On some Ramanujan equations (mock theta functions and taxicab numbers) linked to various sectors of String Theory (Brane-World) and to the Black Hole Physics: Further new possible mathematical connections X.

Michele Nardelli<sup>1</sup>, Antonio Nardelli

#### Abstract

In this research thesis, we have analyzed and deepened further Ramanujan expressions (mock theta functions and taxicab numbers) applied to some sectors of String Theory (Brane-World) and to the Black Hole Physics. We have therefore described other new possible mathematical connections.

<sup>&</sup>lt;sup>1</sup> M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" -Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy



https://www.britannica.com/biography/Srinivasa-Ramanujan

Sf (i)  $\frac{1+53x+9x^{2}}{1-82x-82x^{2}+x^{3}} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \cdots$ or  $\frac{a_{0}}{x} + \frac{a_{1}}{x^{2}} + \frac{a_{2}}{x^{3}} + \cdots$  $(i) \frac{2 - 26z - 12z^{2}}{1 - 82z - 82z^{2} + z^{3}} = b_{0} + b_{1}z + b_{2}z^{2} + b_{3}z^{4} + \cdots$   $oz \frac{B_{0}}{z} + \frac{B_{1}}{z^{2}} + \frac{B_{2}}{z^{3}} + \cdots$  $\begin{array}{l} \underbrace{2+8x-10x^{-}}_{1-81x-82x^{-}+x^{3}} = c_{0}+c_{1}x+c_{2}x^{+}+c_{3}x^{3}+\cdots\\ or \underbrace{\mathcal{X}_{0}}_{x} + \underbrace{\mathcal{X}_{1}}_{x_{1}} + \underbrace{\mathcal{X}_{2}}_{x_{2}} + \cdots\end{array}$ then  $a_{n}^{3} + b_{n}^{3} = c_{n}^{3} + (-1)^{m}$ and  $a_{n}^{3} + \beta_{n}^{3} = \gamma_{n}^{3} + (-1)^{m}$ Enamples 135<sup>-3</sup> + 138<sup>3</sup> = 172<sup>3</sup>-1  $9^{3} + 10^{3} = 12^{3} + 10^{3}$  $11161^{3} + 11468^{3} = 14258^{3} + 1$  $6^3 + 8^3 = 9^3 - 1$ 7913 + 8123 = 10103-1

https://plus.maths.org/content/ramanujan

#### Ramanujan's manuscript

The representations of 1729 as the sum of two cubes appear in the bottom right corner. The equation expressing the near counter examples to Fermat's last theorem appears further up:  $\alpha^3 + \beta^3 = \gamma^3 + (-1)^n$ .

From Wikipedia

The taxicab number, typically denoted Ta(n) or Taxicab(n), also called the nth Hardy–Ramanujan number, is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is  $1729 = Ta(2) = 1^3 + 12^3 = 9^3 + 10^3$ .

From

**Stability of the graviton Bose-Einstein condensate in the brane-world** *R. Casadio* - Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy - INFN, Sezione di Bologna, viale B. Pichat 6, 40127 Bologna, Italy *Roldao da Rocha* - CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil - arXiv: 1610.01572v1 [hep-th] 5 Oct 2016

Now, we have that:

$$\frac{B_{\nu}(\rho)}{B(\rho)} = 1 - \frac{2c_0}{\sigma \left[\rho - \frac{3}{4} \tanh^3(\nu\rho)\right] \left[5 - 3 \tanh^2(\nu\rho)\right]}, \quad (22)$$

where  $c_0 \simeq 0.275$ . Fig. 1 shows plots of  $B_{\nu}(\rho)$  for various values of  $\nu$ . It is clear that, for increasing values of  $\nu$ , this



FIG. 1. Plot of  $B_{\nu}(\rho)$  in Eq. (22), for  $\nu = 0$  (gray dashed line);  $\nu = 0.3$  (thick gray line);  $\nu = 0.5$  (thick black line);  $\nu = \nu_{\star}$ (black dot-dashed line);  $\nu = 1$  (black dashed line);  $\nu = 1.4$ (dotted line).

black hole model rapidly approaches the Schwarzschild black hole. This figure can be compared to Fig. 1 in Ref. [19] for similar parameters.

For any  $\nu$ , the metric component  $B_{\nu}(\rho)$  has a single local minimum at  $\rho_* = a_*/\nu$ , where  $a_* \approx 1.031$ . Writing  $B_{\nu}(\rho_*) = 1 - \nu/\nu_*$ , with  $\nu_* \approx 0.694$ , the condition for the existence of an event horizon is  $\nu > \nu_*$ . The case  $\nu = \nu_*$ is extremal [19].

$$\sigma \gtrsim 3.18 imes 10^6 \,\mathrm{MeV^4}$$
  
 $\sigma \gtrsim 5 imes 10^6 \,\mathrm{MeV^4}$ 

 $\rho = r/M = 2r/r_s$ 

For M = 1.312806e+40 and R = 1.949322e+13 (SMBH87 parameters)

$$\frac{B_{\nu}(\rho)}{B(\rho)} = 1 - \frac{2 c_0}{\sigma \left[\rho - \frac{3}{4} \tanh^3(\nu \rho)\right] \left[5 - 3 \tanh^2(\nu \rho)\right]}, \quad (22)$$

#### **Input interpretation:**

$$\begin{split} 1 &= (2 \times 0.275) \left/ \left( 3.18 \times 10^6 \left( \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} - \frac{3}{4} \tanh^3 \left( 1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} \right) \right) \right. \\ &\left. \left( 5 - 3 \tanh^2 \! \left( 1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} \right) \right) \right) \end{split}$$

tanh(x) is the hyperbolic tangent function

#### **Result:**

 $-2.32961... \times 10^{19}$  $-2.32961... * 10^{19}$ 

#### Input interpretation:

$$\left( -\left(1 \left/ \left(1 - (2 \times 0.275) \right/ \right. \right. \right) \right) \\ \left( 3.18 \times 10^6 \left( \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} - \frac{3}{4} \tanh^3 \left( 1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} \right) \right) \\ \left( 5 - 3 \tanh^2 \left( 1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} \right) \right) \right) \right) \right) \land (1/4096)$$

tanh(x) is the hyperbolic tangent function

#### **Result:**

0.989171647...

0.989171647.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5}\sqrt[4]{5^{3}}}-1}} - \varphi + 1}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1+\frac{e^{-2\pi\sqrt{5}}}{1+\frac{e^{-3\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\dots}}}}} \approx 0.9991104684$$

and to the dilaton value **0**. **989117352243** =  $\phi$ 

Input interpretation:  

$$2\sqrt{\log_{0.989171647} \left( -\left(1/\left(1-(2\times0.275)\right)/\left(3.18\times10^{6}\left(\frac{1.949322\times10^{13}}{1.312806\times10^{40}}-\frac{3}{4}\tanh^{3}\left(1.4\times\frac{1.949322\times10^{13}}{1.312806\times10^{40}}\right)\right)\right)\right)$$
  
 $\left(5-3\tanh^{2} \left(1.4\times\frac{1.949322\times10^{13}}{1.312806\times10^{40}}\right)\right)\right)\right)$ 

 $\tanh(x)$  is the hyperbolic tangent function  $\log_b(x)$  is the base- b logarithm

#### **Result:**

128.0000... 128 27\*sqrt((log base 0.989171647(((-1/((((1-(2\*0.275)/[(3.18\*10^6)((((1.949322e+13/1.312806e+40)-3/4 tanh^3(1.4\*(1.949322e+13/1.312806e+40)))))\*(((5-3\*tanh^2(1.4\*(1.949322e+13/1.312806e+40)))))\*(((5-

#### **Input interpretation:**

$$27 \sqrt{\log_{0.989171647} \left( -\left(1 \left/ \left(1 - (2 \times 0.275) \right/ \right. \right. \right) \right) \left(3.18 \times 10^{6} \left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} - \frac{3}{4} \tanh^{3} \left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} \right) \right) \left(5 - 3 \tanh^{2} \left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} \right) \right) \right) \right)}$$

tanh(x) is the hyperbolic tangent function  $\log_b(x)$  is the base- b logarithm

#### **Result:**

1728.000...

#### 1728

This result is very near to the mass of candidate glueball  $f_0(1710)$  meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross– Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

#### **Input interpretation:**

$$7 + 2\sqrt{\log_{0.98917164} \left( -\left(1 / \left(1 - (2 \times 0.275) / (3.18 \times 10^6 \left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} - \frac{3}{4} \tanh^3 \left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right) \right) \right) \right)$$

tanh(x) is the hyperbolic tangent function  $\log_b(x)$  is the base- b logarithm

#### **Result:**

135.000...

135 (Ramanujan taxicab number)

7+3+2sqrt((log base 0.9891716(((-1/((((1-(2\*0.275)/[(3.18\*10^6)((((1.949322e+13/1.312806e+40)-3/4 tanh^3(1.4\*(1.949322e+13/1.312806e+40)))))\*(((5-3\*tanh^2(1.4\*(1.949322e+13/1.312806e+40)))))\*(((5-

#### **Input interpretation:**

$$7 + 3 + 2\sqrt{\log_{0.9891716} \left( -\left(1 / \left(1 - (2 \times 0.275) / (3.18 \times 10^6 \left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} - \frac{3}{4} \tanh^3 \left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right) \right)} \right)$$

tanh(x) is the hyperbolic tangent function  $\log_b(x)$  is the base- b logarithm

#### **Result:**

138.000...

138 (Ramanujan taxicab number)

#### Input interpretation:

$$\begin{aligned} 4 \times 11 + 2 \sqrt{\log_{0.9891716} \left( -\left(1 \left/ \left(1 - (2 \times 0.275) \right) \right/ \right. \\ \left( 3.18 \times 10^6 \left( \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} - \frac{3}{4} \tanh^3 \left( 1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} \right) \right) \\ \left( 5 - 3 \tanh^2 \left( 1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}} \right) \right) \right) \end{aligned}$$

 $\tanh(x)$  is the hyperbolic tangent function  $\log_b(x)$  is the base- b logarithm

#### **Result:**

172.000...

#### 172 (Ramanujan taxicab number)

From

$$135^{-3} + 138^{-3} = 178^{-1}$$

135^3+138^3 = 172^3-1

Input:  $135^3 + 138^3 = 172^3 - 1$ 

#### **Result:**

True

#### Left hand side:

 $135^3 + 138^3 = 5\,088\,447$ 

#### **Right hand side:**

 $172^3 - 1 = 5\,088\,447$ 

5088447

ln(135^3+138^3)

#### Input:

 $\log(135^3 + 138^3)$ 

log(x) is the natural logarithm

#### **Exact result:**

log(5088447)

#### **Decimal approximation:**

15.44248323391676327573091977987313063668255249261267663169...

#### 15.4424832339.... result very near to the black hole entropy 15.6730

#### **Property:**

log(5 088 447) is a transcendental number

#### Alternate forms:

3 log(3) + log(188 461)

 $3 \log(3) + \log(7) + \log(13) + \log(19) + \log(109)$ 

#### Alternative representations:

 $\log(135^3 + 138^3) = \log_e(135^3 + 138^3)$ 

 $\log(135^3 + 138^3) = \log(a)\log_a(135^3 + 138^3)$ 

 $\log(135^3 + 138^3) = -\text{Li}_1(1 - 135^3 - 138^3)$ 

#### **Integral representations:**

Pi\*(135^3+138^3)^1/4-11+golden ratio

#### Input:

 $\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi$ 

 $\phi$  is the golden ratio

0

#### **Result:**

 $\phi - 11 + 3^{3/4} \sqrt[4]{188461} \pi$ 

#### **Decimal approximation:**

139.8274348634976023813964821274141235673143122042902745354...

139.8274348... result practically equal to the rest mass of Pion meson 139.57 MeV

#### **Property:**

 $-11 + \phi + 3^{3/4} \sqrt[4]{188461} \pi$  is a transcendental number

# Alternate forms: $\frac{1}{2} \left( -21 + \sqrt{5} + 2 \times 3^{3/4} \sqrt[4]{188461} \pi \right)$ $-\frac{21}{2} + \frac{\sqrt{5}}{2} + 3^{3/4} \sqrt[4]{188461} \pi$ $-11 + \frac{1}{2} \left( 1 + \sqrt{5} \right) + 3^{3/4} \sqrt[4]{188461} \pi$

#### Alternative representations:

$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -11 - 2\cos(216^\circ) + \pi \sqrt[4]{135^3 + 138^3}$$
$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -11 + 2\cos\left(\frac{\pi}{5}\right) + \pi \sqrt[4]{135^3 + 138^3}$$
$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -11 - 2\cos(216^\circ) + 180^\circ \sqrt[4]{135^3 + 138^3}$$

#### Series representations:

$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -\frac{21}{2} + \frac{\sqrt{5}}{2} + 4 \times 3^{3/4} \sqrt[4]{188461} \sum_{k=0}^{\infty} \frac{(-1)^k}{1 + 2k}$$

$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -\frac{21}{2} + \frac{\sqrt{5}}{2} + \sum_{k=0}^{\infty} -\frac{4(-1)^k \ 3^{3/4} \times 1195^{-1-2k} \ \sqrt[4]{188461} \ \left(5^{1+2k} - 4 \times 239^{1+2k}\right)}{1 + 2k}$$

$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -\frac{21}{2} + \frac{\sqrt{5}}{2} + 3^{3/4} \sqrt[4]{188461} \sum_{k=0}^{\infty} \left(-\frac{1}{4}\right)^k \left(\frac{1}{1+2k} + \frac{2}{1+4k} + \frac{1}{3+4k}\right)^{k}$$

#### **Integral representations:**

$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -\frac{21}{2} + \frac{\sqrt{5}}{2} + 4 \times 3^{3/4} \sqrt[4]{188461} \int_0^1 \sqrt{1 - t^2} dt$$
  
$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -\frac{21}{2} + \frac{\sqrt{5}}{2} + 2 \times 3^{3/4} \sqrt[4]{188461} \int_0^1 \frac{1}{\sqrt{1 - t^2}} dt$$
  
$$\pi \sqrt[4]{135^3 + 138^3} - 11 + \phi = -\frac{21}{2} + \frac{\sqrt{5}}{2} + 2 \times 3^{3/4} \sqrt[4]{188461} \int_0^\infty \frac{1}{1 + t^2} dt$$

Pi\*(135^3+138^3)^1/4-29+4+golden ratio

#### Input:

 $\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi$ 

 $\phi$  is the golden ratio

#### **Result:**

 $\phi - 25 + 3^{3/4} \sqrt[4]{188461} \pi$ 

#### **Decimal approximation:**

125.8274348634976023813964821274141235673143122042902745354...

125.82743486... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

#### **Property:**

 $-25 + \phi + 3^{3/4} \sqrt[4]{188461} \pi$  is a transcendental number

#### **Alternate forms:**

$$\frac{1}{2} \left( -49 + \sqrt{5} + 2 \times 3^{3/4} \sqrt[4]{188461} \pi \right)$$
$$-\frac{49}{2} + \frac{\sqrt{5}}{2} + 3^{3/4} \sqrt[4]{188461} \pi$$
$$-25 + \frac{1}{2} \left( 1 + \sqrt{5} \right) + 3^{3/4} \sqrt[4]{188461} \pi$$

#### Alternative representations:

$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -25 - 2\cos(216^\circ) + \pi \sqrt[4]{135^3 + 138^3}$$
  
$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -25 + 2\cos\left(\frac{\pi}{5}\right) + \pi \sqrt[4]{135^3 + 138^3}$$
  
$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -25 - 2\cos(216^\circ) + 180^\circ \sqrt[4]{135^3 + 138^3}$$

#### Series representations:

$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -\frac{49}{2} + \frac{\sqrt{5}}{2} + 4 \times 3^{3/4} \sqrt[4]{188461} \sum_{k=0}^{\infty} \frac{(-1)^k}{1 + 2k}$$
$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -\frac{49}{2} + \frac{\sqrt{5}}{2} + \sum_{k=0}^{\infty} -\frac{4(-1)^k 3^{3/4} \times 1195^{-1-2k} \sqrt[4]{188461} (5^{1+2k} - 4 \times 239^{1+2k})}{1 + 2k}$$

$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -\frac{49}{2} + \frac{\sqrt{5}}{2} + 3^{3/4} \sqrt[4]{188461} \sum_{k=0}^{\infty} \left(-\frac{1}{4}\right)^k \left(\frac{1}{1+2k} + \frac{2}{1+4k} + \frac{1}{3+4k}\right)$$

#### Integral representations:

$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -\frac{49}{2} + \frac{\sqrt{5}}{2} + 4 \times 3^{3/4} \sqrt[4]{188461} \int_0^1 \sqrt{1 - t^2} dt$$
  
$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -\frac{49}{2} + \frac{\sqrt{5}}{2} + 2 \times 3^{3/4} \sqrt[4]{188461} \int_0^1 \frac{1}{\sqrt{1 - t^2}} dt$$
  
$$\pi \sqrt[4]{135^3 + 138^3} - 29 + 4 + \phi = -\frac{49}{2} + \frac{\sqrt{5}}{2} + 2 \times 3^{3/4} \sqrt[4]{188461} \int_0^\infty \frac{1}{1 + t^2} dt$$

We have also:

(135^3+138^3)^1/31

#### Input:

 $\sqrt[31]{135^3 + 138^3}$ 

**Result:**  $3^{3/31} \sqrt[31]{188461}$ 

#### **Decimal approximation:**

1.645665103021282483289882047076548993334552545217523451761...

$$1.645665103....\approx \zeta(2)=\frac{\pi^2}{6}=1.644934...$$

#### Alternate form:

root of  $x^{31} - 5088447$  near x = 1.64567

Now, we have:

$$f_R^* = \frac{4}{49\pi} \left[ \frac{80 \arctan(y^{1/2})}{(1+y)^2 (3y+1)y^{1/2}} + \frac{3y^4 + 41y^3 + 25y^2 - 589y - 240}{3(1+y)^4 (1+3y)} \right]$$

 $c \simeq 0.275/R^2.$  $y = c R^2$ 

y = 0.275

4/(49Pi)\*(((80 atan(0.275^1/2)))/(((1+0.275)^2(3\*0.275+1)0.275^1/2))+(3\*0.275^4+41\*0.275^3+2 5\*0.275^2-589\*0.275-240)/(3(1+0.275)^4(1+3\*0.275))

#### **Input:**

$$\frac{4}{49\pi} \left( \frac{80\tan^{-1}(\sqrt{0.275})}{(1+0.275)^2 (3\times0.275+1)\sqrt{0.275}} + \frac{3\times0.275^4 + 41\times0.275^3 + 25\times0.275^2 - 589\times0.275 - 240}{3 (1+0.275)^4 (1+3\times0.275)} \right)$$

 $\tan^{-1}(x)$  is the inverse tangent function

#### **Result:**

-0.0716284...

