On some Ramanujan equations (mock theta functions and taxicab numbers) linked to various sectors of String Theory (Brane-World) and to the Black Hole Physics: Further new possible mathematical connections X.

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed and deepened further Ramanujan expressions (mock theta functions and taxicab numbers) applied to some sectors of String Theory (Brane-World) and to the Black Hole Physics. We have therefore described other new possible mathematical connections.

[^0]\[

$$
\begin{aligned}
& \text { \&f } \\
& \text { (i) } \frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+ \\
& \text { on } \frac{\alpha_{0}}{x}+\frac{\alpha_{1}}{x^{2}}+\frac{\alpha_{L}}{x^{3}}+ \\
& \text { (ii) } \frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}=L_{0}+4, x+L_{2} x^{2}+4, x+\cdots \\
& \text { or } \frac{\beta_{0}}{x^{\prime}}+\frac{\beta_{1}}{x^{L}}+\frac{\beta_{L}}{x^{0}}+ \\
& \text { (iii) } \frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}}=c_{0}+c_{1} x+c_{2} x^{2}+c_{0} x^{3}+ \\
& \text { a } \frac{x_{0}}{x^{2}}+\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{0}}+ \\
& \text { then } \\
& \left.a_{n}^{3}+a_{n}^{3}=c_{n}^{3}+(-1)^{n}\right\} \\
& \text { and } \left.\alpha_{n}^{3}+\beta_{n}^{3}=\gamma_{n}^{3}+(-1)^{n}\right\} \\
& \text { Enamples } \\
& 135^{3}+138^{3}=172^{3}-1 \\
& 11161^{3}+11468^{3}=14258^{3}+1 \\
& 9^{3}+10^{3}=12^{3}+1 \\
& 791^{3}+812^{3}=1010^{3}-1 \\
& 6^{3}+8^{3}=9^{3}-1
\end{aligned}
$$
\]

https://plus.maths.org/content/ramanujan

Ramanujan's manuscript

The representations of 1729 as the sum of two cubes appear in the bottom right corner. The equation expressing the near counter examples to Fermat's last theorem appears further up: $\alpha^{3}+\beta^{3}=\gamma^{3}+(-1)^{n}$.

From Wikipedia
The taxicab number, typically denoted $T a(n)$ or Taxicab(n), also called the nth Hardy-Ramanujan number, is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is $1729=T a(2)=1^{3}+12^{3}=9^{3}+10^{3}$.

From

Stability of the graviton Bose-Einstein condensate in the brane-world

R. Casadio - Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy - INFN, Sezione di Bologna, viale B. Pichat 6, 40127 Bologna, Italy
Roldao da Rocha - CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil - arXiv: 1610.01572v1 [hep-th] 5 Oct 2016

Now, we have that:

$$
\begin{equation*}
\frac{B_{\nu}(\rho)}{B(\rho)}=1-\frac{2 c_{0}}{\sigma\left[\rho-\frac{3}{4} \tanh ^{3}(\nu \rho)\right]\left[5-3 \tanh ^{2}(\nu \rho)\right]}, \tag{22}
\end{equation*}
$$

where $c_{0} \simeq 0.275$. Fig. 1 shows plots of $B_{\nu}(\rho)$ for various values of ν. It is clear that, for increasing values of ν, this

FIG. 1. Plot of $B_{\nu}(\rho)$ in Eq. (22), for $\nu=0$ (gray dashed line); $\nu=0.3$ (thick gray line); $\nu=0.5$ (thick black line); $\nu=\nu_{*}$ (black dot-dashed line); $\nu=1$ (black dashed line); $\nu=1.4$ (dotted line).
black hole model rapidly approaches the Schwarzschild black hole. This figure can be compared to Fig. 1 in Ref. [19] for similar parameters.

