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Abstract

In this paper, we introduce and investigate the notion of contra m gp-continuous functions by
utilizing Park’s mgp— closed sets [18]. We obtain fundamental properties of contra 7 gp-continuous

functions and discuss the relationships between contra 7 gp-continuity and other related functions.

1 Introduction

In 1996, Dontchev [5] introduced a new class of functions called contra-continuous functions.
He defined a function f : X — Y to be contra-continuous if the pre image of every open set
of Y is closed in X. In 2007, Caldas et.al. [4] introduced and investigate the notion of contra
g— continuity. In 1968, V. Zaitsev [25] introduced the notion of 7 -open sets as a finite union of
regular open sets. Zolotarev [26] proved that in a metric space every closed set is open [Theorem 1]
(i.e. every closed set is the intersection of finitely many regular closed sets). This notion received
a proper attention and some research articles came to existence. J. Dontchev and T. Noiri [6]
introduced and investigated, among others, continuity and almost continuity. Ekici and Baker
[8] and Ekici [9] used this notion to introduce and present some fundamental properties of a new
type of generalized closed set and new forms of continuities. In [14], Kalantan introduced and
investigated 7 -normality. The digital n-space is not a metric space, since it is not 77 . But
recently S. Takigawa and H. Maki [24] showed that in the digital n-space every closed set is

T -open.

Recently, Ekici [11] introduced and studied contra 7g-continuous functions. In this paper, we
present a new generalization of a contra-continuity called contra mgp -continuity. It turns out that

the notion of contra wgp -continuity is a weaker form of contra-continuity and contra g -continuity.
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2 Preliminaries

Throughout this paper, spaces (X,7) and (Y,o) (or simply X and Y ) always mean
topological spaces on which no separation axioms are assumed unless explicitly stated. Let A
be a subset of a space X. The closure of A and the interior of A are denoted by CI(A)
and Int(A),respectively. A subset A is said to be regular open[23] (resp.regular closed) if
A = Int(Cl(A)) (resp. A = Cl(Int(A)). The finite union of regular open sets is said to be
m-open[25]. The complement of a 7 -open set is said to be 7 -closed.

Definition 2.1. A subset A of a space X is said to be

1. g-closed [15] if cl(A) C U whenever A C U and U is openin X ;

2. gs-closed [1] if scl(A) C U whenever A C U and U is open in X ;

3. gp-closed [17] if pcl(A) C U whenever A C U and U is openin X ;

4. mg-closed [6] if cl(A) C U whenever AC U and U is w-open in X ;
5. mgs-closed [2] if scl(A) C U whenever A CU and U is w-open in X ;

6. mgp-closed [18] if pcl(A) C U whenever A C U and U is m-open in X .

The family of all wgp—open (resp.mgp— closed, closed) sets of X containing a point
x € X is denoted by wGPO(X,z) (resp.nGPC(X,z),C(X,z)). The family of all
mgp— open (resp. mgp— closed, closed, semiopen ) sets of X is denoted by 7GPO(X)
(resp. TGPC(X),C(X),SO(X)).

Definition 2.2. A function f:X — Y issaid to be 7 -continuous [6] (resp. mgp -continuous [19])
if f=1(V) is m-open (resp.mgp-open) in X for every open set V of Y.

Definition 2.3. Let A be a subset of a space (X,7)

1. The set ({U € 7: A C U} is called the kernel of A[16] and is denoted by ker(A);

2. The set ({F : F is mgp— closed in X; A C F}is called the mgp— closure of A [19] and is
denoted by wgp — CI(A).

Lemma 2.4. [13] The following properties hold for subsets U and V of a space (X,T)

1. z€ker(U) if and only if UNF #0 for any closed set F € C(X,x);
2. UCker(U) and U =ker(U) if U is open in X;
3. If UCV, then ker(U) C ker(V).