(result in radians)

-0.0716284...

#### Alternative representations:



#### Series representations:



$$\frac{\left(\frac{80 \tan^{-1}(\sqrt{0.275})}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3 (1+0.275)^4 (1+3 \times 0.275)}\right) 4}{49 \pi} = \frac{49 \pi}{\pi}$$

 $F_n$  is the  $n^{ ext{th}}$  Fibonacci number

 $\log(x)$  is the natural logarithm

i is the imaginary unit

#### Integral representations:

$$\frac{\left(\frac{80 \tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3 (1+0.275)^4 (1+3 \times 0.275)}\right) 4}{-\frac{2.2524}{\pi} + \frac{2.20126}{\pi} \int_0^1 \frac{1}{1+0.275 t^2} dt$$

$$\frac{\left(\frac{80 \tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3 (1+0.275)^4 (1+3 \times 0.275)}\right) 4}{-\frac{2.2524}{\pi} - \frac{0.550314 i}{\pi^{5/2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} e^{-0.242946 s} \Gamma\left(\frac{1}{2} - s\right) \Gamma(1-s) \Gamma(s)^2 ds \text{ for } 0 < \gamma < \frac{1}{2}$$

$$\frac{\left(\frac{80 \tan^{-1}\left(\sqrt{0.275}\right)}{\pi^{5/2} (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3 (1+0.275)^4 (1+3 \times 0.275)}\right) 4}{-\frac{2.2524}{\pi} - \frac{0.550314 i}{\pi^{5/2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} e^{-0.242946 s} \Gamma\left(\frac{1}{2} - s\right) \Gamma(1-s) \Gamma(s)^2 ds \text{ for } 0 < \gamma < \frac{1}{2} \right) }{\frac{49 \pi}{3 (1+0.275)^4 (1+3 \times 0.275)}} = \frac{49 \pi}{3 (1+0.275)^4 (1+3 \times 0.275)} ds \text{ for } 0 < \gamma < \frac{1}{2}$$

#### **Continued fraction representations:**





| $\frac{80 \tan^{-1} (\sqrt{(1+0.275)^2} (3 \times 0.275)^2)}{(3 \times 0.275)^2}$ | $\frac{0.275}{75+1} + \frac{3 \times 0.275^4}{75+1} + \frac{3}{10} + $ | $\frac{41 \times 0.275^{3} + 25 \times 0.275^{2} - 589 \times 0.275 - 240}{3(1+0.275)^{4}(1+3 \times 0.275)} 4$ |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                   | 49 л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                           |
| _0.0511420_                                                                       | 0.605346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-0.0511429 - \frac{0.605346}{3+\frac{2.475}{5+1.1}}$                                                           |
| 0.0311427                                                                         | $3 + \underset{k=1}{\overset{\infty}{K}} \frac{0.275 (1 + (-1)^{1+k} + k)^2}{3 + 2 k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $7+\frac{6.875}{9+\frac{4.4}{11+}}$                                                                             |
|                                                                                   | π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | π                                                                                                               |



 $\mathop{\mathrm{K}}\limits_{k=k_1}^{k_2} a_k/b_k$  is a continued fraction

## $-128/((((4/(49Pi)*(((80 atan(0.275^{1/2})))/(((1+0.275)^{2}(3*0.275+1)0.275^{1/2}))+(3*0.275^{4}+41*0.275^{3}+25*0.275^{2}-589*0.275^{2}-240)/(3(1+0.275)^{4}(1+3*0.275)))))))-55-3$

#### **Input:**

|          |                                                                                                               |   | 128                                                                                                                                                                  | 55 3       |
|----------|---------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 4<br>49π | $\left(\frac{80 \tan^{-1} \left(\sqrt{0.275}\right)}{(1{+}0.275)^2 (3{\times}0.275{+}1) \sqrt{0.275}}\right.$ | + | $\left. \frac{_{3\times0.275}^{4}+_{41\times0.275}^{3}+_{25\times0.275}^{2}{589\times0.275-240}}{_{3}\left(1+0.275\right)^{4}\left(1+_{3\times0.275}\right)}\right)$ | ) - 55 - 5 |

 $\tan^{-1}(x)$  is the inverse tangent function

#### **Result:**

1729.00... (result in radians)

#### 1729

This result is very near to the mass of candidate glueball  $f_0(1710)$  meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross– Zagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

#### 128 - 55 - 3 = 80 tan<sup>-1</sup> (√0.275) $3 \times 0.275^{4} + 41 \times 0.275^{3} + 25 \times 0.275^{2} - 589 \times 0.275 - 240$ (1+0.275)<sup>2</sup> (3×0.275+1) √0.275 3 (1+0.275)<sup>4</sup> (1+3×0.275) 49π 128 -58 - $80 \text{ sc}^{-1} (\sqrt{0.275} \text{ p})$ -401.975+25×0.275<sup>2</sup>+41×0.275<sup>3</sup>+3×0.275<sup>4</sup> 4 $1.825\sqrt{0.275}$ $1.275^{2}$ $5.475 \times 1.275^4$ 49π 128 -55-3= $80 \tan^{-1}(\sqrt{0.275})$ $3 \times 0.275^{4} + 41 \times 0.275^{3} + 25 \times 0.275^{2} - 589 \times 0.275 - 240$ (1+0.275)<sup>2</sup> (3×0.275+1) √0.275 3 (1+0.275)<sup>4</sup> (1+3×0.275) 49π 128 -58 - -80 tan<sup>-1</sup> (1,√0.275 $-401.975+25 \times 0.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}$ $5.475 \times 1.275^4$ $1.825\sqrt{0.275}$ 1.275 49π 128 - - 55 - 3 = $+\frac{3 \times 0.275^{4} + 41 \times 0.275^{3} + 25 \times 0.275^{2} - 589 \times 0.275 - 240}{2}$ $80 \tan^{-1}(\sqrt{0.275})$ (1+0.275)<sup>2</sup> (3×0.275+1) √0.275 3 (1+0.275)<sup>4</sup> (1+3×0.275) 49π 128 -58 -80 cot- $-401.975+25 \times 0.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}$ 0.275 $1.825\sqrt{0.275}$ $1.275^2$ $5.475 \times 1.275^4$ 49π

#### Alternative representations:

#### Series representations:

128





$$\frac{128}{\left(\frac{80\tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2(3\times0.275+1)\sqrt{0.275}} + \frac{3\times0.275^4+41\times0.275^3+25\times0.275^2-589\times0.275-240}{3(1+0.275)^4(1+3\times0.275)}\right)^4} - 55 - 3 = \frac{128}{49\pi} - 58 + (30.4934\pi) \left/ \left(0.536588 - \tan^{-1}(x) + \pi \left\lfloor \frac{\arg(i(-0.524404 + x))}{2\pi} \right\rfloor - \frac{128}{2\pi} \right\rfloor - 58 + (30.4934\pi) \left(0.536588 - \tan^{-1}(x) + \pi \left\lfloor \frac{\arg(i(-0.524404 + x))}{2\pi} \right\rfloor - \frac{128}{2\pi} \right) - \frac{128}{2\pi} - 58 + \frac{128}{2\pi} \left(\frac{-(-i-x)^{-k} + (i-x)^{-k}}{k}\right)(0.524404 - x)^k}{k} \right) \text{ for } (i \ x \in \mathbb{R} \text{ and } i \ x > 1)$$

 $F_n$  is the  $n^{
m th}$  Fibonacci number

 $\arg(z)$  is the complex argument

 $\lfloor x 
floor$  is the floor function

i is the imaginary unit

R is the set of real numbers

#### Integral representations:

\_

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128                                                                                                                                         | EE 2                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $\left(\frac{80 \tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0}{(3 \times 0.275+1) \sqrt{0.275+1}} + \frac{3 \times 0}{(3 \times 0.275+1) \sqrt{0.275+1}} + \frac{3 \times 0}{(3 \times 0$ | $\frac{0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3(1 + 0.275)^4(1 + 3 \times 0.275)}$                       |                      |
| $-58 + \frac{58.1486 \pi}{1.02323 - \int_0^1 \frac{1}{1+0.275 t^2} d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49π<br> t                                                                                                                                   |                      |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128                                                                                                                                         | 55 2                 |
| $\left(\frac{80 \tan^{-1}(\sqrt{0.275})}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0}{(1+0.275+1) \sqrt{0.275}} + \frac{3 \times 0}{(1+0.27$                                                                                                                                                                                                                                                                             | $\frac{0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3(1 + 0.275)^4(1 + 3 \times 0.275)}$                       | =<br> 4              |
| F0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>49</sup> л<br>1568 л                                                                                                                   | f== 0 1              |
| $-36 + \frac{1}{27.5919 + \frac{6.74135i}{\pi^{3/2}} \int_{-i}^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sum_{\substack{\infty+\gamma\\\infty+\gamma}}^{\infty+\gamma} e^{-0.242946s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^2 ds$ | $1010 < \gamma < -2$ |

$$-\frac{128}{\left[\frac{80\tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^{2}(3\times0.275+1)\sqrt{0.275}}+\frac{3\times0.275^{4}+41\times0.275^{3}+25\times0.275^{2}-589\times0.275-240}{3(1+0.275)^{4}(1+3\times0.275)}\right]^{4}} -55-3 = \frac{1}{12} -58 + \frac{56.8283i\pi^{2}}{i\pi^{2}}}{\frac{56.8283i\pi^{2}}{i\pi^{2}}}{i\pi - 0.244324\int_{-i\infty+\gamma}^{i\infty+\gamma}\frac{e^{1.29098s}\Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}ds} \quad \text{for } 0 < \gamma < \frac{1}{2}$$

#### **Continued fraction representations:**



|                                                                                    | 128                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EE     |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $80 \tan^{-1} (\sqrt{0.275})$                                                      | 3×0.275 <sup>4</sup> +41>                                                                   | 0.275 <sup>3</sup> +25×0.275 <sup>2</sup> -5                                        | 589 × 0.275-240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 55 - |
| (1+0.275) <sup>2</sup> (3×0.275+1) v                                               | 0.275 + 3                                                                                   | $(1+0.275)^4$ $(1+3\times0.275)^4$                                                  | 5) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 150                                                                                | 49 л<br>58 л                                                                                |                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| -27.5919 + -<br>14                                                                 | $ = \frac{26.9654}{K} = \frac{0.275(1-2k)^2}{1.275+1.45k} $                                 |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| F.0                                                                                | 1568 π                                                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| -27.5919 +                                                                         |                                                                                             | 75<br>13.475<br>075 +                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                                                                                    | 128                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 55 - |
| $80 \tan^{-1} \left( \sqrt{0.275} \right)$<br>(1+0.275) <sup>2</sup> (3×0.275+1) v | $\frac{3 \times 0.275^4 + 41}{3}$                                                           | $(0.275^3 + 25 \times 0.275^2 - 5)^{-5}$<br>$(1+0.275)^4$ $(1+3 \times 0.275)^{-5}$ | $\left(\frac{589 \times 0.275 - 240}{5}\right)^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 55 - |
| 59                                                                                 | <sup>49 л</sup>                                                                             | 50                                                                                  | 1568 π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| -360.6265                                                                          | $\frac{7.41548}{\sum_{k=1}^{\infty} \frac{0.275 \left(1 + (-1)^{1+k} + k\right)^2}{3+2 k}}$ | -0.626                                                                              | $5 - \frac{7.41548}{3+\frac{2.475}{5+\frac{1.1}{7+\frac{6.875}{7+\frac{6.875}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+\frac{5}{7+1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$ | 5      |

6.875 9+4.4 11+...



 $\mathop{\mathbf{K}}\limits_{k=k_1}^{k_2} a_k/b_k$  is a continued fraction

 $\begin{array}{l} -128/((((4/(49\text{Pi})*(((80+120)))/(((1+0.275))^{2}(3*0.275+1)0.275^{1}/2)))+(3*0.275^{4}+41*0.275^{3}+25*0.275^{2}-589*0.275^{2}-240)/(3(1+0.275)^{4}(1+3*0.275)))))))-\text{Pi} \end{array}$ 

#### **Input:**

|         |                                                                                                              | 128                                                                                                                               |   |
|---------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---|
| <br>49π | $\left(\frac{80 \tan^{-1} \Bigl(\sqrt{0.275}\Bigr)}{(1{+}0.275)^2 (3{\times}0.275{+}1) \sqrt{0.275}}\right.$ | $+ \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3(1 + 0.275)^4 (1 + 3 \times 0.275)}$ | ) |

 $\tan^{-1}(x)$  is the inverse tangent function

#### **Result:**

1783.86...

(result in radians)

1783.86... result in the range of the hypothetical mass of Gluino (gluino = 1785.16 GeV).

#### Alternative representations:



#### Series representations:





#### **Integral representations:**





#### **Continued fraction representations:**







#### -55/((((4/(49Pi)\*(((80 atan(0.275^1/2)))/(((1+0.275)^2(3\*0.275+1)0.275^1/2))+(3\*0.275^4+41\*0.275^3+2 5\*0.275^2-589\*0.275-240)/(3(1+0.275)^4(1+3\*0.275))))))-34-Pi-sqrt7

#### Input:

$$-\frac{55}{\frac{4}{49\pi}\left(\frac{80\tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2(3\times0.275+1)\sqrt{0.275}}+\frac{3\times0.275^4+41\times0.275^3+25\times0.275^2-589\times0.275-240}{3(1+0.275)^4(1+3\times0.275)}\right)}{34-\pi-\sqrt{7}}$$

 $\tan^{-1}(x)$  is the inverse tangent function

#### **Result:**

728.064...