For any ν, the metric component $B_{\nu}(\rho)$ has a single local minimum at $\rho_{*}=a_{*} / \nu$, where $a_{*} \approx 1.031$. Writing $B_{\nu}\left(p_{*}\right)=1-\nu / \nu_{*}$, with $\nu_{*} \approx 0.694$, the condition for the existence of an event horizon is $\nu>\nu_{*}$. The case $\nu=\nu_{*}$ is extremal [19].

$$
\begin{aligned}
\sigma & \gtrsim 3.18 \times 10^{6} \mathrm{MeV}^{4} \\
\sigma & \gtrsim 5 \times 10^{6} \mathrm{MeV}^{4} \\
\rho & =r / M=2 r / r_{s}
\end{aligned}
$$

For $\mathrm{M}=1.312806 \mathrm{e}+40$ and $\mathrm{R}=1.949322 \mathrm{e}+13$ (SMBH87 parameters)

$$
\begin{equation*}
\frac{B_{\nu}(\rho)}{B(\rho)}=1-\frac{2 c_{0}}{\sigma\left[\rho-\frac{3}{4} \tanh ^{3}(\nu \rho)\right]\left[5-3 \tanh ^{2}(\nu \rho)\right]} \tag{22}
\end{equation*}
$$

$1-(2 * 0.275) /\left[\left(3.18^{*} 10^{\wedge} 6\right)((((1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)-3 / 4\right.$ $\left.\left.\left.\tanh ^{\wedge} 3(1.4 *(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40))\right)\right)\right)^{*}(((5-$
$\left.\left.3^{*} \tanh ^{\wedge} 2\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)$)]

Input interpretation:

$$
\begin{gathered}
1-(2 \times 0.275) /\left(3.18 \times 10^{6}\left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}-\frac{3}{4} \tanh ^{3}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right. \\
\left.\left(5-3 \tanh ^{2}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right)
\end{gathered}
$$

Result:

$$
\begin{aligned}
& -2.32961 \ldots \times 10^{19} \\
& -2.32961 \ldots * 10^{19}
\end{aligned}
$$

$$
\left(\left(\left(-1 /\left(() \left(1-\left(2^{*} 0.275\right) /\left[\left(3.18^{*} 10^{\wedge} 6\right)\right)\left(\left(\left(1.949322 e^{+}+13 / 1.312806 \mathrm{e}+40\right)-3 / 4\right.\right.\right.\right.\right.\right.\right.
$$

$$
\left.\left.\left.\tanh ^{\wedge} 3\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)^{*}(((5-
$$

$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.3^{*} \tanh ^{\wedge} 2\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)\right]\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 4096$

Input interpretation:

$$
\begin{array}{r}
(-(1 /(1-(2 \times 0.275) / \\
\left(3.18 \times 10^{6}\left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}-\frac{3}{4} \tanh ^{3}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right. \\
\left.\left.\left.\left.\left.\left(5-3 \tanh ^{2}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right)\right)\right)\right)\right) \wedge(1 / 4096)
\end{array}
$$

Result:

0.989171647...
0.989171647 .
result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$
$2 * \operatorname{sqrt}((\log$ base $0.989171647((-1 /(()(1-$
$(2 * 0.275) /\left[\left(3.18 * 10^{\wedge} 6\right)((((1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)-3 / 4\right.$
$\left.\left.\left.\tanh ^{\wedge} 3\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)^{*}(((5-$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.3 * \tanh ^{\wedge} 2\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)\right]\right)\right)\right)\right)\right)\right)\right)\right)\right)$

Input interpretation:

$2 \sqrt{\log _{0.989171647}(-(1 /(1-(2 \times 0.275)} /$

$$
\begin{gathered}
\left(3.18 \times 10^{6}\left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}-\frac{3}{4} \tanh ^{3}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right. \\
\left.\left.\left.\left.\quad\left(5-3 \tanh ^{2}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right)\right)\right)\right)
\end{gathered}
$$

$\tanh (x)$ is the hyperbolic tangent function
$\log _{b}(x)$ is the base- b logarithm

Result:

128.0000..