Lemma 2.5. [19] Let A be a subset of a space (X,T), then
1. mwgp — cl(X\A) = X\mgp — int(A) ;

2. zemgp—cl(A) if and only if ANU #0 for each U € tGPO(X, ) ;
3. If A is mgp-closed in X , then A =mgp — cl(A).
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3 contra mgp— continuous functions

Definition 3.1. A function f: X — Y is called contra mgp-continuous if f=(V) is mgp-closed
in X for every open set V of Y.

Theorem 3.2. The following are equivalent for a function f:X —Y :

1. f is contra wgp -continuous;
2. The inverse image of every closed set of Y is wgp -open in X ;

3. For each x € X and each closed set V in Y with f(x) €V, there exists a 7 gp-open set
Uin X such that x € U and f(U)CV;

4. f(mgp— Cl(A)) C Ker(f(A)) for every subset A of X ;
5. mgp— Cl(f~Y(B)) C f~Y(Ker(B)) for every subset B of Y .

Proof. (1) = (2) Let U be any closed set of Y. Since Y\U is open, then by (1), it follows that
“LY\U) = X\f~YU) is mgp— closed. This shows that f~Y(U) is mgp— open in X .

(1) = (3) Let = € X and V be a closed set in Y with f(x) € V. By (1), it follows
that f~1(Y\V) = X\f~Y(V) is mgp— closed. Take U = f~1(V) We obtain that x € U
and f(U)C V.

(3) = (2) Let V be a closed set in Y with x € f~Y(V). Since f(x) €V, by (3) there exists a
wgp— open set U in X containing x such that f(U) C V. It follows that x € U C f~YV) .
Hence f~1(V) is mgp— open.

(2) = (4) Let A be any subset of X. Let y ¢ Ker(f(A)). Then by Lemma 2.4, there exist a
closed set F' containing y such that f(A)NF =0. We have AN f~1(F) = 0 and since f~(F)
is Tgp— open then we have wgp — Cl(A) N f~Y(F) = 0 .Hence we obtain f(mgp — Cl(A)NF =0
and y ¢ f(mgp — Cl(A)). Thus f(mgp — CI(A)) C Ker(f(A)).

(4) = (5) Let B be any subset of Y. By (4), f(mgp — CI(f~1(B))) C Ker(B) and
mgp — CI(f~1(B)) C [~ (Ker(B)).

(5) = (1) Let B be any open set of Y. By (5), ngp — Cl(f~Y(B)) C f~Y(Ker(B)) = f~(B)
and mgp — Cl(f~1(B)) = f~1(B). So we obtain that f~(B) is mgp— closed in X. O

Definition 3.3. A function f:X — Y is said to be

1. perfectly continuous [5] if f~1(V) is clopen in X for every open set V of Y ;

2. contra-continuous [5] (resp. contra-precontinuous [12], contra-semicontinuous|7] ) if f~(V)

is closed (resp. pre-closed , semi-closed ) in X for every open set V' of Y';

3. contra g¢g— continuous [4] (resp. contra gp— continuous, contra g¢gs— continuous [7] ) if
fY(V) is g— closed (resp. gp— closed, gs— closed ) in X for every open set V of Y ;

4. contra w— continuous (resp. contra w g-continuous [11], contra mwgs— continuous) if

f~1(V)is m— closed (resp. mg— closed, mgs— closed) in X for every open set V of Y .

For the functions defined above, we have the following implications :
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contra Je-continuity

contra semi-continuity =~ €— contra-continuity ——> contra pre-continuity
contra gs-continuity <€<—  contra g-continuity ——> contra gp-continuity

l l l

contra Ttgs-continuity <——  contra Tig-continuity ——>  contra Tigp-continuity

Remark 3.4. None of these implications is reversible as shown by the following examples.

Example 3.5. Let X={a,b,c}, 7 ={0, {a}, {b}, {a,b}, {b,c}, X} and o ={0, {a}, {c}, {a,c},
X}.Then the identity function f: (X, 7) — (X, 0) is contra continuous but not contra  -continuous.