(result in radians)

#### $728.064... \approx 728$ (Ramanujan taxicab number)

#### **Alternative representations:**





Series representations:

| -                                                                                                                    | 55                                                                                                                   | 2000                                                 |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $\left(\frac{80 \tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}}+\frac{3}{2}\right)$ | $\times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 53$<br>3 (1+0.275) <sup>4</sup> (1+3 × 0.275) <sup>4</sup> | $(589 \times 0.275 - 240) = 34$                      |
| $34 - \pi - \sqrt{7} = -34 - \pi +$                                                                                  | <sup>49 л</sup><br>13.1026 л                                                                                         |                                                      |
|                                                                                                                      | $0.536588 - \tan^{-1}(0.524404)$                                                                                     | ł)                                                   |
| $\exp\left(i\pi\left\lfloor\frac{\arg(7-x)}{2\pi}\right\rfloor\right)\sqrt{x}$                                       | $\sum_{k=0}^{\infty} \frac{(-1)^{k} (7-x)^{k} x^{k} \left(-\frac{2}{2}\right)_{k}}{k!}$                              | for $(x \in \mathbb{R} \text{ and } x < \mathbb{R})$ |

$$\begin{split} \underbrace{\left[\frac{80 \tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2 (3\times0.275+1) \sqrt{0.275}} + \frac{3\times0.275^4 + 41\times0.275^3 + 25\times0.275^2 - 589\times0.275 - 240}{3(1+0.275)^4 (1+3\times0.275)}\right]_4}{3(1+0.275)^4 (1+3\times0.275)}\right]_4} \\ 34 - \pi - \sqrt{7} &= -\left[\left(-18.244 + 12.566 \pi - 0.536588 \sqrt{6} \sum_{k=0}^{\infty} 6^{-k} \left(\frac{1}{2} \atop k\right) + 34 \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^k 1.04881^{1+2k} F_{1+2k} \left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2k}}{1+2k}}{1+2k}} + \frac{34 \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^k 1.04881^{1+2k} F_{1+2k} \left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2k}}{1+2k}}{1+2k} + \sqrt{6} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k_2} 1.04881^{1+2k_2} \times 6^{-k_1} \left(\frac{1}{2} \atop k_1\right) F_{1+2k_2} \left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2k_2}}{1+2k_2}\right]}{1+2k_2} \\ &\left(-0.536588 + \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^k 1.04881^{1+2k} F_{1+2k} \left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2k}}{1+2k}\right)\right] \end{split}$$

$$\frac{55}{\left(\frac{80 \tan^{-1}(\sqrt{0.275})}{(1+0.275)^2(3 \times 0.275+1)\sqrt{0.275}} + \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3(1+0.275)^4(1+3 \times 0.275)}\right)^4} - \frac{49\pi}{34 - \pi - \sqrt{7}} = -34 - \pi - (13.1026\pi) / \left(-0.536588 + \tan^{-1}(x) - \pi \left\lfloor \frac{\arg(i(-0.524404 + x))}{2\pi} \right\rfloor \right) + 0.5i\sum_{k=1}^{\infty} \frac{\left(-(-i-x)^{-k} + (i-x)^{-k}\right)(0.524404 - x)^k}{k}}{k} \right) - \exp\left(i\pi \left\lfloor \frac{\arg(7-x)}{2\pi} \right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^k (7-x)^k x^{-k} \left(-\frac{1}{2}\right)_k}{k!}$$
for (*i* x \in \mathbb{R} and *i* x > 1 and x \in \mathbb{R} and x < 0)

#### Integral representations:

$$-\frac{55}{\left[\frac{80 \tan^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \cdot 0.275+1)\sqrt{0.275}} + \frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right]^{4}}{34 - \pi - \sqrt{7} = -34 - \pi + \frac{49\pi}{1.02323} - \int_{0}^{1} \frac{1}{1+0.275t^{2}} dt - \sqrt{7}$$

$$-\frac{55}{\left[\frac{80 \tan^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1)\sqrt{0.275}} + \frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right]^{4}} -\frac{49\pi}{34 - \pi - \sqrt{7}} = -34 - \pi + \frac{24.4184 \pi^{5/2}}{3(1 + 0.275)^{4}(1+3 \times 0.275)} - \sqrt{7} \text{ for } 0 < \gamma < \frac{1}{2}$$

$$-\frac{55}{\left[\frac{80 \tan^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1)\sqrt{0.275}} + \frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1 + 0.275)^{4}(1+3 \times 0.275)}\right]^{4}} - \frac{49\pi}{34 - \pi - \sqrt{7}} + \frac{24.4184 \pi^{5/2}}{\pi^{3/2} + 0.244324 i \int_{-i \text{ (w+\gamma)}}^{i \text{ (w+\gamma)}} e^{-0.242946s} \Gamma(\frac{1}{2} - s) \Gamma(1 - s) \Gamma(s)^{2} ds} - \sqrt{7} \text{ for } 0 < \gamma < \frac{1}{2}$$

$$34 - \pi - \sqrt{7} = \frac{49\pi}{34 - \pi - \sqrt{7}} = \frac{24.4184 i \pi^2}{i \pi - 0.244324 \int_{-i \infty + \gamma}^{i \infty + \gamma} \frac{e^{1.29098 s} \Gamma(\frac{1}{2} - s) \Gamma(1 - s) \Gamma(s)}{\Gamma(\frac{3}{2} - s)} ds} - \sqrt{7} \text{ for } 0 < \gamma < \frac{1}{2}$$

### **Continued fraction representations:** 55

$$\frac{\left(\frac{80 \tan^{-1}(\sqrt{0.275})}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3 (1+0.275)^4 (1+3 \times 0.275)}\right)^4}{3 (1+0.275)^4 (1+3 \times 0.275)}\right)^4}$$

$$34 - \pi - \sqrt{7} = -34 + \pi \left(-1 + \frac{2695}{110.368 - \frac{107.862}{1 + \frac{K}{1 + 2k}}} - \sqrt{7} = -34 - \sqrt{7} + \pi \left(-1 + \frac{2695}{110.368 - \frac{107.862}{1 + \frac{0.275}{3 + \frac{11}{5 + \frac{2.475}{3 + \frac{11}{9 + \dots}}}}\right)^2\right)^{-1}$$





 $\mathop{\mathrm{K}}\limits_{k=k_1}^{k_2} a_k/b_k$  is a continued fraction

#### 

#### Input:

11

| <u>4</u><br>49 л | $\left(\frac{80 \tan^{-1}(\sqrt{0.275})}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}}\right)$ | + | $(3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240)$<br>3 (1+0.275) <sup>4</sup> (1+3 \times 0.275) |
|------------------|-----------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------|
| 13 -             | $-3+\frac{1}{2}$                                                                              |   |                                                                                                                                      |

 $\tan^{-1}(x)$  is the inverse tangent function

#### **Result:**

138.070...

(result in radians)

#### $138.070... \approx 138$ (Ramanujan taxicab number)

#### Alternative representations:





#### Series representations:

|                                                                                           | 11                                                                                                                                                                |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{80 \tan^{-1} (\sqrt{0.275})^2 (3 \times 0.275+1)}{(1+0.275)^2 (3 \times 0.275+1)}$ | $\frac{1}{\sqrt{0.275}} + \frac{3 \times 0.275^{4} + 41 \times 0.275^{3} + 25 \times 0.275^{2} - 589 \times 0.275 - 240}{3 (1 + 0.275)^{4} (1 + 3 \times 0.275)}$ |
| 12 2. 1 31                                                                                | <sup>49π</sup><br>2.62053 π                                                                                                                                       |
| $13 - 3 + \frac{1}{2} = -\frac{1}{2}$                                                     | $-0.536588 + \sum_{k=0}^{\infty} \frac{(-1)^k 0.524404^{1+2k}}{1+2k}$                                                                                             |

| $80 \tan^{-1} \left( \sqrt{0.275} \right)$     | $+3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240$ |
|------------------------------------------------|--------------------------------------------------------------------------------------|
| $(40.275)^2 (3 \times 0.275 + 1) \sqrt{0.275}$ | 75 3 (1+0.275) <sup>4</sup> (1+3×0.275)                                              |
| -                                              | 49 π                                                                                 |
| 13 - 3 +                                       |                                                                                      |
| 13-3+2                                         |                                                                                      |
| 31                                             | $5.24105 \pi$                                                                        |



#### **Integral representations:**

$$\frac{11}{\left(\frac{80\tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2\left(3\times0.275+1\right)\sqrt{0.275}} + \frac{3\times0.275^4+41\times0.275^3+25\times0.275^2-589\times0.275-240}{3\left(1+0.275\right)^4\left(1+3\times0.275\right)}\right)^4}{13-3+\frac{1}{2}=-\frac{31}{2}+\frac{4.99715\pi}{1.02323-\int_0^1\frac{1}{1+0.275t^2}\,dt}$$

| $80 \tan^{-1}(\sqrt{0.275})$             | $_{+3\times0.275^{4}+41\times0.275^{3}+25\times0.275^{2}-58}$ | 9×0.275-240 |
|------------------------------------------|---------------------------------------------------------------|-------------|
| $+0.275)^2$ (3 × 0.275+1) $\sqrt{0.275}$ | 3 (1+0.275) <sup>4</sup> (1+3×0.275)                          | ).          |
|                                          | 49 π                                                          |             |
| 13 - 3 + - =                             |                                                               |             |
| 2                                        |                                                               |             |
| 31                                       | 4.88368 $\pi^{5/2}$                                           | 6 0         |
|                                          | Cianta 0.242046 (1)                                           | for 0 <     |

| $80 \tan^{-1} \left( \sqrt{2} \right)$ | $\frac{-13}{0.275}$                                                                                       |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------|
| (1+0.275) <sup>2</sup> (3×0.27         | $(5+1)\sqrt{0.275}^{+}$ 3 $(1+0.275)^{4}$ $(1+3\times0.275)$                                              |
| 1 31                                   | $49\pi$<br>4.88368 <i>i</i> $\pi^2$                                                                       |
| $\frac{-}{2} = -\frac{-}{2} +$         | $e^{1.29098 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) \qquad 1010 < \gamma < \frac{1}{2}$ |

### **Continued fraction representations:** 11

| 80 tan                           | $-1(\sqrt{0.275})$ | a                                                                                                 | 0753.05                  |                                                                              |
|----------------------------------|--------------------|---------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|
| (1+0.275) <sup>2</sup> (3        | ×0.275+1) √0       | +3×0.275 +41×0<br>3 (1-                                                                           | +0.275) <sup>4</sup> (1+ | +3 × 0.275) 4                                                                |
| . 1                              | 31                 | <sup>49 л</sup><br>539 л                                                                          | 31                       | 539 π                                                                        |
| $3 + \frac{-}{2} = -\frac{-}{2}$ | 2 + 110            | $.368 - \frac{107.862}{1+\underset{k=1}{\overset{\infty}{\mathrm{M}}} \frac{0.275  k^2}{1+2  k}}$ | = +                      | $\frac{110.368 - \frac{107.862}{1 + \frac{0.275}{3 + \frac{1.1}{5 - 2.47}}}$ |
|                                  |                    | k=1 1+2 k                                                                                         |                          | $3+\frac{3}{5+\frac{2}{7+}}$                                                 |

| a | - 10 |  |
|---|------|--|
|   |      |  |
|   |      |  |
|   |      |  |

| $\left(\frac{80 \tan^{-1} \left(\sqrt{0}\right)}{(1+0.275)^2 (3 \times 0.275)^2}\right)^{-1}$ | $\frac{0.275}{5+1}\sqrt{0.275}^{+3\times0.2}$                        | 75 <sup>4</sup> +41 × 0.275 <sup>3</sup> +<br>3 (1+0.275                                                                                    | $(1+3\times0.275^2-589\times0.275-240)^4$ |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| $13 - 3 + \frac{1}{2} - \frac{1}{2}$                                                          | 31                                                                   | <sup>49 π</sup><br>539 π                                                                                                                    |                                           |
| 2                                                                                             | 2 110.368 -                                                          | $\frac{107.862}{1+\overset{\infty}{K}} \frac{1.1 (0.5-k)}{1.275+1.4}$                                                                       | $\frac{-}{5k}$                            |
| 31                                                                                            | 539 π                                                                | K=1 1.275 (1.)                                                                                                                              |                                           |
| 2 110.368                                                                                     | $-\frac{107.3}{1+\frac{0.2}{2.725+\frac{0.2}{4.175+\frac{0.2}{5}}}}$ | $     \begin{array}{r}       862 \\       275 \\       2.475 \\       6.875 \\       5.625 + \frac{13.475}{7.075 + \dots}     \end{array} $ |                                           |

| - 12 |  |   |  |
|------|--|---|--|
|      |  | L |  |
|      |  | L |  |



 $\mathop{\mathrm{K}}\limits_{k=k_1}^{k_2} a_k \, / \, b_k$  is a continued fraction

## $-11/((((4/(49Pi)*(((80 atan(0.275^{1/2})))/(((1+0.275)^{2}(3*0.275+1)0.275^{1/2}))+(3*0.275^{4}+41*0.275^{3}+25*0.275^{2}-589*0.275-240)/(3(1+0.275)^{4}(1+3*0.275)))))))-13-5-1/2$

#### **Input:**

 $\frac{11}{\frac{4}{49\pi} \left(\frac{80 \tan^{-1} \left(\sqrt{0.275}\right)}{(1+0.275)^2 (3\times0.275+1) \sqrt{0.275}} + \frac{3\times0.275^4 + 41\times0.275^3 + 25\times0.275^2 - 589\times0.275 - 240}{3 (1+0.275)^4 (1+3\times0.275)}\right)}{13 - 5 - \frac{1}{2}}$ 

 $\tan^{-1}(x)$  is the inverse tangent function

#### **Result:**

135.070...

(result in radians)

#### $135.070... \approx 135$ (Ramanujan taxicab number)

#### Alternative representations:



$$-\frac{11}{\left(\frac{80 \tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^{2} (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0.275^{4} + 41 \times 0.275^{3} + 25 \times 0.275^{2} - 589 \times 0.275 - 240}{3 (1+0.275)^{4} (1+3 \times 0.275)}\right)^{4}} - 13 - 5 - \frac{13}{2} - \frac{13}{2} - \frac{49\pi}{11} + \frac{49\pi}{11} + \frac{11}{4\left(\frac{80 \cot^{-1}\left(\frac{1}{\sqrt{0.275}}\right)}{1.825 \sqrt{0.275} 1.275^{2}} + \frac{-401.975 + 25 \times 0.275^{2} + 41 \times 0.275^{3} + 3 \times 0.275^{4}}{5.475 \times 1.275^{4}}\right)}} - \frac{49\pi}{12} + \frac{49\pi}{12} + \frac{11}{49\pi} + \frac{11}{12} +$$

#### Series representations:

|                                                                            | 11                                                                                                                                                                    |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{80 \tan^{-1} (\sqrt{0.27})^2}{(1+0.275)^2} (3 \times 0.275 + 1)^2}$ | $\frac{\overline{5}}{)}_{)\sqrt{0.275}} + \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3 (1+0.275)^4 (1+3 \times 0.275)}$ |
| 12 5 1 3                                                                   | 7 2.62053 π                                                                                                                                                           |
| 13 - 5 =                                                                   | $\frac{1}{-0.536588 + \sum_{k=0}^{\infty} \frac{(-1)^k 0.524404^{1+2k}}{1+2k}}{1+2k}}$                                                                                |

| $80 \tan^{-1}(\sqrt{0.275})$<br>$(3 \lor 0.275\pm1)\sqrt{0.275}$ | $+\frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240}{3(1+0.275)^4 (1+3 \times 0.275)}$ |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                | 49π                                                                                                                          |
| $-5 - \frac{1}{2} =$                                             |                                                                                                                              |
| 2                                                                | 5 24105 -                                                                                                                    |



#### **Integral representations:**

\_

$$\frac{11}{\left(\frac{80 \tan^{-1}\left(\sqrt{0.275}\right)}{(1+0.275)^2 (3 \times 0.275+1) \sqrt{0.275}} + \frac{3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 5.89 \times 0.275 - 240}{3 (1+0.275)^4 (1+3 \times 0.275)}\right) 4}}{13 - 5 - \frac{1}{2} = -\frac{37}{2} + \frac{4.99715 \pi}{1.02323 - \int_0^1 \frac{1}{1+0.275t^2} dt}$$
| $80 \tan^{-1}(\sqrt{0.275})$                   | 3×0.275 <sup>4</sup> +41×0.275 <sup>3</sup> +25×0.275 <sup>2</sup> - | 589 × 0.275-240 |
|------------------------------------------------|----------------------------------------------------------------------|-----------------|
| $(40.275)^2 (3 \times 0.275 + 1) \sqrt{0.275}$ | 3 (1+0.275) <sup>4</sup> (1+3×0.27                                   | 5)              |
|                                                | 49 л                                                                 |                 |
| $13 - 5 - \frac{1}{-} =$                       |                                                                      |                 |
| 2                                              |                                                                      |                 |
| 37                                             | $4.88368 \pi^{5/2}$                                                  | 6 0             |
| $-\frac{1}{2} + \frac{3/2}{3/2} = 0.011001$    | $(i_{0}) + y = 0.242946s = (1) = 1$                                  | IOF 0 < 2       |

| $80 \tan^{-1} \left( \sqrt{0.275} \right)$ | $(3 \times 0.275^4 + 41 \times 0.275^3 + 25 \times 0.275^2 - 589 \times 0.275 - 240)$ |
|--------------------------------------------|---------------------------------------------------------------------------------------|
| $(+0.275)^2 (3 \times 0.275 + 1) $         | 0.275 + 3 (1+0.275) <sup>4</sup> (1+3×0.275)                                          |
| 1 37                                       | $49\pi$<br>4.88368 <i>i</i> $\pi^2$                                                   |
| $\frac{-}{2} = -\frac{-}{2} +$             | $e^{1.29098 s} \Gamma(\frac{1}{-s}) \Gamma(1-s) \Gamma(s)$                            |

## **Continued fraction representations:** 11

| 80 ta                   | $m^{-1}(\sqrt{0.275})$      | 4                                                                              |                                                              | .2                                                           |
|-------------------------|-----------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 1+0.275) <sup>2</sup> ( | (3×0.275+1) √               | 0.275 + 3×0.275 + 41×0<br>0.275 3 (                                            | 0.275 <sup>9</sup> +25×0.275<br>1+0.275) <sup>4</sup> (1+3×0 | 0.275) 4                                                     |
| - 1                     | 37                          | <sup>49 л</sup><br>539 л                                                       | 37                                                           | 539 π                                                        |
| 5==                     | $-\frac{1}{2}+\frac{1}{11}$ | $0.368 - \frac{107.862}{\substack{1+\text{K}\\k=1}} \frac{0.275  k^2}{1+2  k}$ | $=-\frac{1}{2}+\frac{1}{11}$                                 | $0.368 - \frac{107.862}{1+\frac{0.275}{3+\frac{1.1}{2.47}}}$ |
|                         |                             |                                                                                |                                                              | 5+ <u>2.47</u><br>7+ <u>4</u>                                |

| a | - 10 |  |
|---|------|--|
|   |      |  |
|   |      |  |
|   |      |  |

| $\frac{80 \tan^{-1} (\sqrt{(1+0.275)^2} (3 \times 0.2))}{(1+0.275)^2}$ | $(\overline{0.275})$<br>$(75+1)\sqrt{0.275}$ + $(3 \times 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 275 <sup>4</sup> +41 × 0.275 <sup>3</sup> +2<br>3 (1+0.275)                                               | $\left(\frac{25 \times 0.275^2 - 589 \times 0.275 - 240}{4(1 + 3 \times 0.275)}\right)^2$ |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 12 5 1                                                                 | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>49</sup> л<br>539 л                                                                                  |                                                                                           |
| 13 - 5 = 2                                                             | 2 110.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-\frac{107.862}{1+\overset{\infty}{K}\frac{1.1\ (0.5-k)}{1.275+1.49}}$                                   | $\frac{1}{2} = \frac{1}{2}$                                                               |
| 37                                                                     | 539 π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                           |
| 2 + 110.368                                                            | $3 - \frac{100}{1 + \frac{00}{2.725 + \frac{00}{4.175 - \frac{00}{4.175 -$ | $\begin{array}{r} 7.862 \\ 0.275 \\ 2.475 \\ + 6.875 \\ 5.625 + \frac{13.475}{7.075 + \dots} \end{array}$ |                                                                                           |

| -  | - 11 |  |
|----|------|--|
|    |      |  |
|    |      |  |
| ж. | - 44 |  |
| _  | _    |  |



 $\mathop{\mathrm{K}}\limits_{k=k_1}^{k_2} a_k \, / \, b_k$  is a continued fraction

# $\begin{array}{l} -11/((((4/(49\text{Pi})*(((80 \tan(0.275^{1/2})))/(((1+0.275)^{2}(3*0.275+1)0.275^{1/2}))+(3*0.275^{4}+41*0.275^{3}+2.5*0.275^{2}-589*0.275^{2}-240)/(3(1+0.275)^{4}(1+3*0.275))))))+18+1/2 \end{array}$

#### **Input:**



 $\tan^{-1}(x)$  is the inverse tangent function

#### **Result:**

172.0703082299606398136043749780507770604998554678811792291...

