Vague Direct Product in BCK- Algebra

S.Jafari ${ }^{1}$, L. Mariapresenti ${ }^{2}$ and I. Arockiarani ${ }^{3}$
Department of Mathematics
${ }^{1}$ College of Vestsjaelland south, Herrestraede, Denmark
${ }^{2,3}$ Nirmala College for Women, Coimbatore-18
Email: presentimaria88@gmail.com, jafaripersia@gmail.com

Abstract

In this paper, the notion of direct product of vague set in BCK- algebra is introduced and some related properties are investigated. Also we introduce some of the properties of direct product of finite vague ideal and vague subalgebras of BCK- algebras.

Keywords: vague set, direct product of vague sets, direct product of finite vague ideal, direct product of finite vague subalgebras.

1. Introduction: As crisp set theory does not reflect the real life problems exactly, L. A. Zadeh [16] introduced the concept of fuzzy set to generalize the notion of a member belonging to a set X . The concept of fuzzy set has been applied to various algebraic structures. Imai and Iseki [6,7]introduced two classes of abstract algebras, BCK- algebra and BCIalgebras. Al- Shehri [1], Jun et al[8,9], Saeid et al[13,14] and satyanarayana et al[15], applied the concept of fuzzy set to BCK- algebra. Zhan and Tan [17] introduced the concept of fuzzy H - ideal in BCK- algebras. Gau and Buehrer[3] introduced the concept of vague set. The vague set is developed by means of truth membership function and false membership function. Ranjit Biswas[12] initiated the study of vague algebra by studying vague groups. The objective of this paper is to contribute further to the study of direct product of vague set in BCK algebra and vague ideal in BCK- algebras and discuss some of their results.

2.Preliminaries:

Definition 2.1:[5] A BCI algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms for all $x, y, z \in X .:$
(i) $((x * y) *(x * z)) *(z * y)=0$
(ii) $\quad(x *(x * y)) * y=0$
(iii) $x * x=0$
(iv) $\quad x * y=0$ and $y * x=0$ implies $\mathrm{x}=\mathrm{y}$.

We can define a partial ordering " \leq " by $\mathrm{x} \leq \mathrm{y}$ if and only if $x * y=0$.
If a BCI- algebra X satisfies $0 * X=0$, for all
$x \in X$, then we say that X is a BCK- algebra. Any
BCK- algebra X satisfies the following axioms :
(i) $(x * y) *(x * z) \leq(z * y)$
(ii) $x *(x * y) \leq y$
(iii) $x \leq x$
(iv) $0 \leq x$
(v) $\quad x \leq y$ and $y \leq x$ implies $x=y$. where $\mathrm{x} \leq$ y means $x * y=0$.

Definition 2.2:[4] A non empty subset S of X is called a subalgebra of X if $x * y \in S$ for any $x, y \in S$.

Definition 2.3:[5] A non empty subset I of X is called an ideal of X if it satisfies
(I_{1}) $0 \in I \quad$ and
$\left(\mathrm{I}_{2}\right) x * y \in I$ and $y \in I$ imply $x \in I$.
Definition 2.4:[10] A non empty subset I of X is said to be an H - ideal of X if it satisfies $\left(\mathrm{I}_{1}\right)$ and
($\left.\mathrm{I}_{3}\right) \quad x *(y * z) \in I$ and $y \in I$ imply $x * z \in I$, for all $x, y, z \in X$.

Definition 2.5: [2] A vague set A in the universe of discourse U is characterized by two membership functions given by:
(i) A true membership function

$$
t_{A}: U \rightarrow[0,1] \text { and }
$$

(ii) A false membership function

$$
f_{A}: U \rightarrow[0,1]
$$

where $t_{A}(x)$ is a lower bound on the grade of membership of x derived from the "evidence for x ", $f_{A}(x)$ is a lower bound on the negation of x derived from the "evidence against x ", and $t_{A}(x)+f_{A}(x) \leq 1$. Thus the grade of membership of U in the vague set A is bounded by a subinterval $\left[t_{A}(x), 1-f_{A}(x)\right]$ of $[0,1]$. This indicates that if the actual grade of membership of x is $\mu(x)$, then, $t_{A}(x) \leq \mu(x) \leq 1-f_{A}(x)$.The vague set A is written as $A=\left\{\left\langle x,\left[t_{A}(x), 1-f_{A}(x)\right]\right\rangle / u \in U\right\}$ where, the interval $\left[t_{A}(x), 1-f_{A}(x)\right]$ is called the vague value of x in A, denoted by $V_{A}(x)$.

