] Smarandache F, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24, (2010), 289-297.
[24] Wang H, Smarandache F, Zhang Y and Sunderraman R, Single-valued neutrosophic sets, Multispace and Multistructure 4 (2010), 410-413.
[25] Gau W. L, Buehrer D. J, Vague sets, IEEE Transactions on Systems. Man and Cybernetics, 23 (2) (1993), 610-614.