Example 3.6. Let X:{a7b;c}: T :{(Z); {a‘}; {b}: {a:b}; {b;c}: X} and o :{(2)7 {a}) {b}} {a,b},
X}.Then the identity function f:(X,7) — (X,0)is contra w gp-continuous but not contra gp-
continuous.

Example 3.7. Let X={a,b,c,d,e}, 7= {0, {b}, {b,c}, {a,d}, {a,b,d}, {a,b,c,d}, X} and o =
{0, {a}, X}.Then the identity function f: (X, 7) — (X, 0) is contra 7 gp-continuous but not contra
T g-continuous.

Remark 3.8. The following examples shows that the concept of contra m gp-continuity and contra

T gs-continuity are independent.

Example 3.9. Let X={a,b,c,d}, T={0, {a}, {b}, {a,b}, {b,c},{a,b,c}, X} and o ={0, {a},
X}.Then the identity function f: (X,7) — (X, 0)1is contra m gs-continuous but not contra T gp-

continuous.

Example 3.10. Let X={a,b,c,d,e}, 7 ={0, {b}, {b,c}, {a,d}, {a,b,d}, {a,b,c,d}, X} and o ={0,
{d}, X}.Then the identity function f:(X,7) — (X,0)1is contra w gp-continuous but not contra
T gS-continuous.

Definition 3.11. A function f:X — Y is said to be

1. mwgp-semiopen if f(U) € SO(Y) for every mgp-open set of X .
2. contra- I(m gp)-continuous if for each x € X and each F € C(Y, f(x)), there exists
U € tGPO(X,z) such that Int(f(U)) C F.
Theorem 3.12. If a function f:X — Y is contra-I(7 gp)-continuous and mwgp -semiopen, then

f s contra w gp-continuous.

Proof. Suppose that x € X and F € C(Y, f(x)). Since f is contra- I(m gp)-continuous, there
exists U € ntGPO(X,x) such that Int(f(U)) C F. By hypothesis [ is wgp -semiopen, therefore
f(U) e SOY) and f(U) C Cl(Int(f(U))) C F. This shows that f is contra mgp -continuous.

Lemma 3.13. [19] If A is 7 -open and w gp-closed in a space (X, T), then A is clopen.
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Theorem 3.14. If a function f: X — Y s contra w gp-continuous and 7 -continuous, then f
1s perfectly continuous.

Proof. Let U be an open set in Y. Since f is contra w gp-continuous and T -continuous,
f~YU)is mgp— closed and T -open, by Lemma 3.13, f~Y(U) is clopen. Then f is perfectly
continuous. O

Theorem 3.15. If a function f: X — Y is contra wgp— continuous and Y is regular, then f

18 T gp-continuous.

Proof. Let = be an arbitrary point of X and U be an open set of Y containing f(x). Since
Y s regular, there exists an open set W in Y containing f(z) such that CI(W) C U . Since
f is contra wgp— continuous, there exists V € nGPO(X,x) such that f(V) C CI(W). Then
f(V)yc Cl(W)cCU. Hence f is mgp— continuous. O

Theorem 3.16. Let {X;,i € Q} be any family of topological spaces. If a function f: X — [[ X, is
contra m gp-continuous, then Pr;o f: X — X, is contra m gp-continuous for each i € Q, where
Pr; is the projection of [[X; onto X;

Proof. For a fized i € Q, let V; be any open set of X;. Since Pr; is continuous, Pri_l(m) 18
open in [[X; . Since fis contra T gp-continuous, f~*(Pr; (V;)) = (Priof)~Y(V;) is mgp— closed
i X. Therefore, Pr;o f is contra m gp-continuous for each i € Q. O

Theorem 3.17. Let f: X —Y and g:Y — Z be a function. Then the following hold:
1. If f is contra 7 gp-continuous and ¢ is continuous, then go f: X — Z is contra 7 gp-
continuous;

2. If f is w gp-continuous and g 1is contra-continuous, then go f : X — Zis contra m gp-
continuous;

3. If f is contram gp-continuous and g 1is contra-continuous, then go f : X — Z1is w gp-
continuous.

Definition 3.18. A space (X,7) is called mgp —T'/o [19] if every mgp— closed set is preclosed.