(result in radians)

#### $172.070308... \approx 172$ (Ramanujan taxicab number)

#### Alternative representations:







 $F_n$  is the  $n^{ ext{th}}$  Fibonacci number

#### **Integral representations:**



#### **Continued fraction representations:**



| C                                                |                                                                                                                     | 11                             |                                                                                        |                  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------|------------------|
| $\left(\frac{80 \text{ tz}}{(1+0.275)^2}\right)$ | $\frac{\operatorname{an}^{-1}(\sqrt{0.275})}{(3 \times 0.275 + 1)\sqrt{0.275}} + \frac{3 \times 0.2}{\sqrt{0.275}}$ | 75 <sup>4</sup> +41 ×0<br>3 (1 | $(1.275^3 + 25 \times 0.275^2 - 589)$<br>$(1.43 \times 0.275)^4$ $(1.43 \times 0.275)$ | (0.275-240)      |
| 37                                               | 539 π                                                                                                               | <sup>49</sup> л<br>37          | 5:                                                                                     | 39 л             |
| $\frac{1}{2}$ + $\frac{1}{110}$                  | .368 - 11/05 12                                                                                                     | $=\frac{1}{2}$                 | 110.368                                                                                | 107.862<br>0.275 |
|                                                  | $1+K_{k=1} \frac{1.1(0.5-k)}{1.275+1.45k}$                                                                          |                                | 2.7254                                                                                 |                  |

. .



 $\mathop{\mathrm{K}}\limits_{k=k_1}^{k_2} a_k/b_k$  is a continued fraction

From:

## Holographic entanglement entropy under the minimal geometric deformation and extensions

R. da Rocha, A. A. Tomaz - arXiv:1905.01548v2 [hep-th] 29 Dec 2019

Now, we have that:

for  $\kappa_1 = \frac{M\chi}{1 - M/R}$ . Now, in order to the radial metric component asymptotically approach the Schwarzschild behavior with ADM mass  $\mathbb{M}_1 = 2M$ ,  $e^{-\lambda(r)} \sim 1 - \frac{2\mathbb{M}_1}{r} + \mathcal{O}(r^{-2})$ , one must necessarily have  $\kappa_1 = -2M$ . In this case, the temporal and spatial components of the metric will be inversely equal to each other (as it is the case of the Schwarzschild solution), containing a tidal charge  $\mathbb{Q}_1 = 4M^2$  reproducing a solution that is tidally charged by the Weyl fluid [45]:

$$e^{\mathbf{v}} = e^{-\lambda} = 1 - \frac{2\mathbb{M}_1}{r} + \frac{\mathbb{Q}_1}{r^2}$$
 (14)

It is worth to emphasize that the metric of Eq. (14) has a degenerate event horizon at  $r_h = 2M = \mathbb{M}_1$ . Since the degenerate horizon lies behind the Schwarzschild event horizon,  $r_h = \mathbb{M}_1 < r_s = 2\mathbb{M}_1$ , bulk effects are then responsible for decreasing the gravitational field strength on the brane.

Now the exterior solution for k = 2 can be constructed, making Eq. (12) to yield

$$e^{\nu(r)} = 1 - \frac{2\mathbb{M}_2}{r} + \frac{\mathbb{Q}_2}{r^2} - \frac{2\mathbb{Q}_2\mathbb{M}_2}{9r^3} , \qquad (15)$$

where  $\mathbb{Q}_2 = 12M^2$  and  $\mathbb{M}_2 = 3M$ . The radial component, on the other hand, reads

$$e^{-\lambda(r)} = \frac{1}{1 - \frac{2M_2}{3r}} \sum_{m=0}^{8} \frac{c_m}{r^m} , \qquad (16)$$

where the coefficients  $c_m \equiv c_m(\mathbb{M}_2, \mathbb{Q}_2, \mathbf{s})$  are

$$c_0 = 1$$
,  $c_1 = s - \frac{4M_2}{3}$ ,  $c_2 = \frac{1}{6} (5Q_2 - 7sM_2)$ , (17a)

$$c_3 = \frac{\mathbb{M}_2}{12} (7 \mathrm{s} \mathbb{M}_2 - 5 \mathbb{Q}_2) \ , \ c_4 = \frac{25 \mathbb{Q}_2^2}{288} - \frac{7}{216} \mathrm{s} \mathbb{M}_2^3 \ , \ c_5 = \frac{35}{1296} \mathrm{s} \mathbb{M}_2^4 - \frac{35}{1728} \mathbb{Q}_2^2 \mathbb{M}_2, \tag{17b}$$

$$c_6 = \frac{5\mathbb{Q}_2^3}{20736} - \frac{7\mathrm{s}\mathbb{M}_2^5}{2592} , \quad c_7 = \frac{28\mathrm{s}\mathbb{M}_2^6 - 15\mathbb{Q}_2^3\mathbb{M}_2}{186624} , \quad c_8 = \frac{5\mathbb{Q}_2^4}{4644864} - \frac{\mathrm{s}\mathbb{M}_2^7}{279936}, \quad (17\mathrm{c})$$

and  $s = R\chi (1 - 2M_2/3R) / (2 - M_2/3R)^7$ . The asymptotic Schwarzschild behavior is then assured when  $s = -M_2/96$ . In this case, the degenerate event horizon is at  $r_e \approx 1.12M_2$  [5]. Hence, the bulk Weyl fluid weakens gravitational field effects. The classical tests of GR applied to the EMGD metric provide the following constraints on the value of the deformation parameter,  $k \leq 4.2$  for the gravitational redshift of light. The standard MGD corresponds to k = 0, whereas the Reissner– Nordström solution represents the k = 1 case with the ADM mass  $M_1$ , instead.

#### For M = 1.312806e + 40

$$\mathbb{Q}_2 = 12M^2$$
 and  $\mathbb{M}_2 = 3M$ .

(-3\*1.312806e+40)/96

#### **Result:**

 $-4.10251875 \times 10^{38}$  $-4.10251875^{*}10^{38} = s$ 

Thence:

 $c_1 = \mathrm{s} - \frac{4\mathrm{M}_2}{3} \; ,$ 

-4.10251875e + 38 - (4\*3\*1.312806e + 40)/3

#### Input interpretation:

 $-4.10251875 \times 10^{38} - \frac{1}{3} \left(4 \times 3 \times 1.312806 \times 10^{40}\right)$ 

#### **Result:**

 $-5.2922491875 \times 10^{40} \\ -5.2922491875 * 10^{40}$ 

$$c_2 = \frac{1}{6} \left( 5\mathbb{Q}_2 - 7\mathrm{s}\mathbb{M}_2 \right)$$

1/6\*(((5\*12\*1.312806e+40^2 - 7\*(-4.10251875e+38)\*3\*1.312806e+40)))

#### Input interpretation:

 $\frac{1}{6} \left(5 \times 12 \left(1.312806 \times 10^{40}\right)^2 - 7 \left(-4.10251875 \times 10^{38}\right) \times 3 \times 1.312806 \times 10^{40}\right)$ 

#### **Result:**

#### Scientific notation:

 $\begin{array}{c} 1.74230993294139375 \times 10^{\$1} \\ 1.74230993294139375 * 10^{\$1} \end{array}$ 

$$c_3 = \frac{\mathbb{M}_2}{12} (7\mathrm{s}\mathbb{M}_2 - 5\mathbb{Q}_2)$$

(3\*1.312806e+40)/12\*(((7\*(-4.10251875e+38)\*3\*1.312806e+40)-( 5\*12\*1.312806e+40^2)))

#### Input interpretation:

 $\left(\frac{1}{12}\left(3 \times 1.312806 \times 10^{40}\right)\right)$  $(7(-4.10251875 \times 10^{38}) \times 3 \times 1.312806 \times 10^{40} - 5 \times 12(1.312806 \times 10^{40})^2)$ 

#### **Result:**

000 000

#### **Result:**

 $-3.43097240073758904504375 \times 10^{121}$  $-3.43097240073758904504375*10^{121}$ 

We note that:

-1/(-3.43097240073758904504375\*10^121)

Input interpretation: -1 -(3.43097240073758904504375×10<sup>121</sup>)

#### **Result:**

 $2.914625602307440329550301955454831693427965914286452...\times 10^{-122}$ 

2.9146256....\*10<sup>-122</sup> result very near to the value of Cosmological Constant in Planck units 2.888 \* 10<sup>-122</sup>

 $c_4 = \frac{25\mathbb{Q}_2^2}{288} - \frac{7}{216} \mathrm{sM}_2^3$ For M = 1.312806e+40 $\mathbb{Q}_2 = 12M^2$  and  $\mathbb{M}_2 = 3M$ . (25\*(12\*1.312806e+40^2)^2)/288 - 7/216 \*(-4.10251875e+38)\*(3\*1.312806e+40)^3

Input interpretation:  $\frac{1}{288} \left(25 \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2\right) - \frac{7}{216} \left(-4.10251875 \times 10^{38}\right) \left(3 \times 1.312806 \times 10^{40}\right)^3$ 

#### **Result:**

 $3.72101 \times 10^{161}$ 

#### Scientific notation:

 $3.72101316314975147234511354375 \times 10^{161}$ 3.72101\*10<sup>161</sup>

$$c_5 = \frac{35}{1296} \mathrm{s}\mathbb{M}_2^4 - \frac{35}{1728} \mathbb{Q}_2^2 \mathbb{M}_2$$

35/1296 \*(-4.10251875e+38)\*(3\*1.312806e+40)^4 - 35/1728 \* (12\*1.312806e+40^2)^2\*(3\*1.312806e+40)

Input interpretation:  $\frac{35}{1296} \left(-4.10251875 \times 10^{38}\right) \left(3 \times 1.312806 \times 10^{40}\right)^4 \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)$ 

#### **Result:**

-3438670463997319368691424785794656250000000000000000000000000 000 000 000 000 000 000 000 000 000 000

#### Input interpretation:

$$\frac{\frac{35}{1296} \left(-4.10251875 \times 10^{38}\right) \left(3 \times 1.312806 \times 10^{40}\right)^4 - \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right) = -\left(3.438670463997 \times 10^{201}\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2 + \frac{35}{1728} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 + \frac{35}{1728} \left(12$$

#### **Result:**

True  $-3.438670463997*10^{201}$ 

Note that:

35/1296 \*(-4.10251875e+38)\*(3\*1.312806e+40)^4 - 35/x \*  $(12*1.312806e+40^{2})^{2}(3*1.312806e+40) = -3.438670463997*10^{2}01$ 

#### Input interpretation:

$$\frac{\frac{35}{1296}}{\frac{35}{x}} \left(-4.10251875 \times 10^{38}\right) \left(3 \times 1.312806 \times 10^{40}\right)^4 - \frac{35}{x} \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^2 \left(3 \times 1.312806 \times 10^{40}\right) = -\left(3.438670463997 \times 10^{201}\right)$$

#### **Result:**

 $\frac{5.89596 \times 10^{204}}{2.66564 \times 10^{199}} = -3.438670463997 \times 10^{201}$ 

#### **Plot:**

| 20 T T             |                                              |     | 1 11 11 | <u> </u>          |                                   |
|--------------------|----------------------------------------------|-----|---------|-------------------|-----------------------------------|
| $-1 \times 10^{8}$ | $-5 \times 10^{7}$<br>$-5.0 \times 10^{200}$ | 5 × | 107     | 1×10 <sup>8</sup> |                                   |
|                    | $-1.0 	imes 10^{201}$                        |     |         |                   |                                   |
|                    | $-1.5 	imes 10^{201}$                        |     |         |                   |                                   |
|                    | $-2.0 \times 10^{201}$                       |     |         |                   |                                   |
|                    | $-2.5 \times 10^{201}$                       |     |         |                   | 5.89596×10 <sup>204</sup>         |
|                    | $-3.0 \times 10^{201}$                       | -   |         |                   | = 2.66564 × 10 <sup>-00</sup>     |
|                    | $-3.5 \times 10^{201}$                       |     |         | _                 | -3.438670463997×10 <sup>201</sup> |

#### Alternate form assuming x is real:

1

 $\frac{5.89596 \times 10^{204}}{2000} = 3.41201 \times 10^{201}$ 

#### **Alternate form:**

 $\frac{-2.66564 \times 10^{199} x - 5.89596 \times 10^{204}}{-2.66564 \times 10^{199} x - 5.89596 \times 10^{204}} = -3.438670463997 \times 10^{201}$ x

#### Alternate form assuming x is positive:

 $3.41201 \times 10^{201} x = 5.89596 \times 10^{204}$  (for  $x \neq 0$ )

#### Solution:

 $x \approx 1728$ .

1728

This result is very near to the mass of candidate glueball  $f_0(1710)$  meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross– Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

$$c_6 = \frac{5\mathbb{Q}_2^3}{20736} - \frac{7\mathrm{s}\mathbb{M}_2^5}{2592}$$

For M = 1.312806e+40

 $\mathbb{Q}_2 = 12M^2$  and  $\mathbb{M}_2 = 3M$ .

-4.10251875e+38 = s

(for this expression, we have considered  $12M^2 = 12M$ )

5/20736\*(12\*1.312806e+40)^3-7/2592\*(-4.10251875e+38)\*(3\*1.312806e+40)^5

#### Input interpretation:

 $\frac{5}{20\,736}\left(12\times1.312806\times10^{40}\right)^3-\frac{7}{2592}\left(-4.10251875\times10^{38}\right)\left(3\times1.312806\times10^{40}\right)^5$ 

**Result:** 

 $1.04984 \times 10^{239}$ 

 $1.04984*10^{239}$ 

#### Scientific notation:

 $1.049838887711270895612631304032544068125000000000000\dots \times 10^{239}$ 

$$c_7 = \frac{28 \mathrm{s} \mathbb{M}_2^6 - 15 \mathbb{Q}_2^3 \mathbb{M}_2}{186624}$$

((28\*(-4.10251875e+38)\*(3\*1.312806e+40)^6-15\*(12\*1.312806e+40^2)^3\*(3\*1.312806e+40)))\*1/186624

Input interpretation:  $\left(28 \left(-4.10251875 \times 10^{38}\right) \left(3 \times 1.312806 \times 10^{40}\right)^6 - \right.$  $15 \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^3 \left(3 \times 1.312806 \times 10^{40}\right)\right) \times \frac{1}{186\,624}$ 

#### **Result:**

-28 231 936 469 112 555 929 478 782 932 490 727 870 056 218 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Input interpretation:  $(28 (-4.10251875 \times 10^{38}) (3 \times 1.312806 \times 10^{40})^6 -$  $\frac{15 (12 (1.312806 \times 10^{40})^2)^3 (3 \times 1.312806 \times 10^{40})) \times}{\frac{1}{186624} = -(2.82319364691125 \times 10^{280})$ 

#### **Result:**

True

#### -2.82319364691125\*10<sup>280</sup>

$$c_8 = \frac{5\mathbb{Q}_2^4}{4644864} - \frac{\mathrm{s}\mathbb{M}_2^7}{279936}$$

(1/4644864 \* (5\*(12\*1.312806e+40^2)^4))-1/279936 \* (-4.10251875e+38)\*(3\*1.312806e+40)^7

#### **Input interpretation:**

 $\begin{array}{c} \displaystyle \frac{1}{4\,644\,864} \left(5 \left(12 \left(1.312806 \times 10^{40}\right)^2\right)^4\right) - \\ \displaystyle \frac{1}{279\,936} \left(-4.10251875 \times 10^{38}\right) \left(3 \times 1.312806 \times 10^{40}\right)^7 \end{array} \right.$ 

#### **Result:**

 $1.9909058199156373302495401048779828155564178501577678...\times 10^{319}$ 

#### **Repeating decimal:**

 $1.9909058199156373302495401048779828155564178501577678\ldots \times 10^{319}$ (period 6) 1.990905819...\*10<sup>319</sup>

Now, we have that:

(3.72101\*10^161) \*1/ (-3.43097240073758904504375\*10^121)\*1 /(1.74230993294139375\*10^81) \*1/ (-5.2922491875\*10^40)

#### **Input interpretation:**

Input interpretation.  $(3.72101 \times 10^{161}) \left( -\frac{1}{3.43097240073758904504375 \times 10^{121}} \right) \times \frac{1}{1.74220003204139375 \times 10^{81}} \left( -\frac{1}{5.2922491875 \times 10^{40}} \right)$ 

#### **Result:**

 $1.1761911712325356994330818948413805998749667307530395...\times 10^{-82}$ 1.176191171...\*10<sup>-82</sup>

#### **Input interpretation:**

 $-\frac{1.990905819 \times 10^{319}}{2.82319364691125 \times 10^{280}} \left(-\frac{1.04984 \times 10^{239}}{3.438670463997 \times 10^{201}}\right) \times 1.1761911712325356994330818948413805998749667307530395 \times 10^{-82}$ 

#### **Result:**

2.5323312858584196635120552564656133384290463417856282...  $\times$  10^{-6} 2.532331285...\*10^{-6}

 $\frac{1}{((((1.990905819*10^{3}19) / (-2.82319364691125*10^{2}80) * (1.04984*10^{2}39) / (-3.438670463997*10^{2}01)1.1761911712325356994330818948413805998749667307530395 \times 10^{-82})))$ 

#### **Input interpretation:**

 $1 \Big/ \Big( -\frac{1.990905819 \times 10^{319}}{2.82319364691125 \times 10^{280}} \Big( -\frac{1.04984 \times 10^{239}}{3.438670463997 \times 10^{201}} \Big) \times$ 

 $1.1761911712325356994330818948413805998749667307530395 \times 10^{-82}$ 

#### **Result:**

394893.0400948768633952659389016200041288760404251492327551... 394893.040094876...