Definition 2.6:[2] Let A and B be vague sets(VSs) of the form $A=\left\{\left\langle x,\left[t_{A}(x), 1-f_{A}(x)\right]\right\rangle / x \in X\right\}$ and $B=\left\{\left\langle x,\left[t_{B}(x), 1-f_{B}(x)\right]\right\rangle / x \in X\right\}$ Then
(i) $A \subseteq B$ if and only if $t_{A}(x) \leq t_{B}(x)$ and $1-f_{A}(x) \leq 1-f_{B}(x)$ for all $x \in X$
(ii) $\mathrm{A}=\mathrm{B}$ if and only if $A \subseteq B$ and $B \subseteq A$
(iii) $A^{c}=\left\{\left\langle x, f_{A}(x), 1-t_{A}(x)\right\rangle / x \in X\right\}$
(iv) $A \cap B=\left\{\left\{\begin{array}{l}x, \min \left(t_{A}(x), t_{B}(x)\right), \\ \min \left(1-f_{A}(x), 1-f_{B}(x)\right)\end{array}\right) / x \in X\right\}$
(v) $\quad A \cup B=\left\{\left\{\begin{array}{l}x, \max \left(t_{A}(x) \vee t_{B}(x)\right), \\ \max \left(1-f_{A}(x) \vee 1-f_{B}(x)\right)\end{array}\right) / x \in X\right\}$

For the sake of simplicity, we shall use the notation $A=\left\langle x, t_{A}, 1-f_{A}\right\rangle$ instead of
$A=\left\{\left\langle x,\left[t_{A}(x), 1-f_{A}(x)\right]\right\rangle / x \in X\right\}$.
Definition 2.7:[11] A vague set A on X is called a vague subalgebra of x if, for any $x \in X$, we have $t_{A}(x y) \geq \min \left\{t_{A}(x), t_{A}(y)\right\}$ and
$1-f_{A}(x y) \geq \min \left\{1-f_{A}(x), 1-f_{A}(y)\right\}$
Definition 2.8:[11] A vague set A of a BCK- algebra X is called a vague ideal of X if the following conditions are true:
(i) $\quad\left(V_{A}(0) \geq V_{A}(x)\right), \quad(\forall x \in X)$
(ii) $\quad\left(V_{A}(x) \geq i \min \left\{V_{A}(x * y), V_{A}(y)\right\}\right.$ ($\forall x, y \in X$) that is, $t_{A}(0) \geq t_{A}(x), \quad 1-f_{A}(0) \geq 1-f_{A}(x)$, and $\left(t_{A}(x) \geq \min \left\{t_{A}(x * y), t_{A}(y)\right\}\right.$ $\left(1-f_{A}(x) \geq \min \left\{1-f_{A}(x * y), 1-f_{A}(y)\right\}\right.$ for
all $x, y \in X$.

Definition 2.9:[11] Let A be a vague set of a universe X with the true- membership function t_{A} and the false- membership function f_{A}. The (α, β) cut of the vague set A is a crisp subset $\mathrm{A}_{(\alpha, \beta)}$ of the set
X given by $A_{(\alpha, \beta)}=\left\{x \in X / V_{A}(x) \geq[\alpha, \beta]\right\}$.
Clearly $\mathrm{A}_{(0,0)}=\mathrm{X}$. The (α, β) - cut of the vague set A are also called vague cuts of A.

Definition 2.10:[11] The α-cut of the vague set A is a crisp subset A_{α} of the set X given by $\mathrm{A}_{\alpha}=\mathrm{A}_{(\alpha, \alpha)}$.Thus $\mathrm{A}_{0}=\mathrm{X}$, and if $\alpha \geq \beta$ then, $A_{\beta} \subseteq A_{\alpha}$ and $\mathrm{A}(\alpha$, $\beta)=\mathrm{A}_{\alpha}$. Equivalently, we define the α-cut as $A_{\alpha}=\left\{x: x \in X, t_{A}(x) \geq \alpha\right\}$.

3. Direct product of vague ideals in BCK- algebras

Definition 3.1: Let $V_{A}=\left[{ }_{A}, 1-f_{A}\right]$ and
$V_{B}=\left[t_{B}, 1-f_{B}\right]$ be two vague sets in BCK- algebras X_{1} and X_{2} respectively. Then the direct product of vague sets V_{A} and V_{B} is denoted by
$V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$, and defined as
$V_{A \times B}(x, y)=\min \left\{V_{A}(x), V_{B}(y)\right\}$
(i.e.,) $t_{A \times B}(x, y)=\min \left\{t_{A}(x), t_{B}(y)\right\}$ and
$1-f_{A \times B}(x, y)=\min \left\{1-f_{A}(x), 1-f_{B}(y)\right\}$ for all $(x, y) \in X_{1} \times X_{2}$.

Definition 3.2: A vague set $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ of $X_{1} \times X_{2}$ is called a vague subalgebra of $X_{1} \times X_{2}$
if $V_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq$
(i.e.,)

$$
\begin{aligned}
& t_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \\
& \min \left\{t_{A \times B}\left(x_{1}, y_{1}\right), t_{A \times B}\left(x_{2}, y_{2}\right)\right\} \\
& 1-f_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \\
& \min \left\{1-f_{A \times B}\left(x_{1}, y_{1}\right), 1-f_{A \times B}\left(x_{2}, y_{2}\right)\right\}
\end{aligned}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$.