Remark 3.19. Every contra mwgp— continuous function defined on a mgp — T2 space is contra-
precontinuous.

Theorem 3.20. Let f: X — Y be a function. Suppose that X is a wgp — Ty /o space. Then the
following are equivalent

1. f is contra w gp-continuous;

2. f is contra gp -continuous;

3. [ s contra-pre continuous.
Proof. Obvious ]
Definition 3.21. [19] For a space (X,7), 7" ={U C X : wgp — CI(X\U) = X\U}.

Theorem 3.22. [19] Let (X,7) be a space. Then every mwgp -closed set is closed if and only if

*
T =T.
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Theorem 3.23. If ,7* =71 in X, then for a function f:X — Y the following are equivalent

1. f is contra w gp-continuous;
2. f is contra mwg -continuous;
3. f is contra g -continuous;

4. f is contra-continuous.

Proof. Follows from Theorem 2.11 in [19]. O

4 Properties of contra mgp -continuous functions

Definition 4.1. A space X issaid to be mgp—1T7 if for each pair of distinct points z and y in X,
there exist 7 gp-open sets U and V containing x and y respectively, such that y ¢ Uandx ¢ V.

Definition 4.2. [10] A space X is said to be wgp — T» if for each pair of distinct points = and
y in X, there exist U € tGPO(X,z) and V € rGPO(X,y) such that UNV =0.

Theorem 4.3. Let X be a topological space. Suppose that for each pair of distinct points xq
and x2 in X there exists a function f of X into a Urysohn space Y such that f(xz1) # f(z2) .
Moreover, let [ be contra wgp— continuous at x1 and xo . Then X is wgp —T5 .

Proof. Let x1 and x5 be any distinct points in X . Then there exist an Urysohn space Y and
a function f: X — Y such that f(x1) # f(xz2) and f is contra wgp -continuous at x1 and
xo. Let w= f(x1)and z = f(x2). Then w # z. Since Y is Urysohn, there exist open
sets U and V containing w and z respectively such that CL({U)NCIV) = 0. Since f is
contra mwgp -continuous at x1 and xo , then there exist wgp -open sets A and B containing w1
and o respectively such that f(A) C ClI(U) and f(B) C CI(V). So we have AN B =0 since
ClU)NCIV)=0. Hence, X is mgp—T> . O

Corollary 4.4. If f is a contra mwgp— continuous injection of a topological space X into a
Urysohn space Y , then X is wgp —T5 .

Proof. For each pair of disdinct points x1 and x5 in X and f is a contra mwgp— continuous
function of X into a Urysohn space Y such that f(x1) # f(x2) because f is injective. Hence
by Theorem 4.3, X is wgp —T5 .

Definition 4.5. [19] A space (X, 7) is said to be mgp- connected if X cannot be expressed as
the disjoint union of two non-empty mgp— open sets.

Remark 4.6. [19] Every m gp-connected space is connected.

Theorem 4.7. For a space X, the following are equivalent:

1. X is wgp— connected;

2. The only subsets of X which are both wgp -open and wgp -closed are the empty set () and
X;
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3. Fach contra wgp -continuous function of X into a discrete space Y with at least two points

s a constant function.