Note that, from the formula of coefficients of the '5th order' mock theta function  $\psi_1(q)$ : (A053261 OEIS Sequence)

 $sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n))$ 

```
we obtain, for n = 427:
```

#### **Input:**

$$\sqrt{\phi} \times \frac{\exp\left(\pi \sqrt{\frac{427}{15}}\right)}{2\sqrt[4]{5}\sqrt{427}} + 64\left(2^5 + 2^4\right) + 55 + \left(\frac{1}{30}\left(13\,\mathcal{W}_{Wad}\right) + \pi\right)$$

∉ is the golden ratio

Wwad is the Wadsworth constant

#### **Exact result:**

$$\frac{\frac{13 W_{\text{Wad}}}{30} + \frac{e^{\sqrt{427/15} \pi} \sqrt{\frac{\phi}{427}}}{2\sqrt[4]{5}} + 3127 + \pi}{\frac{e^{\sqrt{427/15} \pi} \sqrt{\frac{\phi}{427}}}{2\sqrt[4]{5}}} + \frac{312713}{100} + \pi}{2\sqrt[4]{5}}$$

#### **Decimal approximation:**

394893.0479637474441478828132726070965329840167922103608634...

394893.047963747...

#### Alternate forms:

$$\frac{\frac{13 \ W_{\text{Wad}}}{30} + 3127 + \frac{1}{2} \sqrt{\frac{5 + \sqrt{5}}{4270}} e^{\sqrt{427/15} \ \pi} + \pi}{\frac{13 \ W_{\text{Wad}}}{30} + 3127 + \frac{\sqrt{\frac{1}{854} \left(1 + \sqrt{5}\right)} e^{\sqrt{427/15} \ \pi}}{2 \sqrt[4]{5}} + \pi}{\frac{11 \ 102 \ W_{\text{Wad}} + 80 \ 113 \ 740 + 3 \times 5^{3/4} \sqrt{854 \left(1 + \sqrt{5}\right)}}{25 \ 620} e^{\sqrt{427/15} \ \pi} + 25 \ 620 \ \pi}$$

We have also:

(2Pi)/10^3+((((1/((((1.990905819\*10^319)/(-2.82319364691125\*10^280)\* (1.04984\*10^239)/(-3.438670463997\*10^201)1.1761911712325 × 10^-82))))))^1/27

#### **Input interpretation:**



#### **Result:**

 $1.617956509737327899315037118954996065365180408731368968425\ldots$ 

1.6179565097.... result that is a very good approximation to the value of the golden ratio 1,618033988749...

And:

#### Input interpretation:



#### **Result:**

0.618063584516463956192381021086135475503461967952711821252...

#### 0.618063584516....

And:

 $\begin{array}{l} (2Pi)/10^{3}+(((((sqrt(golden ratio) * exp(Pi*sqrt(427/15)) / (2*5^{(1/4)*sqrt(427)})+64*(2^{5}+2^{4})+55+(((13 *Wadsworth constant)/30 + \pi )))))))^{1/27} \end{array}$ 

Input:  

$$\frac{2\pi}{10^3} + {}^{27}\sqrt{\sqrt{\phi}} \times \frac{\exp\left(\pi\sqrt{\frac{427}{15}}\right)}{2\sqrt[4]{5}\sqrt{427}} + 64\left(2^5 + 2^4\right) + 55 + \left(\frac{1}{30}\left(13\sqrt[4]{W_{\text{Wad}}}\right) + \pi\right)$$

 $\phi$  is the golden ratio  $\mathcal{W}_{Wad}$  is the Wadsworth constant

#### **Exact result:**

$$\frac{27}{\sqrt{\frac{13 \mathcal{W}_{\text{Wad}}}{30} + \frac{e^{\sqrt{427/15} \pi} \sqrt{\frac{\phi}{427}}}{2\sqrt[4]{5}} + 3127 + \pi} + \frac{\pi}{500}}$$

$$\frac{e^{\sqrt{427/15} \pi} \sqrt{\frac{\phi}{427}}}{2\sqrt[4]{5}} + \frac{312713}{100} + \pi + \frac{\pi}{500}$$

#### **Decimal approximation:**

1.617956510926776037873729494000276701147205658273489385975...

1.61795651092... result that is a very good approximation to the value of the golden ratio 1,618033988749...

#### **Alternate forms:**

$$27 \sqrt{\frac{13 W_{\text{Wad}}}{30} + 3127 + \frac{1}{2} \sqrt{\frac{5 + \sqrt{5}}{4270}} e^{\sqrt{427/15} \pi} + \pi + \frac{\pi}{500} }$$

$$27 \sqrt{\frac{13 W_{\text{Wad}}}{30} + 3127 + \frac{\sqrt{\frac{1}{854} (1 + \sqrt{5})} e^{\sqrt{427/15} \pi}}{2 \sqrt[4]{5}} + \pi + \frac{\pi}{500} }$$

$$\frac{1}{640 500} \left( 50 \times 2^{25/27} \times 6405^{26/27} \right)^{27} \sqrt{11102 W_{\text{Wad}} + 80113740 + 3 \times 5^{3/4}} \sqrt{854 (1 + \sqrt{5})} e^{\sqrt{427/15} \pi} + 25620 \pi + 1281 \pi$$

 $1/[(2Pi)/10^3+(((((sqrt(golden ratio) * exp(Pi*sqrt(427/15)) / (2*5^(1/4)*sqrt(427))+64*(2^5+2^4)+55+(((13 *Wadsworth constant)/30 + \pi ))))))^{1/27}]$ 

#### Input:

$$\frac{1}{\frac{2\pi}{10^3} + \sqrt[27]{\sqrt{\phi} \times \frac{\exp\left(\pi \sqrt{\frac{427}{15}}\right)}{2\sqrt[4]{5}\sqrt{427}} + 64\left(2^5 + 2^4\right) + 55 + \left(\frac{1}{30}\left(13\ W_{\text{Wad}}\right) + \pi\right)}}$$

 $\phi$  is the golden ratio  $\mathcal{W}_{\mathrm{Wad}}$  is the Wadsworth constant

#### **Exact result:**

$$\frac{1}{2\sqrt[2]{\frac{13 \mathcal{W}_{\text{Wad}}}{30} + \frac{e^{\sqrt{427/15} \pi} \sqrt{\frac{\phi}{427}}}{2\sqrt[4]{5}} + 3127 + \pi} + \frac{\pi}{500}}$$

#### **Exact form:**

$$27\sqrt{\frac{e^{\sqrt{427/15}}\pi\sqrt{\frac{\phi}{427}}}{2\frac{4}{\sqrt{5}}}+\frac{312713}{100}+\pi}+\frac{\pi}{500}}$$

1

### **Decimal approximation:**

0.618063584062091681567447030367761025027834117969898872030...

#### 0.618063584...

#### Alternate forms:

$$\frac{1}{2\sqrt[7]{\frac{13 \ W_{\text{Wad}}}{30} + 3127 + \frac{1}{2} \sqrt{\frac{5+\sqrt{5}}{4270}} e^{\sqrt{427/15} \pi} + \pi} + \frac{\pi}{500}}{1}}{2\sqrt[7]{\frac{13 \ W_{\text{Wad}}}{30} + 3127 + \frac{\sqrt{\frac{1}{854}(1+\sqrt{5})} e^{\sqrt{427/15} \pi}}{2\sqrt[4]{5}} + \pi} + \frac{\pi}{500}}{2\sqrt[4]{50}}}$$

$$640500 \left/ \left( 50 \times 2^{25/27} \times 6405^{26/27} - \frac{2\sqrt{5}}{11102 \ W_{\text{Wad}}} + 80113740 + 3 \times 5^{3/4} \sqrt{854(1+\sqrt{5})} e^{\sqrt{427/15} \pi} + 25620 \pi} + 1281 \pi \right)$$

#### Now, we have that:

Now, the next order reads

$$\begin{split} \mathcal{S}_{2}^{\text{MGD}} &= \frac{A_{2}}{4} \\ &= \frac{\varepsilon^{2}}{4} \int_{y_{0}}^{0} dy \mathcal{L}_{2} = \frac{\pi M^{2}}{32} \left[ \mathrm{U}_{1}(\xi, y_{0}) + \mathrm{U}_{2}(\xi) \log\left(\frac{2}{1+y_{0}}\right) + \mathrm{U}_{3}(\xi) \log(y_{0}) \right] \;, \end{split}$$

with ancillary functions  $U_1(\zeta, y_0) = [2\zeta(13-3y_0)-(\zeta^2+4)(7-y_0)](1-y_0), U_2(\zeta) = 16(\zeta-2)^2$  and  $U_3(\xi) = 2[(\xi-2)^2-2\xi]$ . One can notice the contribution of the MGD parameter, encoding the finite brane tension, as one compares with the HEE for the Schwarzschild spacetime, corresponding to  $\ell \to 0$  and, hence,  $\xi \to 0$ . Henceforth, in the general relativistic case of a rigid brane,  $o \to \infty$ , one recovers the 2<sup>nd</sup>-order correction for Schwarzschild spacetimes. On the other hand, the 2<sup>nd</sup>-order corrections ratio are given by

$$\Phi_2^{\text{MGD}} = \frac{\mathcal{S}_2^{\text{MGD}}}{S_2^{\text{Sdw}}} = 1 + \frac{\zeta}{4} \left(\xi - 6\right) + 4\xi \left[\frac{1 - y_0 - 2\log\left(\frac{2}{1 + y_0}\right)}{7 - 8y_0 + y_0^2 - 2\log y_0 - 16\log\left(\frac{2}{1 + y_0}\right)}\right]$$
(37)

Both corrections, the 1<sup>st</sup>- and the 2<sup>nd</sup>-order ones, have the MGD parameter as a dominant variable, when considering the minimal surface in large range, correspondly, the lower limit very close to zero. The 1<sup>st</sup>-order ratio does not depend on such range. However, the 2<sup>nd</sup>-order ratio has the limit

$$\Phi_2^{\text{MGD}}|_{y_0 \to 0} = 1 + \frac{\xi}{4}(\zeta - 6) .$$
(38)

As  $\xi < 0$ , it is observed an increment of the value of this order of correction to the HEE. Irrespectively of the limit taken, the limit  $\xi \to 0$  recovers the 2<sup>nd</sup> order correction for the HEE in a Schwarzschild spacetime.

## From (37), for $y_0 = 1$ , we obtain (38). From the following Ramanujan mock theta function:

(<u>https://en.wikipedia.org/wiki/Mock\_modular\_form#Order\_6</u>)

$$\sigma(q) = \sum_{n \geq 0} rac{q^{(n+1)(n+2)/2}(-q;q)_n}{(q;q^2)_{n+1}}$$

That is: (A053271 sequence OEIS)

$$\begin{aligned} & \text{Sum}_{n \ge 0} \quad q^{(n+1)(n+2)/2} (1+q)(1+q^{2})...(1+q^{n})/((1-q)(1-q^{3})...(1-q^{(2n+1)})) \end{aligned}$$

From which:

sum 
$$q^{(n+1)(n+2)/2} (1+q)(1+q^2)(1+q^n))/((1-q)(1-q^3)(1-q^{(2n+1)}))$$
,  $n = 0$  to k

$$\begin{split} &\sum_{n=0}^{k} \frac{q^{1/2 \, (n+1) \, (n+2)} \, (1+q) \left(1+q^{2}\right) (1+q^{n})}{(1-q) \left(1-q^{3}\right) \left(1-q^{2 \, n+1}\right)} \\ &\sum_{n=0}^{k} \frac{q^{1/2 \, (n+1) \, (n+2)} \, (1+q) \left(1+q^{2}\right) (1+q^{n})}{(1-q) \left(1-q^{3}\right) \left(1-q^{2 \, n+1}\right)} \end{split}$$

For q = 0.5 and n = 2, we develop the above formula in the following way:

 $(((0.5^{(2+1)(2+2)/2})(1+0.5)(1+0.5^{2})(1+0.5^{2})))/(((1-0.5)(1-0.5^{3})(1-0.5^{3}))))$  $0.5^{(2*2+1)})$  $\frac{0.5^{(2+1)\times(2+2)/2}\,\left(1+0.5\right)\left(1+0.5^2\right)\left(1+0.5^2\right)}{\left(1-0.5\right)\left(1-0.5^3\right)\left(1-0.5^{2\times 2+1}\right)}$ 

0.086405529953917050691244239631336405529953917050691244239... 0.0864055...

For  $\xi = 0.0864055$ , that is the result of above Ramanujan mock theta function, we obtain:

1+(0.0864055/4)\*(0.0864055-6)

Input interpretation:  $1 + \frac{0.0864055}{4} (0.0864055 - 6)$ 

**Result:** 0.8722582276075625 0.8722582276075625

From which:

(((1+(0.0864055/4)\*(0.0864055-6))))^1/256

#### **Input interpretation:**

 $\sqrt[256]{1+\frac{0.0864055}{4}\ (0.0864055-6)}$ 

#### **Result:**

0.999466276...

0.999466276... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}} \approx 0.9991104684$$

and to the dilaton value **0**. **989117352243** =  $\phi$ 

1/2log base 0.999466276(((1+(0.0864055/4)\*(0.0864055-6))))-Pi+1/golden ratio

Input interpretation:  $\frac{1}{2} \log_{0.999466276} \left(1 + \frac{0.0864055}{4} (0.0864055 - 6)\right) - \pi + \frac{1}{\phi}$ 

 $\log_b(x)$  is the base- b logarithm

 $\phi$  is the golden ratio

#### **Result:**

125.476...

125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

#### Alternative representation:

$$\frac{1}{2}\log_{0.999466}\left(1+\frac{1}{4}\times0.0864055\ (0.0864055\ -6)\right)-\pi+\frac{1}{\phi}=-\pi+\frac{1}{\phi}+\frac{\log\left(1-\frac{0.510967}{4}\right)}{2\log(0.999466)}$$

$$\begin{aligned} &\frac{1}{2} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) - \pi + \frac{1}{\phi} = \\ &\frac{1}{\phi} - \pi - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k \ (-0.127742)^k}{k}}{2 \log(0.999466)} \\ &\frac{1}{2} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) - \pi + \frac{1}{\phi} = \\ &\frac{1}{\phi} - \pi - 936.564 \log(0.872258) - \frac{1}{2} \log(0.872258) \sum_{k=0}^{\infty} (-0.000533724)^k \ G(k) \\ &\text{for} \left( G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 \ (1+k) \ (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} \ G(-j+k)}{1+j} \right) \end{aligned}$$

### 1/2log base 0.999466276(((1+(0.0864055/4)\*(0.0864055-6))))+11+1/golden ratio

Input interpretation:  $\frac{1}{2} \log_{0.999466276} \left( 1 + \frac{0.0864055}{4} (0.0864055 - 6) \right) + 11 + \frac{1}{\phi}$ 

 $\log_{b}(x)$  is the base- b logarithm

 $\phi$  is the golden ratio

#### **Result:**

139.618...

139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

#### Alternative representation:

$$\frac{1}{2}\log_{0.999466}\left(1+\frac{1}{4}\times0.0864055\ (0.0864055\ -6)\right)+11+\frac{1}{\phi}=11+\frac{1}{\phi}+\frac{\log\left(1-\frac{0.510967}{4}\right)}{2\log(0.999466)}$$

$$\begin{aligned} \frac{1}{2} \log_{0.000466} \left(1 + \frac{1}{4} \times 0.0864055 (0.0864055 - 6)\right) + 11 + \frac{1}{\phi} &= \\ 11 + \frac{1}{\phi} - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k (-0.127742)^k}{k}}{2 \log(0.999466)} \\ \frac{1}{2} \log_{0.000466} \left(1 + \frac{1}{4} \times 0.0864055 (0.0864055 - 6)\right) + 11 + \frac{1}{\phi} &= \\ 11 + \frac{1}{\phi} - 936.564 \log(0.872258) - \frac{1}{2} \log(0.872258) \sum_{k=0}^{\infty} (-0.000533724)^k G(k) \\ & \text{for} \left[G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 (1+k) (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right] \end{aligned}$$

27\*1/4log base 0.999466276(((1+(0.0864055/4)\*(0.0864055-6))))+1

Input interpretation:  $27 \times \frac{1}{4} \log_{0.999466276} \left(1 + \frac{0.0864055}{4} (0.0864055 - 6)\right) + 1$ 

 $\log_{b}(x)$  is the base- b logarithm

#### **Result:**

1729.00...