Example 3.3: Let $X_{1}=\{0,1\}$ and $X_{2}=\{0,1,2\}$ are BCK- algebras by the following tables:

$*$	0	1
0	0	0
1	1	0

$*$	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

Then $X_{1} \times X_{2}=\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\}$ is a BCK algebra. We define vague set $V_{A}=\left[t_{A}, 1-f_{A}\right]$ on X_{1} as $t_{A}: X \rightarrow[0,1]$ and $f_{A}: X \rightarrow[0,1]$ by

X	0	1
$\mathrm{~V}_{\mathrm{A}}$	$[0.5,0.6]$	$[0.3,0.4]$

and $V_{B}=\left[t_{B}, 1-f_{B}\right]$ on X_{2} as $t_{B}: X \rightarrow[0,1]$ and $f_{B}: X \rightarrow[0,1]$ by

X	0	1	2
$\mathrm{~V}_{\text {B }}$	$[0.5,0.7]$	$[0.5,0.6]$	$[0.2,0.5]$

Then $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague subalgebra of BCK- algebra.

Definition 3.4: A vague set $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ of $X_{1} \times X_{2}$ is called a vague H -ideal of $X_{1} \times X_{2}$ if,
(i) $V_{A \times B}(0,0) \geq V_{A \times B}(x, y)$ and
(ii) $V_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \geq$

$$
\min \left\{V_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right)\right), V_{A \times B}\left(x_{2}, y_{2}\right)\right\}
$$

$$
\begin{array}{ll}
\text { (i.e.,) } & { }^{t} A \times B \\
& 1-f_{A \times B}(0,0) \geq t_{A \times B}(x, y) \geq 1-f_{A \times B}(x, y)
\end{array}
$$

$$
t_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \geq
$$

$$
\min \left\{t_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right)\right), t_{A \times B}\left(x_{2}, y_{2}\right)\right\}
$$

$$
1-f_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \geq
$$

$$
\min \left\{1-f_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right)\right)\right.
$$

$$
\left.1-f_{A \times B}\left(x_{2}, y_{2}\right)\right\}
$$

Definition 3.5: A vague set $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ of $X_{1} \times X_{2}$ is called a vague closed H -ideal of
$X_{1} \times X_{2}$ if, $V_{A \times B}((0,0) *(x, y)) \geq V_{A \times B}(x, y)$
(i.e.,)

$$
\begin{aligned}
& { }^{t} A \times B \\
& ((0,0) *(x, y)) \geq t_{A \times B}(x, y) \text { and } \\
& 1-f_{A \times B}((0,0) *(x, y)) \geq 1-f_{A \times B}(x, y)
\end{aligned}
$$

Theorem 3.6: Let $V_{A}=\left[t_{A}, 1-f_{A}\right]$ and
$V_{B}=\left[t_{B}, 1-f_{B}\right]$ be two vague subalgebras of BCKalgebras X_{1} and X_{2} respectively. Then
$V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague sublagebra of BCK- algebra $X_{1} \times X_{2}$.

Proof: For any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$. Then
$V_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)$
$=V_{A \times B}\left(x_{1} * x_{2}, y_{1} * y_{2}\right)$
$=\min \left\{V_{A}\left(x_{1} * x_{2}\right), V_{B}\left(y_{1} * y_{2}\right)\right\}$
$\geq \min \left\{\min \left\{V_{A}\left(x_{1}\right), V_{A}\left(x_{2}\right)\right\}, \min \left\{V_{B}\left(y_{1}\right) * V_{B}\left(y_{2}\right)\right\}\right\}$
$=\min \left\{\min \left\{V_{A}\left(x_{1}\right), V_{B}\left(y_{1}\right)\right\}, \min \left\{V_{A}\left(x_{2}\right) * V_{B}\left(y_{2}\right)\right\}\right\}$
$\geq \min \left\{V_{A \times B}\left(x_{1}, y_{1}\right), V_{A \times B}\left(x_{2}, y_{2}\right)\right\}$
Hence for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$,
$V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague subalgebra of BCK- algebra $X_{1} \times X_{2}$.

Theorem 3.7: Let $V_{A}=\left[t_{A}, 1-f_{A}\right]$ and $V_{B}=\left[t_{B}, 1-f_{B}\right]$ be two vague H -ideals of BCKalgebras X_{1} and X_{2} respectively. Then
$V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague H - ideals of BCK- algebra $X_{1} \times X_{2}$.

Proof: For any $(x, y) \in X_{1} \times X_{2}$,

$$
\begin{aligned}
V_{A \times B}(0,0) & =\min \left\{V_{A}(0), V_{B}(0)\right\} \\
& \geq \min \left\{V_{A}(x), V_{B}(y)\right\}=V_{A \times B}(x, y)
\end{aligned}
$$

Now for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in X_{1} \times X_{2}$

$$
\begin{aligned}
& V_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \\
& =V_{A \times B}\left(x_{1} * x_{3}, y_{1} * y_{3}\right) \\
& =\min \left\{V_{A}\left(x_{1} * x_{3}\right), V_{B}\left(y_{1} * y_{3}\right)\right\} \\
& \geq \min \left\{\min \left\{V_{A}\left(x_{1} *\left(x_{2} * x_{3}\right)\right), V_{A}\left(x_{2}\right)\right\},\right. \\
& \left.\quad \min \left\{V_{B}\left(y_{1} *\left(y_{2} * y_{3}\right)\right), V_{B}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{V_{A}\left(x_{1} *\left(x_{2} * x_{3}\right)\right), V_{B}\left(y_{1} *\left(y_{2} * y_{3}\right)\right)\right\},\right. \\
& \left.\quad \min \left\{V_{A}\left(x_{2}\right), V_{B}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{V_{A \times B}\left(\left(x_{1} *\left(x_{2} * x_{3}\right)\right),\left(y_{1} *\left(y_{2} * y_{3}\right)\right)\right)\right\},\right. \\
& \left.\quad \min \left\{V_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right\}
\end{aligned}
$$

$$
\geq \min \left\{\min \left\{V_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right)\right)\right\},
$$

$$
\left.\min \left\{V_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right\} .
$$