Proof.
(1) & (2) Follows from Proposition 6.2 [19]

(2) = (3) Let f: X — Y be contra w gp-continuous function where Y is a discrete space
with at least two points. Then f~1({y}) is m gp-closed andm gp-open for each y € Y and
X = U{f*{y}) : y € Y} .By hypothesis f~*({y}) = 0 or X. If f1{y}) = 0 for all
y € Y, then f is not a function. Also there cannot exist more than one y € Y such that
f~Y{y}) = X . Hence there exists only one y € Y such that f~'({y}) =X and f~'{n}) =0
where y # y1 € Y . This shows that f is a constant function.

(3) = (2) Let P be a non-empty set which is both w gp-open and 7 gp- closed in X . Suppose
f:X =Y isa contra mgp - continuous function defined by f(P) = {a} and f(X\P) = {b}
where a #b and a,b € Y .By hypothesis, f is constant. Therefore P = X. O

Theorem 4.8. If f is a contra m gp- continuous function from a 7 gp- connected space X onto

any space Y , then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper non-empty open and closed subset of Y .
Then f=1(A) is a proper non-empty m gp-clopen subset of X which is a contradiction to the fact
that X is m gp-connected. |

Theorem 4.9. If f: X — Y s a contra 7 gp-continuous surjection and X is 7 gp-connected,

then Y s connected.

Proof. Suppose that Y is not a connected space. There exist non-empty disjoint open sets U
and Uy such that Y = Uy U Us . Therefore Uy and Uy are clopen in Y . Since f is contra mw gp-
continuous. f~1(Uy) and f~Y(Uz) are m gp-open in X . Moreover, f~*(Uy) and f~1(Us) are
non-empty disjoint and X = f~1(Uy)U f~1(Us) . This shows that X is not mgp— connected. This

contradicts that 'Y is not connected assumed. Hence Y 1is connected. O

Definition 4.10. The graph G(f) of a function f: X — Y is said to be contra 7 gp-graph if
for each (z,y) € (X x Y)\G(f) ,there exist a mgp-open set U in X containing = and a closed
set V in Y containing y such that (U x V)NG(f)=0.

Lemma 4.11. A graph G(f) of a function f : X — Y is contra w gp-graph in X XY if and
only if for each (z,y) € (X xY)\G(f), there exists U € tGPO(X) containing x and V € C(Y)
containing y such that f(U)NV =0.

Theorem 4.12. If f: X — Y is contra wgp— continuous and Y is Urysohn, G(f) is contra
7w gp-graph in X x Y.

Proof. Let (x,y) € (X x Y)\G(f). It follows that f(x) #y. since Y is Urysohn, there exist
open sets V. and W such that f(z) €V, y €W and CI(V)NCI(W)=10. Since f is contra w
gp-continuous, there exist a U € ntGPO(X,z) such that f(U) C CI(V) and f(U)NCIUW)=10.
Hence G(f) is contra m gp-graph in X XY . O

Theorem 4.13. Let f: X — Y be a function and g : X — X XY the graph function of f,
defined by g(x) = (x, f(x)) for every x € X . If g is contra m gp-continuous, then [ is contra

T gp -continuous.
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Proof. Let U be an open set in Y, then X x U is an open set in X x Y . It follows that
7Y U) =g Y (X xU) e tGPC(X) . Thus f is contra T gp-continuous. O

Definition 4.14. A space (X, ) is said to be submaximal [3] if every dense subset of X is open
in X.

Note that (X, 7) is submaximal if and only if every preopen set is open [20].

Lemma 4.15. [10] Let (X, 7) be a topological space. If U,V € ntGPO(X) and X is a submazimal
space, then UNV € tGPO(X) .

Theorem 4.16. If f: X — Y and g: X — Y are contra w gp-continuous, X is submaximal
and Y is Urysohn, then K ={x € X : f(z) = g(x)} is wgp— closed in X.