#### 1729

This result is very near to the mass of candidate glueball  $f_0(1710)$  meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-Zagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

#### Alternative representation:

$$\frac{27}{4} \log_{0.999466} \left(1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6)\right) + 1 = 1 + \frac{27 \log \left(1 - \frac{0.510967}{4}\right)}{4 \log(0.999466)}$$

$$\frac{27}{4} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) + 1 = 1 - \frac{27 \sum_{k=1}^{\infty} \frac{(-1)^k (-0.127742)^k}{k}}{4 \log(0.999466)}$$

$$\frac{27}{4} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) + 1 = 1 - \frac{27 \sum_{k=1}^{\infty} \frac{(-1)^k (-0.127742)^k}{k}}{4 \log(0.999466)}$$

$$1 - 12 643.6 \log(0.872258) - 6.75 \log(0.872258) \sum_{k=0}^{\infty} (-0.000533724)^k \ G(k)$$
for  $\left( G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 (1+k) (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} \ G(-j+k)}{1+j} \right)$ 

12\*1/4log base 0.999466276(((1+(0.0864055/4)\*(0.0864055-6))))-29-11

Input interpretation:  $12 \times \frac{1}{4} \log_{0.999466276} \left(1 + \frac{0.0864055}{4} (0.0864055 - 6)\right) - 29 - 11$ 

 $\log_b(x)$  is the base- b logarithm

#### **Result:**

728.000...

#### 728 (Ramanujan taxicab number)

## Alternative representation:

$$\frac{12}{4} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) - 29 - 11 = -40 + \frac{12 \log \left( 1 - \frac{0.510967}{4} \right)}{4 \log (0.999466)}$$

#### Series representations:

$$\frac{12}{4} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) - 29 - 11 = -40 - \frac{3 \sum_{k=1}^{\infty} \frac{(-1)^k (-0.127742)^k}{k}}{\log(0.999466)}$$

$$\frac{12}{4} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) - 29 - 11 = -40 - 5619.38 \log(0.872258) - 3 \log(0.872258) \sum_{k=0}^{\infty} (-0.000533724)^k \ G(k)$$
for  $\left( G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 (1+k) (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} \ G(-j+k)}{1+j} \right)$ 

 $12*1/4\log base 0.999466276(((1+(0.0864055/4)*(0.0864055-6))))-29-11+47)$ 

Input interpretation:  

$$12 \times \frac{1}{4} \log_{0.999466276} \left(1 + \frac{0.0864055}{4} (0.0864055 - 6)\right) - 29 - 11 + 47$$

 $\log_b(x)$  is the base– b logarithm

#### **Result:**

775.000...

#### 775 result practically equal to the rest mass of Charged rho meson 775.11

### Alternative representation:

$$\frac{12}{4} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) - 29 - 11 + 47 = 7 + \frac{12 \log \left( 1 - \frac{0.510967}{4} \right)}{4 \log (0.999466)}$$

### Series representations:

$$\frac{12}{4} \log_{0.999466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) - 29 - 11 + 47 = 7 - \frac{3 \sum_{k=1}^{\infty} \frac{(-1)^k \left(-0.127742\right)^k}{k}}{\log(0.999466)}$$

$$\frac{12}{4} \log_{0.500466} \left( 1 + \frac{1}{4} \times 0.0864055 \ (0.0864055 - 6) \right) - 29 - 11 + 47 = 7 - 5619.38 \log(0.872258) - 3 \log(0.872258) \sum_{k=0}^{\infty} (-0.000533724)^k \ G(k)$$
for  $\left( G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 \ (1+k) \ (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} \ G(-j+k)}{1+j} \right)$ 

Now, we have that:

$$\Phi_2^{\text{EMGD}_1} = 8 \left[ \frac{y_0^2 - 4y_0 + 3 - 2\log(y_0) - 8\log\left(\frac{2}{1+y_0}\right)}{y_0^2 - 8y_0 + 7 - 2\log(y_0) - 16\log\left(\frac{2}{1+y_0}\right)} \right]$$
(52)

For  $y_0 = 0.99$ , we obtain:

8\*[(((0.99^2-4\*0.99+3-2 ln(0.99)-8 ln(2/1.99))))/(((0.99^2-8\*0.99+7-2 ln(0.99)-16  $\ln(2/1.99))))]$ 

#### Input:

 $8 \times \frac{0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.00}\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.00}\right)}$ 

 $\log(x)$  is the natural logarithm

#### **Result:**

317234.6106478058859430701207273346791451318951095538859066...

317234.6106478...

#### **Alternative representations:**

 $\frac{8 \left(0.0201 - 2 \log(a) \log_a(0.99) - 8 \log(a) \log_a(1.00503)\right)}{0.0601 - 2 \log(a) \log_a(0.99) - 16 \log(a) \log_a(1.00503)}\right)$ 

$$\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)} = \\ \left(\frac{8\left(-0.96 - 2\log_e(0.99) - 8\log_e\left(\frac{2}{1.99}\right) + 0.99^2\right)}{-0.92 - 2\log_e(0.99) - 16\log_e\left(\frac{2}{1.99}\right) + 0.99^2} = \\ \frac{8\left(0.0201 - 2\log_e(0.99) - 8\log_e(1.00503)\right)}{0.0601 - 2\log_e(0.99) - 16\log_e(1.00503)}\right) \\ 8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)$$

$$\frac{6(0.99^{2} - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log(\frac{2}{1.99}))}{0.99^{2} - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log(\frac{2}{1.99})} = \frac{8(-0.96 + 2\operatorname{Li}_{1}(0.01) + 8\operatorname{Li}_{1}(1 - \frac{2}{1.99}) + 0.99^{2})}{-0.92 + 2\operatorname{Li}_{1}(0.01) + 16\operatorname{Li}_{1}(1 - \frac{2}{1.99}) + 0.99^{2}} = \frac{8(0.0201 + 8\operatorname{Li}_{1}(-0.00502513) + 2\operatorname{Li}_{1}(0.01))}{0.0601 + 16\operatorname{Li}_{1}(-0.00502513) + 2\operatorname{Li}_{1}(0.01)}$$

$$\frac{8\left(0.99^{2}-4\times0.99+3-2\log(0.99)-8\log\left(\frac{2}{1.00}\right)\right)}{0.99^{2}-8\times0.99+7-2\log(0.99)-16\log\left(\frac{2}{1.00}\right)} = \frac{-\frac{0.0804+\sum_{k=1}^{\infty}\frac{-8(-1)^{k}(-0.01)^{k}-32(-0.00502513)^{k}}{k}}{-0.03005+\sum_{k=1}^{\infty}\frac{-(-1)^{k}(-0.01)^{k}-8(-0.00502513)^{k}}{k}} = \frac{8\left(0.99^{2}-4\times0.99+3-2\log(0.99)-8\log\left(\frac{2}{1.00}\right)\right)}{0.99^{2}-8\times0.99+7-2\log(0.99)-16\log\left(\frac{2}{1.00}\right)} = \frac{8\left[-0.005025+i\pi\left\lfloor\frac{\arg(0.99-x)}{2\pi}\right\rfloor+4i\pi\left\lfloor\frac{\arg(1.00503-x)}{2\pi}\right\rfloor+2.5\log(x)+\right.\right]}{\left.\left.\left.\left(-0.015025+i\pi\left\lfloor\frac{\arg(0.99-x)}{2\pi}\right\rfloor+8i\pi\left\lfloor\frac{\arg(1.00503-x)}{2\pi}\right\rfloor+4.5\log(x)+\right.\right.\right.\right)\right]\right/$$

$$\frac{8 \left(0.99^2 - 4 \times 0.99 + 3 - 2 \log(0.99) - 8 \log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2 \log(0.99) - 16 \log\left(\frac{2}{1.99}\right)} = \frac{-0.0804 + \sum_{j=1}^{\infty} \left(8 \left(\operatorname{Res}_{s=-j} \frac{(-0.01)^{-s} \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)}\right) + 32 \left(\operatorname{Res}_{s=-j} \frac{e^{5.2933 s} \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)}\right)\right)}{-0.03005 + \sum_{j=1}^{\infty} \left(\operatorname{Res}_{s=-j} \frac{(-0.01)^{-s} \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)} + 8 \left(\operatorname{Res}_{s=-j} \frac{e^{5.2933 s} \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)}\right)\right)}{\Gamma(1-s)}$$

arg(z) is the complex argument

 $\lfloor x \rfloor$  is the floor function

i is the imaginary unit

 $\Gamma(x)$  is the gamma function

 $\operatorname{Res} f$  is a complex residue  $s=z_0$ 

and:

## $\frac{1+1/sqrt((8*[(((0.99^2-4*0.99+3-2 ln(0.99)-8 ln(2/1.99))))/(((0.99^2-8*0.99+7-2 ln(0.99)-16 ln(2/1.99))))))}{ln(0.99)-16 ln(2/1.99))))]))$

Input:

$$\frac{1}{\sqrt{8 \times \frac{0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}}}$$

log(x) is the natural logarithm

#### **Result:**

1.001775455200579765569659068701249369523822062429397193634...

1.0017754552... result very near to the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{2\pi}{5}}}{\sqrt{\varphi\sqrt{5}} - \varphi} = 1 + \frac{e^{-2\pi}}{1 + \frac{e^{-4\pi}}{1 + \frac{e^{-6\pi}}{1 + \frac{e^{-8\pi}}{1 + \frac{e^{-8\pi}}{1 + \dots}}}} \approx 1.0018674362$$

#### **Alternative representations:**





### Series representations:

$$\begin{aligned} 1 + \frac{1}{\sqrt{\frac{8\left(0.50^2 - 4 \times 0.50 + 3 - 2\log(0.50) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.50^2 - 8 \times 0.50 + 7 - 2\log(0.50) - 16\log\left(\frac{2}{1.99}\right)}}} = \\ 1 + 1 / \left(\sqrt{\frac{7\left(-0.00719286 + \log(0.99) + 3.42857\log(1.00503)\right)}{-0.03005 + \log(0.99) + 8\log(1.00503)}} \right)^{-k} \right) \\ \sum_{k=0}^{\infty} e^{-1.94591k} \left(\frac{1}{2}{k}\right) \left(\frac{-0.00719286 + \log(0.99) + 3.42857\log(1.00503)}{-0.03005 + \log(0.99) + 8\log(1.00503)}\right)^{-k} \right) \\ 1 + \frac{1}{\sqrt{\frac{8\left(0.50^2 - 4 \times 0.50 + 3 - 2\log(0.50) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.50^2 - 8 \times 0.50 + 7 - 2\log(0.50) - 16\log\left(\frac{2}{1.99}\right)}}} = \\ 1 + 1 / \left(\sqrt{\frac{7\left(-0.00719286 + \log(0.99) + 3.42857\log(1.00503)\right)}{-0.03005 + \log(0.99) + 8\log(1.00503)}}} \right) \\ \end{aligned}$$

$$\sum_{k=0}^{\infty} \frac{(-0.142857)^k \left(\frac{-0.00719286 + \log(0.99) + 3.42857 \log(1.00503)}{-0.03005 + \log(0.99) + 8 \log(1.00503)}\right)^{-k} \left(-\frac{1}{2}\right)_k}{k!}$$



Pi\*sqrt(((8\*[(((0.99^2-4\*0.99+3-2 ln(0.99)-8 ln(2/1.99))))/(((0.99^2-8\*0.99+7-2 ln(0.99)-16 ln(2/1.99))))])))-29-11-2/5

Input:

$$\pi \sqrt{8 \times \frac{0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}} - 29 - 11 - \frac{2}{5}$$

log(x) is the natural logarithm

#### **Result:**

1729.057574915955445991506989948194881041631226369839617527...

#### 1729.05757491...

This result is very near to the mass of candidate glueball  $f_0(1710)$  meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross– Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

### Alternative representations:

$$\pi \sqrt{\frac{8 \left(0.99^2 - 4 \times 0.99 + 3 - 2 \log(0.99) - 8 \log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2 \log(0.99) - 16 \log\left(\frac{2}{1.99}\right)}} - 29 - 11 - \frac{2}{5} = \left(-40 - \frac{2}{5} + \pi \sqrt{\frac{8 \left(-0.96 - 2 \log(a) \log_a(0.99) - 8 \log(a) \log_a\left(\frac{2}{1.99}\right) + 0.99^2\right)}{-0.92 - 2 \log(a) \log_a(0.99) - 16 \log(a) \log_a\left(\frac{2}{1.99}\right) + 0.99^2}} - \frac{202}{5} + \pi \sqrt{\frac{8 \left(0.0201 - 2 \log(a) \log_a(0.99) - 8 \log(a) \log_a\left(\frac{2}{1.99}\right) + 0.99^2\right)}{0.0601 - 2 \log(a) \log_a(0.99) - 16 \log(a) \log_a(1.00503))}}} \right)$$

$$\pi \sqrt{\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}} - 29 - 11 - \frac{2}{5}} = \left(-40 - \frac{2}{5} + \pi \sqrt{\frac{8\left(-0.96 - 2\log_e(0.99) - 8\log_e\left(\frac{2}{1.99}\right) + 0.99^2\right)}{-0.92 - 2\log_e(0.99) - 16\log_e\left(\frac{2}{1.99}\right) + 0.99^2}}} = -\frac{202}{5} + \pi \sqrt{\frac{8\left(0.0201 - 2\log_e(0.99) - 8\log_e\left(\frac{2}{1.99}\right) + 0.99^2\right)}{0.0601 - 2\log_e(0.99) - 16\log_e(1.00503)}}}\right)}$$

$$\pi \sqrt{\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}} - 29 - 11 - \frac{2}{5} = \left(-40 - \frac{2}{5} + \pi \sqrt{\frac{8\left(-0.96 + 2\operatorname{Li}_1(0.01) + 8\operatorname{Li}_1\left(1 - \frac{2}{1.99}\right) + 0.99^2\right)}{-0.92 + 2\operatorname{Li}_1(0.01) + 16\operatorname{Li}_1\left(1 - \frac{2}{1.99}\right) + 0.99^2}}} = -\frac{202}{5} + \pi \sqrt{\frac{8\left(0.0201 + 8\operatorname{Li}_1(-0.00502513) + 2\operatorname{Li}_1(0.01)\right)}{0.0601 + 16\operatorname{Li}_1(-0.00502513) + 2\operatorname{Li}_1(0.01)}}}\right)}$$

### Series representations:

$$\pi \sqrt{\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}} - 29 - 11 - \frac{2}{5}} = \frac{1}{5} \left(-202 + 5\pi \sqrt{\frac{-0.0804 + \sum_{k=1}^{\infty} \frac{-8(-1)^k (-0.01)^k - 32(-0.00502513)^k}{k}}{-0.03005 + \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.01)^k - 8(-0.00502513)^k}{k}}}{-(-1)^k - 8(-0.00502513)^k}}\right)}$$

$$\pi \sqrt{\frac{8 \left(0.99^2 - 4 \times 0.99 + 3 - 2 \log(0.99) - 8 \log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2 \log(0.99) - 16 \log\left(\frac{2}{1.99}\right)}} - 29 - 11 - \frac{2}{5}} = -\frac{202}{5} + \pi \sqrt{\frac{7 \left(-0.00719286 + \log(0.99) + 3.42857 \log(1.00503)\right)}{-0.03005 + \log(0.99) + 8 \log(1.00503)}}}{\sum_{k=0}^{\infty} e^{-1.94591k} \left(\frac{\frac{1}{2}}{k}\right) \left(\frac{-0.00719286 + \log(0.99) + 3.42857 \log(1.00503)}{-0.03005 + \log(0.99) + 8 \log(1.00503)}\right)^{-k}$$

$$\pi \sqrt{\frac{8 \left(0.99^2 - 4 \times 0.99 + 3 - 2 \log(0.99) - 8 \log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2 \log(0.99) - 16 \log\left(\frac{2}{1.99}\right)}} - 29 - 11 - \frac{2}{5} = -\frac{202}{5} + \pi \sqrt{\frac{7 \left(-0.00719286 + \log(0.99) + 3.42857 \log(1.00503)\right)}{-0.03005 + \log(0.99) + 8 \log(1.00503)}}}{\frac{-0.03005 + \log(0.99) + 8 \log(1.00503)}{-0.03005 + \log(0.99) + 8 \log(1.00503)}} - \frac{k!}{k!} \left(\frac{-1}{2}\right)_k}{k!}$$

Input:

$$\sqrt{8 \times \frac{0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}} + 123 + 47 - 4 - \frac{2}{\phi}$$

log(x) is the natural logarithm

 $\phi$  is the golden ratio

#### **Result:**

727.9997713010442438496196170375748496892713575184118989732...