Hence for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in X_{1} \times X_{2}$, $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague H - ideal of BCK- algebra $X_{1} \times X_{2}$.

Theorem 3.8: Let $V_{A}=\left[t_{A}, 1-f_{A}\right]$ and $V_{B}=\left[t_{B}, 1-f_{B}\right]$ be two vague closed H -ideals of BCK- algebras X_{1} and X_{2}, respectively. Then $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague closed H - ideals of BCK- algebra $X_{1} \times X_{2}$.

Proof: Let $V_{A}=\left[t_{A}, 1-f_{A}\right]$ and $V_{B}=\left[t_{B}, 1-f_{B}\right]$ be two vague closed H -ideals of BCK- algebras X_{1} and X_{2} respectively. Using theorem 3.7,
$V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague H -ideal of
$X_{1} \times X_{2}$.Now for any $(x, y) \in X_{1} \times X_{2}$, then

$$
\begin{aligned}
V_{A \times B}((0,0) *(x, y)) & =V_{A \times B}((0 * x),(0 * y)) \\
& =\min \left\{V_{A}(0 * x), V_{B}(0 * y)\right\} \\
& \geq \min \left\{V_{A}(x), V_{B}(y)\right\}=V_{A \times B}(x, y)
\end{aligned}
$$

Hence $V_{A} \times V_{B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague closed H - ideal of BCK- algebra $X_{1} \times X_{2}$.

Theorem 3.9: If $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague H - ideal of BCK- algebra $X_{1} \times X_{2}$. Then we have $(a, b) \subseteq(x, y) \Rightarrow V_{A \times B}(x, y) \subseteq V_{A \times B}(a, b)$ for all $(a, b),(x, y) \in X_{1} \times X_{2}$.

Proof: Let $(a, b),(x, y) \in X_{1} \times X_{2}$, such that $(a, b) \subseteq(x, y) \Rightarrow(a, b) *(x, y)=(0,0)$. Consider
$V_{A \times B}(x, y)=V_{A \times B}((x, y) *(0,0))$
$\geq \min \left\{V_{A \times B}((x, y) *((a, b) *(0,0))), V_{A \times B}(a, b)\right\}$
$=\min \left\{V_{A \times B}\left((x, y) *((a, b)), V_{A \times B}(a, b)\right\}\right.$
$=V_{A \times B}(a, b)$.
Hence the proof.
Definition 3.10: Let $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ be a vague set of a BCK- algebra $X_{1} \times X_{2}$ and for any $\alpha, \beta \in[0,1]$. Then the (α, β)- cut of the vague set $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a crisp subset $\mathrm{A}_{(\alpha, \beta)}$ of the set X given by

$$
A_{(\alpha, \beta)}=\left\{(x, y) \in X_{1} \times X_{2} / V_{A \times B}(x, y) \geq[\alpha, \beta]\right\} \text {. The }
$$

(α, β) - cut of the vague set $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ are also called vague cuts of
$V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$.

Theorem 3.11: Let $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ be a vague subalgebra of BCK- algebra $X_{1} \times X_{2}$. Then $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague subalgebra of BCK- algebra $X_{1} \times X_{2}$ if and only if for any $\alpha, \beta \in[0,1]$ is a (α, β) - cut of the vague subalgebra of BCK- algebra $X_{1} \times X_{2}$.

Proof: Let $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ be a vague subalgebra of BCK- algebra $X_{1} \times X_{2}$. Now for any $\alpha, \beta \in[0,1]$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A_{(\alpha, \beta)}$ then
$t_{A \times B}\left(x_{1}, y_{1}\right) \geq \alpha$ and $t_{A \times B}\left(x_{2}, y_{2}\right) \geq \alpha$. Since
${ }^{t}{ }_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)$
$\geq \min \left\{t_{A \times B}\left(x_{1}, y_{1}\right), t_{A \times B}\left(x_{2}, y_{2}\right)\right\} \geq \min \{\alpha, \alpha\}=\alpha$
${ }^{t}{ }_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \alpha$.
$\Rightarrow\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \in A_{(\alpha, \beta)}$
and for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A_{(\alpha, \beta)}$ then
$1-f_{A \times B}\left(x_{1}, y_{1}\right) \geq \beta$ and $1-f_{A \times B}\left(x_{2}, y_{2}\right) \geq \beta$. Since
$1-f_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)$
$\geq \min \left\{1-f_{A \times B}\left(x_{1}, y_{1}\right) 1-f_{A \times B}\left(x_{2}, y_{2}\right)\right\}$
$\geq \min \{\beta, \beta\}=\beta$
$1-f_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \beta$
$\Rightarrow\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \in A_{(\alpha, \beta)}$.
Therefore $\mathrm{A}_{(\alpha, \beta)}$ is a vague subalgebra of BCKalgebra $X_{1} \times X_{2}$.
Conversely, suppose that $\mathrm{A}_{(\alpha, \beta)}$ is a vague subalgebra of BCK- algebra $X_{1} \times X_{2}$. Suppose that
$V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is not a vague subalgebra of a BCK- algebra $X_{1} \times X_{2}$. Then there exist $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$, such that
$t_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)$