Proof. Let x € X\K. Then f(z) # g(x). Since Y is Urysohn, there exist open sets U
and V' such that f(z) € Uyg(z) € V and CI(U)NCIV) = 0. Since f and g are contra
mgp— continuous, f~1(CI(U)) € tGPO(X) and g~ *(Cl(V)) € tGPO(X) . Let A= f~Y(Cl(U))
and B =g~ Y(CI(V)). Then A and B contains x. Set C = ANB. C is 7 gp-open in X. Hence
f(C)Nng(C)=0 and = ¢ 7gp — CI(K) . Thus, K is w gp-closed in X. O

Definition 4.17. A subset A of a topological space X is said to be wgp— dense in X if
wgp — Cl(A) = X

Theorem 4.18. Let f: X — Y and g: X — Y be contra m gp-continuous. If Y is Urysohn
and f =g on a wgp-dense set A C X , then f=g on X.

Proof. Since f and g are contra mwgp -continuous and Y is Urysohn, by Theorem 4.16,
K={zxeX: f(x)=g(x)} is mgp— closed in X. We have f =g on mgp-dense set A C X .
Since A C K and A is mwgp— dense set in X, then X = wgp — Cl(A) C ngp — Cl(K) C K .
Hence, f=¢g on X. O

Definition 4.19. A space X is said to be weaklyHausdorff [21] if each element of X is an

intersection of regular closed sets.

Theorem 4.20. If f: X — Y is a contra wgp— continuous injection and Y is weakly Hausdroff,
then X is mgp — 17 .

Proof. Suppose that Y is weakly Hausdorff. For any distinct points x1 and xo in X, there exist
regular closed sets U and V in'Y such that f(x1) € U, f(z2) ¢ U, f(x1) ¢ V and f(z2) € V.
Since f is contra m gp-continuous, f~H(U) and f=1(V) are  gp-open subsets of X such that
v € fYU) 22 ¢ fHU), 21 ¢ f7H(V) and x5 € f~Y(V) . This shows that X is mgp—T,. O

Theorem 4.21. Let f: X — Y have a contra wgp -graph. If f is injective, then X is mgp—"T} .

Proof. Let x1 and xs be any two distinct points of X. Then, we have (x1,f(x2)) €
(X x Y)\G(f) . Then, there exist a m gp-open set U in X containing x1 and F € C(Y, f(z2))
such that f(U)NF =0. Hence UN f~Y(F) = 0. Therefore, we have x5 ¢ U . This implies that
X s mgp—1T1 . O

Definition 4.22. A topological space X is said to be UltraHausdorff [22]if for each pair of
distinct points x and y in X there exist clopen sets A and B containing x and vy, respectively
such that AN B = ().
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Theorem 4.23. Let f: X — Y be a contra 7 gp-continuous injection .If Y is an Ultra Hausdorff
space, then X is wgp —Ts .

Proof. Let x1 and xzo be any distinct point in X , then f(x1) # f(x2) and there exist clopen sets
U and V containing f(x1) and f(xa) respectively such that UNV =0 . since f is contra 7 gp-
continuous, then f~Y(U) € tGPO(X) and f~*(V) € nGPO(X) such that f~H({U)Nf~Y(V)=0.
Hence, X is wgp—1T5 . O

Definition 4.24. A topological space X is said to be
1. mgp-normal if each pair of non-empty disjoint closed sets can be separated by disjoint
mTgp-open sets.

2. Ultra normal [22] if for each pair of non-empty distinct closed sets can be separated by

disjoint clopen sets.
Theorem 4.25. If f: X — Y s a contra w gp-continuous, closed injection and Y s Ultra

normal, then X 1is wgp -normal.

Proof. Let Fy and F» be disjoint closed subsets of X . Since [ is closed and injective, f(Fy) and
f(Fy) are disjoint closed subsets of Y . Since Y is Ultra normal, f(F1) and f(Fy) are separated
by disjoint clopen sets Vi and Vi respectively. Hence F; C f=*(V;), f~4(V;) € mGPO(X,x) for
i=1,2 and f7*(Vi)N f71(Vo) =0 and thus X is wgp -normal.
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