727.9997713...  $\approx$  728 (Ramanujan taxicab number)

### Alternative representations:

$$\sqrt{\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}} + 123 + 47 - 4 - \frac{2}{\phi} = \\ \left(166 - \frac{2}{\phi} + \sqrt{\frac{8\left(-0.96 - 2\log(a)\log_a(0.99) - 8\log(a)\log_a\left(\frac{2}{1.99}\right) + 0.99^2\right)}{-0.92 - 2\log(a)\log_a(0.99) - 16\log(a)\log_a\left(\frac{2}{1.99}\right) + 0.99^2}} = \\ 166 - \frac{2}{\phi} + \sqrt{\frac{8\left(0.0201 - 2\log(a)\log_a(0.99) - 8\log(a)\log_a\left(\frac{2}{1.99}\right) + 0.99^2\right)}{0.0601 - 2\log(a)\log_a(0.99) - 16\log(a)\log_a(1.00503))}}} \right)$$

$$\begin{split} \sqrt{\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}} + 123 + 47 - 4 - \frac{2}{\phi} = \\ \left(166 - \frac{2}{\phi} + \sqrt{\frac{8\left(-0.96 - 2\log_e(0.99) - 8\log_e\left(\frac{2}{1.99}\right) + 0.99^2\right)}{-0.92 - 2\log_e(0.99) - 16\log_e\left(\frac{2}{1.99}\right) + 0.99^2}}}\right) = \\ 166 - \frac{2}{\phi} + \sqrt{\frac{8\left(0.0201 - 2\log_e(0.99) - 8\log_e(1.00503)\right)}{0.0601 - 2\log_e(0.99) - 16\log_e(1.00503)}}} \end{split}$$

$$\begin{split} \sqrt{\frac{8 \left(0.99^2 - 4 \times 0.99 + 3 - 2 \log(0.99) - 8 \log\left(\frac{2}{1.00}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2 \log(0.99) - 16 \log\left(\frac{2}{1.00}\right)}} &+ 123 + 47 - 4 - \frac{2}{\phi} = \\ \left(166 - \frac{2}{\phi} + \sqrt{\frac{8 \left(-0.96 + 2 \operatorname{Li}_1(0.01) + 8 \operatorname{Li}_1\left(1 - \frac{2}{1.00}\right) + 0.99^2\right)}{-0.92 + 2 \operatorname{Li}_1(0.01) + 16 \operatorname{Li}_1\left(1 - \frac{2}{1.00}\right) + 0.99^2}}} = \\ 166 - \frac{2}{\phi} + \sqrt{\frac{8 (0.0201 + 8 \operatorname{Li}_1(-0.00502513) + 2 \operatorname{Li}_1(0.01))}{0.0601 + 16 \operatorname{Li}_1(-0.00502513) + 2 \operatorname{Li}_1(0.01)}}} \end{split}$$

### Series representations:

$$\sqrt{\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)}} + 123 + 47 - 4 - \frac{2}{\phi} = 166 - \frac{2}{\phi} + \sqrt{\frac{7\left(-0.00719286 + \log(0.99) + 3.42857\log(1.00503)\right)}{-0.03005 + \log(0.99) + 8\log(1.00503)}}$$

$$\sum_{k=0}^{\infty} e^{-1.94591k} \left(\frac{\frac{1}{2}}{k}\right) \left(\frac{-0.00719286 + \log(0.99) + 3.42857\log(1.00503)}{-0.03005 + \log(0.99) + 8\log(1.00503)}\right)^{-k}$$

$$\sqrt{\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)} + 123 + 47 - 4 - \frac{2}{\phi}} = \frac{-2 + 166\phi + \phi}{\sqrt{\frac{\frac{-0.0804 + \sum_{k=1}^{\infty} \frac{-8(-1)^k (-0.01)^k - 32(-0.00502513)^k}{k}}{-0.03005 + \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.01)^k - 8(-0.00502513)^k}{k}}{\phi}}}{\phi} }$$

$$\sqrt{\frac{8\left(0.99^2 - 4 \times 0.99 + 3 - 2\log(0.99) - 8\log\left(\frac{2}{1.99}\right)\right)}{0.99^2 - 8 \times 0.99 + 7 - 2\log(0.99) - 16\log\left(\frac{2}{1.99}\right)} + 123 + 47 - 4 - \frac{2}{\phi}} = \frac{166 - \frac{2}{\phi} + \sqrt{\frac{7\left(-0.00719286 + \log(0.99) + 3.42857\log(1.00503)\right)}{-0.03005 + \log(0.99) + 8\log(1.00503)}}} \\ \sum_{k=0}^{\infty} \frac{\left(-0.142857\right)^k \left(\frac{-0.00719286 + \log(0.99) + 3.42857\log(1.00503)}{-0.03005 + \log(0.99) + 8\log(1.00503)}\right)^{-k} \left(-\frac{1}{2}\right)_k}{k!}$$

For  $y_0 = 0.01$ , we obtain:

 $8*[(((0.01^2-4*0.01+3-2\ln(0.01)-8\ln(2/1.01))))/(((0.01^2-8*0.01+7-2\ln(0.01)-16\ln(2/1.01))))]$ 

Input:

$$8 \times \frac{0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)}$$

 $\log(x)$  is the natural logarithm

#### **Result:**

10.3166...

10.3166...
# Alternative representations:

$$\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} = \frac{8\left(2.96 - 2\log(a)\log_a(0.01) - 8\log(a)\log_a\left(\frac{2}{1.01}\right) + 0.01^2\right)}{6.92 - 2\log(a)\log_a(0.01) - 16\log(a)\log_a\left(\frac{2}{1.01}\right) + 0.01^2}$$

$$\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} = \frac{8\left(2.96 - 2\log_e(0.01) - 8\log_e\left(\frac{2}{1.01}\right) + 0.01^2\right)}{6.92 - 2\log_e(0.01) - 16\log_e\left(\frac{2}{1.01}\right) + 0.01^2}$$

$$\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} = \frac{8\left(2.96 + 2\operatorname{Li}_1(0.99) + 8\operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2\right)}{6.92 + 2\operatorname{Li}_1(0.99) + 16\operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2}$$

$$\begin{aligned} \frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} &= \\ \frac{-\frac{11.8404 + \sum_{k=1}^{\infty} \frac{-8(-1)^k (-0.99k^k - 32(-0.980198)^k)}{k}}{-3.46005 + \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.99k^k - 32(-0.980198)^k)}{k}}{\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} = \\ &\left(8\left(-0.740025 + i\pi\left\lfloor\frac{\arg(0.01 - x)}{2\pi}\right\rfloor + 4i\pi\left\lfloor\frac{\arg(1.9802 - x)}{2\pi}\right\rfloor + 2.5\log(x) + 0.125\sum_{k=1}^{\infty} \frac{(-1)^k \left(-4\left(0.01 - x\right)^k - 16\left(1.9802 - x\right)^k\right)x^{-k}}{k}\right)\right)\right)\right/ \\ &\left(-1.73003 + i\pi\left\lfloor\frac{\arg(0.01 - x)}{2\pi}\right\rfloor + 8i\pi\left\lfloor\frac{\arg(1.9802 - x)}{2\pi}\right\rfloor + 4.5\log(x) + \sum_{k=1}^{\infty} \frac{(-1)^k \left(-0.5\left(0.01 - x\right)^k - 4\left(1.9802 - x\right)^k\right)x^{-k}}{k}\right)}{k}\right) \right] \text{for } x < 0 \end{aligned}$$

$$\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} = \frac{-11.8404 + \sum_{j=1}^{\infty} \left(8\left(\operatorname{Res}_{s=-j} \frac{(-0.99)^{-s} \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)}\right) + 32\left(\operatorname{Res}_{s=-j} \frac{e^{0.0200007 s} \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)}\right)\right)}{-3.46005 + \sum_{j=1}^{\infty} \left(\operatorname{Res}_{s=-j} \frac{(-0.99)^{-s} \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)} + 8\left(\operatorname{Res}_{s=-j} \frac{e^{0.0200007 s} \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)}\right)\right)}{\Gamma(1-s)}\right)$$

 $(((8*[(((0.01^2-4*0.01+3-2\ln(0.01)-8\ln(2/1.01))))/(((0.01^2-8*0.01+7-2\ln(0.01)-16\ln(2/1.01)))))))^2+29+4$ 

Input:  

$$\left(8 \times \frac{0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)}\right)^2 + 29 + 4$$

log(x) is the natural logarithm

#### **Result:**

139.432...

## 139.432... result practically equal to the rest mass of Pion meson 139.57 MeV

## Alternative representations:

$$\left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 29 + 4 = 33 + \left( \frac{8 \left( 2.96 - 2 \log_e(0.01) - 8 \log_e\left(\frac{2}{1.01}\right) + 0.01^2 \right)}{6.92 - 2 \log_e(0.01) - 16 \log_e\left(\frac{2}{1.01}\right) + 0.01^2} \right)^2$$

$$\left( \frac{8 \left(0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 29 + 4 = 33 + \left( \frac{8 \left(2.96 - 2 \log(a) \log_a(0.01) - 8 \log(a) \log_a\left(\frac{2}{1.01}\right) + 0.01^2\right)}{6.92 - 2 \log(a) \log_a(0.01) - 16 \log(a) \log_a\left(\frac{2}{1.01}\right) + 0.01^2} \right)^2$$

$$\left( \frac{8 \left(0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 29 + 4 = 33 + \left( \frac{8 \left(2.96 + 2 \operatorname{Li}_1(0.99) + 8 \operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2\right)}{6.92 + 2 \operatorname{Li}_1(0.99) + 16 \operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2} \right)^2$$

$$\frac{\left(\frac{8\left(0.01^{2}-4\times0.01+3-2\log(0.01)-8\log\left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8\times0.01+7-2\log(0.01)-16\log\left(\frac{2}{1.01}\right)\right)}^{2}+29+4=\left(33\left(16.2203-6.9201\sum_{k=1}^{\infty}\frac{-(-1)^{k}\left(-0.99\right)^{k}-8\left(-0.980198\right)^{k}}{k}\right)^{2}+29+4=\left(\sum_{k=1}^{\infty}\frac{-(-1)^{k}\left(-0.99\right)^{k}-8\left(-0.980198\right)^{k}}{k}\right)^{2}-5.7408\sum_{k=1}^{\infty}\frac{-(-1)^{k}\left(-0.99\right)^{k}-4\left(-0.980198\right)^{k}}{k}+1.93939\left(\sum_{k=1}^{\infty}\frac{-(-1)^{k}\left(-0.99\right)^{k}-4\left(-0.980198\right)^{k}}{k}\right)^{2}\right)\right) + \left(-3.46005+\sum_{k=1}^{\infty}\frac{-(-1)^{k}\left(-0.99\right)^{k}-8\left(-0.980198\right)^{k}}{k}\right)^{2} \right)$$

$$\begin{cases} \frac{8(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log(\frac{2}{1.01}))}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log(\frac{2}{1.01})} \end{pmatrix}^2 + 29 + 4 = \\ 33 + \left( 64 \left( 2.9601 - 2 \left( 2i\pi \left\lfloor \frac{\arg(0.01 - x)}{2\pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - x)^k x^{-k}}{k} \right) - \right. \\ \left. 8 \left( 2i\pi \left\lfloor \frac{\arg(1.9802 - x)}{2\pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (1.9802 - x)^k x^{-k}}{k} \right) \right)^2 \right) \right/ \\ \left. \left( 6.9201 - 2 \left( 2i\pi \left\lfloor \frac{\arg(0.01 - x)}{2\pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - x)^k x^{-k}}{k} \right) - \right. \\ \left. 16 \left( 2i\pi \left\lfloor \frac{\arg(1.9802 - x)}{2\pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - x)^k x^{-k}}{k} \right) - \right. \\ \left. \frac{\sum_{k=1}^{\infty} \frac{(-1)^k (1.9802 - x)}{2\pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - x)^k x^{-k}}{k} \right) - \right.$$

$$\begin{aligned} & \left[\frac{8\left(0.01^{2}-4\times0.01+3-2\log(0.01)-8\log\left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8\times0.01+7-2\log(0.01)-16\log\left(\frac{2}{1.01}\right)}\right]^{2}+29+4=\\ & 33+\left[64\left[-0.740025+i\pi\left[-\frac{-\pi+\arg\left(\frac{0.01}{z_{0}}\right)+\arg(z_{0})}{2\pi}\right]+8\left(\frac{1-2\pi}{2\pi}\right)\right]+\\ & 4i\pi\left[-\frac{-\pi+\arg\left(\frac{1.9802}{z_{0}}\right)+\arg(z_{0})}{2\pi}\right]+2.5\log(z_{0})+\\ & \sum_{k=1}^{\infty}\frac{(-1)^{k}\left(-0.5\left(0.01-z_{0}\right)^{k}-2\left(1.9802-z_{0}\right)^{k}\right)z_{0}^{-k}}{k}\right]^{2}\right]/\\ & \left(-1.73003+i\pi\left[-\frac{-\pi+\arg\left(\frac{0.01}{z_{0}}\right)+\arg(z_{0})}{2\pi}\right]+8i\pi\left[-\frac{-\pi+\arg\left(\frac{1.9802}{z_{0}}\right)+\arg(z_{0})}{2\pi}\right]+\\ & 4.5\log(z_{0})+\sum_{k=1}^{\infty}\frac{(-1)^{k}\left(-0.5\left(0.01-z_{0}\right)^{k}-4\left(1.9802-z_{0}\right)^{k}\right)z_{0}^{-k}}{k}\right]^{2}\end{aligned}$$

 $(((8*[(((0.01^2-4*0.01+3-2 \ln(0.01)-8 \ln(2/1.01))))/(((0.01^2-8*0.01+7-2 \ln(0.01)-16 \ln(2/1.01)))))))^2+18+1/golden ratio$ 

Input:

$$\left(8 \times \frac{0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)}\right)^2 + 18 + \frac{1}{\phi}$$

log(x) is the natural logarithm

 $\phi$  is the golden ratio

#### **Result:**

125.050...

125.050... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

# Alternative representations:

$$\left( \frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} \right)^2 + 18 + \frac{1}{\phi} = 18 + \frac{1}{\phi} + \left( \frac{8\left(2.96 - 2\log_e(0.01) - 8\log_e\left(\frac{2}{1.01}\right) + 0.01^2\right)}{6.92 - 2\log_e(0.01) - 16\log_e\left(\frac{2}{1.01}\right) + 0.01^2} \right)^2$$

$$\left(\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)}\right)^2 + 18 + \frac{1}{\phi} = 18 + \frac{1}{\phi} + \left(\frac{8\left(2.96 - 2\log(a)\log_a(0.01) - 8\log(a)\log_a\left(\frac{2}{1.01}\right) + 0.01^2\right)}{6.92 - 2\log(a)\log_a(0.01) - 16\log(a)\log_a\left(\frac{2}{1.01}\right) + 0.01^2}\right)^2$$

$$\left(\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)}\right)^2 + 18 + \frac{1}{\phi} = 18 + \frac{1}{\phi} + \left(\frac{8\left(2.96 + 2\operatorname{Li}_1(0.99) + 8\operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2\right)}{6.92 + 2\operatorname{Li}_1(0.99) + 16\operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2}\right)^2$$

$$\begin{split} & \left(\frac{8\left(0.01^2-4\times0.01+3-2\log(0.01)-8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2-8\times0.01+7-2\log(0.01)-16\log\left(\frac{2}{1.01}\right)}\right)^2+18+\frac{1}{\phi}=\\ & \left(18\left(0.665108+19.7606\phi-0.38445\sum_{k=1}^{\infty}\frac{-(-1)^k\left(-0.99\right)^k-8\left(-0.980198\right)^k}{k}\right)-\\ & 6.9201\phi\sum_{k=1}^{\infty}\frac{-(-1)^k\left(-0.99\right)^k-8\left(-0.980198\right)^k}{k}+\\ & 0.0555556\left(\sum_{k=1}^{\infty}\frac{-(-1)^k\left(-0.99\right)^k-8\left(-0.980198\right)^k}{k}\right)^2+\\ & \phi\left(\sum_{k=1}^{\infty}\frac{-(-1)^k\left(-0.99\right)^k-8\left(-0.980198\right)^k}{k}\right)^2-\\ & 10.5248\phi\sum_{k=1}^{\infty}\frac{-(-1)^k\left(-0.99\right)^k-4\left(-0.980198\right)^k}{k}+\\ & 3.55556\phi\left(\sum_{k=1}^{\infty}\frac{-(-1)^k\left(-0.99\right)^k-4\left(-0.980198\right)^k}{k}\right)^2\right)\right)\\ & \left(\phi\left(-3.46005+\sum_{k=1}^{\infty}\frac{-(-1)^k\left(-0.99\right)^k-8\left(-0.980198\right)^k}{k}\right)^2\right) \end{split}$$

$$\begin{cases} \frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} \right)^2 + 18 + \frac{1}{\phi} = \\ 18 + \frac{1}{\phi} + \left( 64\left(2.9601 - 2\left(2i\pi\left\lfloor\frac{\arg(0.01 - x)}{2\pi}\right\rfloor + \log(x) - \sum_{k=1}^{\infty}\frac{(-1)^k(0.01 - x)^k x^{-k}}{k}\right) \right) - \\ 8\left(2i\pi\left\lfloor\frac{\arg(1.9802 - x)}{2\pi}\right\rfloor + \log(x) - \sum_{k=1}^{\infty}\frac{(-1)^k(1.9802 - x)^k x^{-k}}{k}\right) \right)^2 \right) / \\ \left( 6.9201 - 2\left(2i\pi\left\lfloor\frac{\arg(0.01 - x)}{2\pi}\right\rfloor + \log(x) - \sum_{k=1}^{\infty}\frac{(-1)^k(0.01 - x)^k x^{-k}}{k}\right) - \\ 16\left(2i\pi\left\lfloor\frac{\arg(1.9802 - x)}{2\pi}\right\rfloor + \log(x) - \sum_{k=1}^{\infty}\frac{(-1)^k(0.01 - x)^k x^{-k}}{k}\right) - \\ \sum_{k=1}^{\infty}\frac{(-1)^k(1.9802 - x)^k x^{-k}}{k} \right)^2 \right)^2 \text{ for } x < 0 \end{cases}$$

$$\begin{split} & \left(\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)}\right)^2 + 18 + \frac{1}{\phi} = \\ & 18 + \frac{1}{\phi} + \left(64\left(2.9601 - 2\left(\log(z_0) + \left\lfloor\frac{\arg(0.01 - z_0)^k z_0^{-k}}{2\pi}\right\rfloor\right) \left\lceil \log\left(\frac{1}{z_0}\right) + \log(z_0)\right\rceil - \\ & \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - z_0)^k z_0^{-k}}{k}\right\rceil - 8\left[\log(z_0) + \left\lfloor\frac{\arg(1.9802 - z_0)}{2\pi}\right\rfloor\right] \\ & \left(\log\left(\frac{1}{z_0}\right) + \log(z_0)\right) - \sum_{k=1}^{\infty} \frac{(-1)^k (1.9802 - z_0)^k z_0^{-k}}{k}\right)^2 \right] / \\ & \left(6.9201 - 2\left(\log(z_0) + \left\lfloor\frac{\arg(0.01 - z_0)^k z_0^{-k}}{2\pi}\right\rfloor\right) \left(\log\left(\frac{1}{z_0}\right) + \log(z_0)\right) - \\ & \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - z_0)^k z_0^{-k}}{k}\right) - \\ & 16\left(\log(z_0) + \left\lfloor\frac{\arg(1.9802 - z_0)}{2\pi}\right\rfloor \left(\log\left(\frac{1}{z_0}\right) + \log(z_0)\right) - \\ & \sum_{k=1}^{\infty} \frac{(-1)^k (1.9802 - z_0)^k z_0^{-k}}{k}\right) \right)^2 \end{split}$$

## 

Input:  

$$27 \times \frac{1}{2} \left( \left( 8 \times \frac{0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) + 8 + \frac{1}{\phi}$$

log(x) is the natural logarithm

 $\phi$  is the golden ratio

#### **Result:**

1728.95...