$$
<\min \left\{t_{A \times B}\left(x_{1}, y_{1}\right), t_{A \times B}\left(x_{2}, y_{2}\right)\right\}
$$

Now let

$$
\begin{gathered}
t_{0}=\frac{1}{2}\left\{t_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)+\min \left\{t_{A \times B}\left(x_{1}, y_{1}\right)\right.\right. \\
\left.\left.t_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right\}
\end{gathered}
$$

This implies

$$
\begin{aligned}
t_{A \times B}\left(\left(x_{1}, y_{1}\right) *\right. & \left.\left(x_{2}, y_{2}\right)\right)<t_{0} \\
& <\min \left\{t_{A \times B}\left(x_{1}, y_{1}\right), t_{A \times B}\left(x_{2}, y_{2}\right)\right\} .
\end{aligned}
$$

So $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \notin A_{(\alpha, \beta)}$ but $\left(x_{1}, y_{1}\right) \in A_{(\alpha, \beta)}$ and $\left(x_{2}, y_{2}\right) \in A_{(\alpha, \beta)}$, which is contradiction. Hence $V_{A \times B}=\left[t_{A \times B}, 1-f_{A \times B}\right]$ is a vague subalgebra of BCK- algebra $X_{1} \times X_{2}$.

Definition 3.12: Let $V_{A_{i}}=\left[{ }_{A_{i}}, 1-f_{A_{i}}\right]$ be n-vague set of BCK- algebras X_{i}, respectively $i=1,2, \ldots \ldots n$. Then $\prod_{i=1}^{n} V_{A_{i}}$ is called direct product of finite vague sets of $\prod_{i=1}^{n} X_{i}$ if,

$$
\begin{aligned}
& \prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1} * y_{i}, \ldots . ., x_{n} * y_{n}\right)=\right. \\
& \qquad \min \left\{V_{A_{1}}\left(\left(x_{1} * y_{1}\right), \ldots ., V_{A_{n}}\left(x_{n} * y_{n}\right)\right)\right\} \\
& \text { for all }\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right) \in \prod_{i=1}^{n} x_{i} .
\end{aligned}
$$

Definition 3.13: Let $V_{A_{i}}=\left[t_{A_{i}}, 1-f_{A_{i}}\right]$ be n-vague set of BCK- algebras X_{i}, respectively $i=1,2, \ldots \ldots n$. Then $\prod_{i=1}^{n} V_{A_{i}}$ is called direct product of finite vague subalgebra of $\prod_{i=1}^{n} X_{i}$ if, $\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right) *\left(y_{1}, \ldots . ., y_{n}\right) \geq\right.$ $\min \left\{\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right), \prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots . ., y_{n}\right)\right\}\right.$

$$
\begin{aligned}
& \text { (i.e., }) \prod_{i=1}^{n} t_{A_{i}}\left(\left(x_{1}, \ldots . ., x_{n}\right) *\left(y_{1}, \ldots . ., y_{n}\right) \geq\right. \\
& \quad \min \left\{\prod_{i=1}^{n} t_{A_{i}}\left(\left(x_{1}, \ldots . ., x_{n}\right), \prod_{i=1}^{n} t_{A_{i}}\left(y_{1}, \ldots ., y_{n}\right)\right\}\right. \\
& \prod_{i=1}^{n} 1-f_{A_{i}}\left(\left(x_{1}, \ldots . ., x_{n}\right) *\left(y_{1}, \ldots ., y_{n}\right) \geq\right. \\
& \quad \min \left\{\prod_{i=1}^{n} 1-f_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right), \prod_{i=1}^{n} 1-f_{A_{i}}\left(y_{1}, \ldots ., y_{n}\right)\right\}\right.
\end{aligned}
$$

$$
\text { for all }\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots \ldots ., y_{n}\right) \in \prod_{i=1}^{n} X_{i}
$$

Definition 3.14: Let $V_{A_{i}}=\left[{ }_{A_{i}}, 1-f_{A_{i}}\right.$] be n-vague set of BCK- algebras X_{i}, respectively $i=1,2, \ldots \ldots n$.
Then $\prod_{i=1}^{n} V_{A_{i}}$ is called direct product of finite vague ideal of $\prod_{i=1}^{n} X_{i}$ if, \quad (i) $\prod_{i=1}^{n} V_{A_{i}}(0, \ldots \ldots, 0) \geq \prod_{i=1}^{n} V_{A_{i}}\left(x_{1}, \ldots \ldots, x_{n}\right)$ and
(ii) $\prod_{i=1}^{n} V_{A_{i}}\left(x_{1}, \ldots . ., x_{n}\right) \geq$
$\min \left\{\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots \ldots, x_{n}\right) *\left(y_{1}, \ldots . ., y_{n}\right)\right), \prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots \ldots, y_{n}\right)\right\}$
(i.e.,) (i) $\prod_{i=1}^{n} t A_{i}(0, \ldots . ., 0) \geq \prod_{i=1}^{n} t_{i}\left(x_{1}, \ldots . ., x_{n}\right) \quad$ and $\prod_{i=1}^{n} 1-f_{A_{i}}(0, \ldots . ., 0) \geq \prod_{i=1}^{n} 1-f_{A_{i}}\left(x_{1}, \ldots . ., x_{n}\right)$
(ii) $\prod_{i=1}^{n} t A_{i}\left(x_{1}, \ldots ., x_{n}\right) \geq$ $\min \left\{\prod_{i=1}^{n} t A_{i}\left(\left(x_{1}, \ldots . ., x_{n}\right) *\left(y_{1}, \ldots . ., y_{n}\right)\right), \prod_{i=1}^{n} t_{A_{i}}\left(y_{1}, \ldots . ., y_{n}\right)\right\}, \quad \mathrm{i}=1,2, \ldots .$. . Then $\prod_{i=1}^{n} V_{A_{i}}$ is vague subalgebras of $\prod_{i=1}^{n} 1-f_{A_{i}}\left(x_{1}, \ldots ., x_{n}\right) \geq$
$\min \left\{\prod_{i=1}^{n} 1-f_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right) *\left(y_{1}, \ldots \ldots, y_{n}\right)\right), \prod_{i=1}^{n} 1-f_{A_{i}}\left(y_{1}, \ldots \ldots, y_{n}\right)\right\}$ subalgebras of BCK- algebras X_{i}, respectively. Let for all $\left(x_{1}, \ldots \ldots, x_{n}\right),\left(y_{1}, \ldots \ldots, y_{n}\right) \in \prod_{i=1}^{n} x_{i}$.

Definition 3.15: Let $V_{A_{i}}=\left[{ }_{A_{i}}, 1-f_{A_{i}}\right.$] be n-vague set of BCK- algebras X_{i}, respectively $i=1,2, \ldots \ldots n$.
Then $\prod_{i=1}^{n} V_{A_{i}}$ is called direct product of finite vague
H- ideal of $\prod_{i=1}^{n} X_{i}$ if,
$\prod_{i=1}^{n} X_{i}$.
Proof: Let $V_{A_{i}}=\left[t_{A_{i}}, 1-f_{A_{i}}\right]$ be n-vague
(i) $\prod_{i=1}^{n} V_{A_{i}}(0, \ldots . ., 0) \geq \prod_{i=1}^{n} V_{A_{i}}\left(x_{1}, \ldots ., x_{n}\right)$ and
(ii) $\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, . ., x_{n}\right) *\left(z_{1}, \ldots, z_{n}\right)\right.$
$\geq \min \prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots \ldots, x_{n}\right) *\left(\left(y_{1}, \ldots \ldots, y_{n}\right) *\left(z_{1}, \ldots ., z_{n}\right)\right)\right.$, $\left.\prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots \ldots, y_{n}\right)\right\}$
(i.e.,) (i) $\prod_{i=1}^{n} t A_{i}(0, \ldots . ., 0) \geq \prod_{i=1}^{n} t A_{i}\left(x_{1}, \ldots . ., x_{n}\right) \quad$ and $\prod_{i=1}^{n} 1-f_{A_{i}}(0, \ldots . ., 0) \geq \prod_{i=1}^{n} 1-f_{A_{i}}\left(x_{1}, \ldots . ., x_{n}\right)$
(ii) $\prod_{i=1}^{n} t_{i}\left(\left(x_{1}, \ldots, x_{n}\right) *\left(z_{1}, \ldots, z_{n}\right)\right.$
$\geq \min \prod_{i=1}^{n} t_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right) *\left(\left(y_{1}, \ldots \ldots, y_{n}\right) *\left(z_{1}, \ldots . ., z_{n}\right)\right)\right.$, $\left.\prod_{i=1}^{n} t_{i}\left(y_{1}, \ldots \ldots, y_{n}\right)\right\}$
(ii) $\prod_{i=1}^{n} 1-f_{A_{i}}\left(\left(x_{1}, . ., x_{n}\right) *\left(z_{1}, \ldots, z_{n}\right) \geq\right.$ $\min \left\{\prod_{i=1}^{n} 1-f_{A_{i}}\left(\left(x_{1}, \ldots . ., x_{n}\right) *\left(\left(y_{1}, \ldots . ., y_{n}\right) *\left(z_{1}, \ldots ., z_{n}\right)\right)\right.\right.$,
$\left.\prod_{i=1}^{n} 1-f_{A_{i}}\left(y_{1}, \ldots . ., y_{n}\right)\right\}$
for all $\left(x_{1}, \ldots \ldots, x_{n}\right),\left(y_{1}, \ldots \ldots ., y_{n}\right) \in \prod_{i=1}^{n} X_{i}$.