1728.95...

This result is very near to the mass of candidate glueball  $f_0(1710)$  meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

#### Alternative representations:

$$\frac{27}{2} \left( \left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) + 8 + \frac{1}{\phi} = 8 + \frac{1}{\phi} + \frac{27}{2} \left( 21 + \left( \frac{8 \left( 2.96 - 2 \log_e(0.01) - 8 \log_e\left(\frac{2}{1.01}\right) + 0.01^2 \right)}{6.92 - 2 \log_e(0.01) - 16 \log_e\left(\frac{2}{1.01}\right) + 0.01^2} \right)^2 \right)$$

$$\frac{27}{2} \left( \left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) + 8 + \frac{1}{\phi} = 8 + \frac{1}{\phi} + \frac{27}{2} \left( 21 + \left( \frac{8 \left( 2.96 - 2 \log(a) \log_a(0.01) - 8 \log(a) \log_a\left(\frac{2}{1.01}\right) + 0.01^2 \right)}{6.92 - 2 \log(a) \log_a(0.01) - 16 \log(a) \log_a\left(\frac{2}{1.01}\right) + 0.01^2} \right)^2 \right)$$

$$\frac{27}{2} \left( \left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) + 8 + \frac{1}{\phi} = 8 + \frac{1}{\phi} + \frac{27}{2} \left( 21 + \left( \frac{8 \left( 2.96 + 2 \operatorname{Li}_1(0.99) + 8 \operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2 \right)}{6.92 + 2 \operatorname{Li}_1(0.99) + 16 \operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2} \right)^2 \right)$$

$$\begin{split} \frac{27}{2} \left( \left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) + 8 + \frac{1}{\phi} = \\ \left( 291.5 \left( 0.164281 + 73.8587 \phi + 17.5474 \phi \sum_{k=1}^{\infty} \frac{2 (-1)^k \left( (-0.99)^k + 4 \times 0.980198^k \right) \right)}{k} + \\ 2.96398 \phi \left( \sum_{k=1}^{\infty} \frac{2 (-1)^k \left( (-0.99)^k + 4 \times 0.980198^k \right) \right)}{k} \right)^2 + \\ 0.0474792 \sum_{k=1}^{\infty} \frac{2 (-1)^k \left( (-0.99)^k + 8 \times 0.980198^k \right) \right)}{k} + \\ 13.8402 \phi \sum_{k=1}^{\infty} \frac{2 (-1)^k \left( (-0.99)^k + 8 \times 0.980198^k \right) + \\ 0.00343053 \left( \sum_{k=1}^{\infty} \frac{2 (-1)^k \left( (-0.99)^k + 8 \times 0.980198^k \right) \right)}{k} \right)^2 + \\ & \phi \left( \sum_{k=1}^{\infty} \frac{2 (-1)^k \left( (-0.99)^k + 8 \times 0.980198^k \right)}{k} \right)^2 \right) \right) / \\ & \left( \phi \left( 6.9201 + \sum_{k=1}^{\infty} \frac{2 (-1)^k \left( (-0.99)^k + 8 \times 0.980198^k \right) \right)}{k} \right)^2 \right) \right) \end{split}$$

$$\begin{aligned} &\frac{27}{2} \left( \left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) + 8 + \frac{1}{\phi} = \\ &\left( 291.5 \left( 0.0410701 + 18.4647 \phi - 0.0237396 \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.99)^k - 8 (-0.980198)^k}{k} + \\ & 6.9201 \phi \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.99)^k - 8 (-0.980198)^k}{k} + \\ & 0.00343053 \left( \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.99)^k - 8 (-0.980198)^k}{k} \right)^2 + \\ & \phi \left( \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.99)^k - 8 (-0.980198)^k}{k} \right)^2 - \\ & 8.77368 \phi \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.99)^k - 4 (-0.980198)^k}{k} + \\ & 2.96398 \phi \left( \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.99)^k - 4 (-0.980198)^k}{k} \right)^2 \right) \right) \right) \\ & \left( \phi \left( -3.46005 + \sum_{k=1}^{\infty} \frac{-(-1)^k (-0.99)^k - 8 (-0.980198)^k}{k} \right)^2 \right) \end{aligned}$$

$$\begin{aligned} \frac{27}{2} \left( \left( \frac{8 \left(0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) + 8 + \frac{1}{\phi} &= 8 + \frac{1}{\phi} + \frac{27}{2} \\ \left( 21 + \left( 64 \left( 2.9601 - 2 \left( 2 i \pi \left\lfloor \frac{\arg(0.01 - x)}{2 \pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - x)^k x^{-k}}{k} \right) \right) - \right. \\ &- \left. 8 \left( 2 i \pi \left\lfloor \frac{\arg(1.9802 - x)}{2 \pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (1.9802 - x)^k x^{-k}}{k} \right) \right)^2 \right) \right) \\ \left( 6.9201 - 2 \left( 2 i \pi \left\lfloor \frac{\arg(0.01 - x)}{2 \pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - x)^k x^{-k}}{k} \right) - \right. \\ &- \left. 16 \left( 2 i \pi \left\lfloor \frac{\arg(1.9802 - x)}{2 \pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - x)^k x^{-k}}{k} \right) - \right. \\ &- \left. \sum_{k=1}^{\infty} \frac{(-1)^k (1.9802 - x)}{2 \pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.01 - x)^k x^{-k}}{k} \right) - \right. \\ &- \left. 16 \left( 2 i \pi \left\lfloor \frac{\arg(1.9802 - x)}{2 \pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (1.9802 - x)^k x^{-k}}{k} \right) \right)^2 \right) \right\}$$

Input:  

$$6\left(\left(8 \times \frac{0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)}\right)^2 + 21\right) - 34 - 2 - \frac{1}{2}$$

 $\log(x)$  is the natural logarithm

## **Result:**

728.092...

## $728.092... \approx 728$ (Ramanujan taxicab number)

## Alternative representations:

$$6\left(\left(\frac{8\left(0.01^2 - 4 \times 0.01 + 3 - 2\log(0.01) - 8\log\left(\frac{2}{1.01}\right)\right)}{0.01^2 - 8 \times 0.01 + 7 - 2\log(0.01) - 16\log\left(\frac{2}{1.01}\right)}\right)^2 + 21\right) - 34 - 2 - \frac{1}{2} = -\frac{73}{2} + 6\left(21 + \left(\frac{8\left(2.96 - 2\log_e(0.01) - 8\log_e\left(\frac{2}{1.01}\right) + 0.01^2\right)}{6.92 - 2\log_e(0.01) - 16\log_e\left(\frac{2}{1.01}\right) + 0.01^2}\right)^2\right)$$

$$6\left[\left(\frac{8\left(0.01^{2}-4\times0.01+3-2\log(0.01)-8\log\left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8\times0.01+7-2\log(0.01)-16\log\left(\frac{2}{1.01}\right)}\right)^{2}+21\right]-34-2-\frac{1}{2}=-\frac{73}{2}+6\left(21+\left(\frac{8\left(2.96-2\log(a)\log_{a}(0.01)-8\log(a)\log_{a}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2\log(a)\log_{a}(0.01)-16\log(a)\log_{a}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}\right)$$

$$6 \left( \left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) - 34 - 2 - \frac{1}{2} = -\frac{73}{2} + 6 \left( 21 + \left( \frac{8 \left( 2.96 + 2 \operatorname{Li}_1(0.99) + 8 \operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2\right)}{6.92 + 2 \operatorname{Li}_1(0.99) + 16 \operatorname{Li}_1\left(1 - \frac{2}{1.01}\right) + 0.01^2} \right)^2 \right)$$

Series representations:  

$$6 \left[ \left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{0.01^2 - 8 \times 0.01 + 7 - 2 \log(0.01) - 16 \log\left(\frac{2}{1.01}\right)} \right)^2 + 21 \right) - 34 - 2 - \frac{1}{2} = \frac{89.5 \left( 85.482 + 25.4006 \sum_{k=1}^{\infty} \frac{2 \left( -1 \right)^k \left( (-0.99)^k + 4 \times 0.980198^k \right) \right)}{k} + \frac{4.2905 \left( \sum_{k=1}^{\infty} \frac{2 \left( -1 \right)^k \left( (-0.99)^k + 8 \times 0.980198^k \right) \right)}{k} \right)^2 + \frac{13.8402 \sum_{k=1}^{\infty} \frac{2 \left( -1 \right)^k \left( (-0.99)^k + 8 \times 0.980198^k \right) \right)}{k} + \frac{\left( \sum_{k=1}^{\infty} \frac{2 \left( -1 \right)^k \left( (-0.99)^k + 8 \times 0.980198^k \right) \right)}{k} \right)^2 \right) \right)}{k} - \frac{6 \left( \left( \frac{8 \left( 0.01^2 - 4 \times 0.01 + 3 - 2 \log(0.01) - 8 \log\left(\frac{2}{1.01}\right) \right)}{k} \right)^2 + 21 \right) - 34 - 2 - \frac{1}{2} \right) - 34 - 2 - \frac{1}{2} \right) - \frac{12 \left( -1 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \left( -0.99 \right)^k - 8 \left( -0.980198 \right)^k \right)}{k} \right)^2 - \frac{12.7003 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \left( -0.99 \right)^k - 8 \left( -0.980198 \right)^k \right)}{k} \right)^2 - \frac{12.7003 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \left( -0.99 \right)^k - 8 \left( -0.980198 \right)^k \right)}{k} \right)^2 - \frac{12.7003 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \left( -0.99 \right)^k - 4 \left( -0.980198 \right)^k }{k} \right)^2 - \frac{12.7003 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \left( -0.99 \right)^k - 8 \left( -0.980198 \right)^k }{k} \right)^2 - \frac{12.7003 \sum_{k=1}^{\infty} \frac{-\left( -1 \sum_{k=1}^{\infty} \left( -0.99 \right)^k - 8 \left( -0.980198 \right)^k }{k} \right)^2 \right)}{k} \right)$$

$$\begin{split} 6\left[\left(\frac{8\left(0.01^{2}-4\times0.01+3-2\log(0.01)-8\log\left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8\times0.01+7-2\log(0.01)-16\log\left(\frac{2}{1.01}\right)}\right)^{2}+21\right)-34-2-\frac{1}{2}=-\frac{73}{2}+\\ 6\left\{21+\left(64\left(2.9601-2\left(2i\pi\left\lfloor\frac{\arg(0.01-x)}{2\pi}\right\rfloor+\log(x)-\sum_{k=1}^{\infty}\frac{(-1)^{k}(0.01-x)^{k}x^{-k}}{k}\right)\right)-\\ 8\left\{2i\pi\left\lfloor\frac{\arg(1.9802-x)}{2\pi}\right\rfloor+\log(x)-\sum_{k=1}^{\infty}\frac{(-1)^{k}(1.9802-x)^{k}x^{-k}}{k}\right)\right]^{2}\right)/\\ \left(6.9201-2\left(2i\pi\left\lfloor\frac{\arg(0.01-x)}{2\pi}\right\rfloor+\log(x)-\sum_{k=1}^{\infty}\frac{(-1)^{k}(0.01-x)^{k}x^{-k}}{k}\right)-\\ 16\left(2i\pi\left\lfloor\frac{\arg(1.9802-x)}{2\pi}\right\rfloor+\log(x)-\sum_{k=1}^{\infty}\frac{(-1)^{k}(0.01-x)^{k}x^{-k}}{k}\right)-\\ &\sum_{k=1}^{\infty}\frac{(-1)^{k}(1.9802-x)^{k}x^{-k}}{k}\right)\right)^{2}\right) \text{ for } x<0 \end{split}$$

## Appendix

From:

## Three-dimensional AdS gravity and extremal CFTs at c = 8m

Spyros D. Avramis, Alex Kehagiasb and Constantina Mattheopoulou Received: September 7, 2007 - Accepted: October 28, 2007 - Published: November 9, 2007

| m | $L_0$ | d           |                | $S_{BH}$ | m    | $L_0$ | d              | S       | $S_{BH}$ |
|---|-------|-------------|----------------|----------|------|-------|----------------|---------|----------|
| 1 | 1     | 196883      | 12.1904        | 12.5664  |      | 1     | 42987519       | 17.5764 | 17.7715  |
| 3 | 2     | 21296876    | 16.8741        | 17.7715  | 6    | 2     | 40448921875    | 24.4233 | 25.1327  |
|   | 3     | 842609326   | 20.5520        | 21.7656  |      | 3     | 8463511703277  | 29.7668 | 30.7812  |
| 0 | 2/3   | 139503      | <b>11.8458</b> | 11.8477  | 8 85 | 2/3   | 7402775        | 15.8174 | 15.6730  |
| 4 | 5/3   | 69193488    | 18.0524        | 18.7328  | 7    | 5/3   | 33934039437    | 24.2477 | 24.7812  |
|   | 8/3   | 6928824200  | 22.6589        | 23.6954  |      | 8/3   | 16953652012291 | 30.4615 | 31.3460  |
| 5 | 1/3   | 20619       | 9.9340         | 9.3664   | 8 85 | 1/3   | 278511         | 12.5372 | 11.8477  |
|   | 4/3   | 86645620    | 18.2773        | 18.7328  | 8    | 4/3   | 13996384631    | 23.3621 | 23.6954  |
|   | 7/3   | 24157197490 | 23.9078        | 24.7812  |      | 7/3   | 19400406113385 | 30.5963 | 31.3460  |

Table 1: Degeneracies, microscopic entropies and semiclassical entropies for the first few values of m and  $L_0$ .

### Conclusion

#### Modular equations and approximations to $\pi$

S. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350 - 372

Note that:

$$g_{22} = \sqrt{(1+\sqrt{2})}.$$

Hence

$$64g_{22}^{24} = e^{\pi\sqrt{22}} - 24 + 276e^{-\pi\sqrt{22}} - \cdots,$$
  

$$64g_{22}^{-24} = 4096e^{-\pi\sqrt{22}} + \cdots,$$

so that

$$64(g_{22}^{24}+g_{22}^{-24})=e^{\pi\sqrt{22}}-24+4372e^{-\pi\sqrt{22}}+\cdots=64\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\}.$$

Hence

$$e^{\pi\sqrt{22}} = 2508951.9982\ldots$$

Thence:

$$64g_{22}^{-24} = 4096e^{-\pi\sqrt{22}} + \cdots$$

And

$$64(g_{22}^{24} + g_{22}^{-24}) = e^{\pi\sqrt{22}} - 24 + 4372e^{-\pi\sqrt{22}} + \dots = 64\{(1+\sqrt{2})^{12} + (1-\sqrt{2})^{12}\}$$

That are connected with 64, 128, 256, 512, 1024 and  $4096 = 64^2$ 

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants  $\pi$ ,  $\phi$ ,  $1/\phi$ , the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

## References

#### Stability of the graviton Bose-Einstein condensate in the brane-world

*R. Casadio* - Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy - INFN, Sezione di Bologna, viale B. Pichat 6, 40127 Bologna, Italy *Roldao da Rocha* - CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil - arXiv: 1610.01572v1 [hep-th] 5 Oct 2016

# Holographic entanglement entropy under the minimal geometric deformation and extensions

R. da Rocha, A. A. Tomaz - arXiv:1905.01548v2 [hep-th] 29 Dec 2019