Theorem 3.16: Let $V_{A_{i}}=\left[{ }_{A_{i}}, 1-f_{A_{i}}\right]$ be n-vague subalgebras of BCK- algebras X_{i}, respectively $\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots \ldots ., y_{n}\right) \in \prod_{i=1}^{n} X_{i}$. Then
$\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right) *\left(y_{1}, \ldots ., y_{n}\right)\right)$
$=\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1} * y_{i}, \ldots ., x_{n} * y_{n}\right)\right.$
$=\min \left\{V_{A_{1}}\left(\left(x_{1} * y_{1}\right), \ldots ., V_{A_{n}}\left(x_{n} * y_{n}\right)\right)\right\}$
$\geq \min \left\{\min \left\{V_{A_{1}}\left(x_{1}\right), V_{A_{1}}\left(y_{1}\right)\right\}, \ldots ., \min \left\{V_{A_{n}}\left(x_{n}\right), V_{A_{n}}\left(y_{n}\right)\right)\right\}$
$=\min \left\{\min \left\{V_{A_{1}}\left(x_{1}\right), \ldots \ldots ., V_{A_{n}}\left(x_{n}\right)\right\}, \ldots .\right.$, $\left.\min \left\{V_{A_{1}}\left(y_{1}\right), \ldots \ldots ., V_{A_{n}}\left(y_{n}\right)\right)\right\}$
$\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right) *\left(y_{1}, \ldots ., y_{n}\right)\right) \geq$

$$
\min \left\{\prod_{i=1}^{n} V_{A_{i}}\left(x_{1}, \ldots \ldots, x_{n}\right), \prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots \ldots ., y_{n}\right)\right\}
$$

This completes the proof.

Theorem 3.17: Let $V_{A_{i}}=\left[t_{A_{i}}, 1-f_{A_{i}}\right]$ be n-vague ideals of BCK- algebras $\prod_{i=1}^{n} X_{i}$, respectively. If
$V_{A_{i}}\left(x_{i} * y_{i}\right) \geq V_{A_{i}}\left(x_{i}\right)$ where $\mathrm{i}=1,2, \ldots . . n$, then
$\prod_{i=1}^{n} V_{A_{i}}$ is vague H - ideal of $\prod_{i=1}^{n} X_{i}$

Proof: Let $V_{A_{i}}=\left[t_{A_{i}}, 1-f_{A_{i}}\right]$ be n-vague ideals of
BCK- algebras $\prod_{i=1}^{n} X_{i}$, respectively and
$V_{A_{i}}\left(x_{i} * y_{i}\right) \geq V_{A_{i}}\left(x_{i}\right)$ for any
$\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right) \in \prod_{i=1}^{n} x_{i}$. Then we have,

$$
\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right) *\left(y_{1}, \ldots ., y_{n}\right)\right)
$$

$=\prod_{i=1}^{n} V_{A_{i}}\left(x_{1} * y_{1}, \ldots ., x_{n} * y_{n}\right)$
$=\min \left\{V_{A_{1}}\left(x_{1} * y_{1}\right), \ldots ., V_{A_{n}}\left(x_{n} * y_{n}\right)\right\}$
$\geq \min \left\{V_{A_{1}}\left(x_{1}\right), \ldots, V_{A_{n}}\left(x_{n}\right)\right\}$
$=\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots ., x_{n}\right)\right.$
Hence $\prod_{i=1}^{n} V_{A_{i}}$ is vague H - ideal of $\prod_{i=1}^{n} X_{i}$

Theorem 3.18: Let $V_{A_{i}}=\left[{ }_{A_{i}}, 1-f_{A_{i}}\right.$] be n-vague ideals of BCK- algebras $\prod_{i=1}^{n} X_{i}$, respectively. If $x_{i} * y_{i} \leq z_{i}$ where $\mathrm{i}=1,2, \ldots . . \mathrm{n}$, holds in $\prod_{i=1}^{n} X_{i}$. Then $\prod_{i=1}^{n} V_{A_{i}}\left(x_{1}, \ldots ., x_{n}\right) \geq$ $\min \left\{\prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots ., y_{n}\right), \prod_{i=1}^{n} V_{A_{i}}\left(z_{1}, \ldots ., z_{n}\right)\right\}$
Proof: Let
$\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots \ldots ., y_{n}\right),\left(z_{1}, z_{2}, \ldots \ldots, z_{n}\right) \in \prod_{i=1}^{n} X_{i}$
be such that, $x_{i} * y_{i} \leq z_{i}$. Then $\left(x_{i} * y_{i}\right) * z_{i}=0$,
and thus

$$
\begin{aligned}
& \prod_{i=1}^{n} V_{A_{i}}\left(x_{1}, \ldots \ldots, x_{n}\right) \\
& \geq \min \left\{\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, \ldots \ldots, x_{n}\right) *\left(y_{1}, \ldots \ldots, y_{n}\right)\right),\right. \\
& \geq \min \left\{\operatorname { m i n } \left\{\prod _ { i = 1 } ^ { n } V _ { A _ { i } } \left(\left(\left(x_{1}, \ldots \ldots, x_{n}\right) *\left(y_{1}, \ldots \ldots, y_{n}\right)\right)\right.\right.\right. \\
& \left.* \prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots \ldots, y_{n}\right)\right\} \\
& \left.\left.\left.n, \ldots \ldots, z_{n}\right)\right), \prod_{i=1}^{n} V_{A_{i}}\left(z_{1}, \ldots \ldots, z_{n}\right)\right\}, \\
& \prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots \ldots, y_{n}\right. \\
& =\min \left\{\min \left\{\prod_{i=1}^{n} V_{A_{i}}(0, \ldots, 0), \prod_{i=1}^{n} V_{A_{i}}\left(z_{1}, \ldots \ldots, z_{n}\right)\right\},\right. \\
& n \\
& =\min \left\{\prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots \ldots, y_{n}\right), \prod_{i=1}^{n} V_{A_{i}}\left(z_{1}, \ldots \ldots, z_{n}\right)\right\}
\end{aligned}
$$

Theorem 3.19: Let $V_{A_{i}}=\left[t_{A_{i}}, 1-f_{A_{i}}\right]$ be n-vague ideal of BCK- algebras X_{i}, respectively, If $x_{i} \leq y_{i}$, whenever $x_{i} * y_{i}=0$ where $\mathrm{i}=1,2, \ldots . . \mathrm{n}$. Then
$\prod_{i=1}^{n} V_{A_{i}}\left(x_{1}, \ldots ., x_{n}\right) \geq \prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, \ldots . . y_{n}\right)$.
Proof: Let $\left(x_{1}, x_{2}, \ldots \ldots ., x_{n}\right),\left(y_{1}, y_{2}, \ldots \ldots ., y_{n}\right) \in \prod_{i=1}^{n} X_{i}$
be such that $x_{i} \leq y_{i}$, whenever $x_{i} * y_{i}=0$ and then we have

$$
\begin{aligned}
& \prod_{i=1}^{n} V_{A_{i}}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \\
& \geq \min \left\{\prod_{i=1}^{n} V_{A_{i}}\left(\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) *\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)\right),\right. \\
& \\
& \qquad \prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right) \\
& =\min \left\{\prod_{i=1}^{n} V_{A_{i}}\left((0,0, \ldots, 0), \prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, y_{2}, \ldots . . ., y_{n}\right)\right\}\right. \\
& =\prod_{i=1}^{n} V_{A_{i}}\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)
\end{aligned}
$$

[14] Saeid. A. D, Vague BCK/BCI- algebras, Opuscula Mathematica, 29(2) (2009), 177186.
[15] Satyanarayana. B and Prasad. R. D, Product of intutionistic fuzzy BCK- algebras, Adv. Fuzzy Math. 4(1) (2009), 1-8.
[16] Zadeh. L. A, Fuzzy sets, Information and control, 8 (1965), 338-353.
[17] Zhan. J and Tan. Z, Characterizations of doubt fuzzy H- ideals in BCK- algebras, Soochow J. Math. 29(2003) 290-293.

References:

[1] Al-Shehri. N. O, Anti fuzzy implicative ideals in BCK- algebras, Punjab Uni. J. Math. 43(2011), 85-91.
[2] Borumandsaeid. A and Zarandi. A., Vague set theory applied to BM- Algebras. International journal of algebra, 5, 5 (2011), 207-222.
[3] Gau. W. L, Buehrer. D. J., Vague sets, IEEE Trans, Systems Man and Cybernet, 23 (2) (1993), 610-614.
[4] Huang. W. P., On the BCI- algebras in which every subalgebras is an ideal, Math. Japonica 37(1992), 645-647.
[5] Huang. Y and Chen. Z., On ideals in BCKalgebras, Math. Japonica, 50(1999), 211226.
[6] Imai. Y and Iseki. K., On axiom system of propositional calculi, Proc. Japan Academy, 42(1966), 19-22.
[7] Iseki. K., An introduction to theory of BCKalgebra, Math Japan, (1973), 1-26.
[8] Jun. Y. B, A note on fuzzy ideals in BCKalgebras, Math. Japon. 42(2) (1995), 351366.
[9] Jun. Y. B, Hong. S, M, Kim. S. J and Song. S. Z, Fuzzy ideals and fuzzy subalgebras of BCK- algebras, J. Fuzzy Math. 7(2) (1999), 411-418.
[10]Khalid. H. M and Ahmad. B., Fuzzy H- ideals in BCI- algebras, Fuzzy sets and systems, 101 (1999), 153-158.
[11]Lee. K. J, So. K. S and Bang. K. S, Vague BCK/BCI- algebras, J. Korean Soc. Math. Educ. Ser. B: pure Appl. Math., 15(2008), 297-308.
[12] Ranjit Biswas, Vague groups, Int. journal of computational cognition, 4(2)(2006).
[13] Saeid. A. D and Jun. Y. B, Refined fuzzy subalgebras of BCK/BCI- algebras, Iranian J. Fuzzy Systems, 5(2) (2008) 63-70.