128

27*sqrt((log base 0.989171647 (((-1//(((1-
$(2 * 0.275) /\left[\left(3.18 * 10^{\wedge} 6\right)((((1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)-3 / 4\right.$
$\left.\left.\left.\tanh ^{\wedge} 3\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)^{*}((5-$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.3^{*} \tanh ^{\wedge} 2\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)\right]\right)\right)\right)\right)\right)$))))

Input interpretation:

$$
\left.27 \sqrt{\log _{0.089171647}(-(1 /(1-(2 \times 0.275) /}\right) \quad\left(\begin{array}{l}
3.18 \times 10^{6}\left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}-\frac{3}{4} \tanh ^{3}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right) \\
\left.\left.\left.\left.\left.\quad\left(5-3 \tanh ^{2}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right)\right)\right)\right)\right)
\end{array}\right.
$$

Result:

1728.000...

1728
This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j -invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

7+2*sqrt((log base 0.98917164$)((-1 /(()(1-$
$(2 * 0.275) /\left[\left(3.18 * 10^{\wedge} 6\right)((((1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)-3 / 4\right.$
$\left.\left.\left.\tanh ^{\wedge} 3\left(1.4 *\left(1.949322 \mathrm{e}^{+}+13 / 1.312806 \mathrm{e}+40\right)\right)\right)\right)\right)^{*}(((5-$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.3^{*} \tanh ^{\wedge} 2\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)\right]\right)\right)\right)\right)\right)$))))

Input interpretation:

$$
\begin{aligned}
7+2 & \log _{0.98917164}(-(1 /(1-(2 \times 0.275) / \\
& \left(3.18 \times 10^{6}\left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}-\frac{3}{4} \tanh ^{3}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right. \\
& \left.\left.\left.\left.\left(5-3 \tanh ^{2}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

Result:

135.000...

135 (Ramanujan taxicab number)
$7+3+2 \mathrm{sqrt}((\log$ base $0.9891716(((-1 /()((1-$
$(2 * 0.275) /\left[\left(3.18 * 10^{\wedge} 6\right)((((1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)-3 / 4\right.$
$\left.\left.\left.\tanh ^{\wedge} 3\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)^{*}((5-$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.3^{*} \tanh ^{\wedge} 2\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)\right]\right)\right)\right)\right)\right)\right)\right)\right)$)

Input interpretation:

$7+3+2 \sqrt{ } \log _{0.9891716}(-(1 /(1-(2 \times 0.275) /$

$$
\begin{gathered}
\left(3.18 \times 10^{6}\left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}-\frac{3}{4} \tanh ^{3}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right. \\
\left.\left.\left.\left.\quad\left(5-3 \tanh ^{2}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right)\right)\right)\right)
\end{gathered}
$$

$\tanh (x)$ is the hyperbolic tangent function
$\log _{b}(x)$ is the base- b logarithm

Result:

138.000

138 (Ramanujan taxicab number)

4*11+2sqrt[log base $0.9891716(((-1 /()((1-$
$(2 * 0.275) /\left[\left(3.18 * 10^{\wedge} 6\right)((((1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)-3 / 4\right.$
$\left.\left.\left.\tanh ^{\wedge} 3\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)^{*}(((5-$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.3 * \tanh ^{\wedge} 2\left(1.4^{*}(1.949322 \mathrm{e}+13 / 1.312806 \mathrm{e}+40)\right)\right)\right)\right)\right]\right)\right)\right)\right)\right)\right)\right)\right]$

Input interpretation:

$4 \times 11+2 \sqrt{ } \log _{0.9891716}(-(1 /(1-(2 \times 0.275) /$

$$
\begin{gathered}
\left(3.18 \times 10^{6}\left(\frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}-\frac{3}{4} \tanh ^{3}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right. \\
\left.\left.\left.\left.\left.\quad\left(5-3 \tanh ^{2}\left(1.4 \times \frac{1.949322 \times 10^{13}}{1.312806 \times 10^{40}}\right)\right)\right)\right)\right)\right)\right)
\end{gathered}
$$

Result:

172.000...

172 (Ramanujan taxicab number)

From

$$
135^{3}+138^{3}=172^{3}-1
$$

$135^{\wedge} 3+138^{\wedge} 3=172^{\wedge} 3-1$

Input:

$135^{3}+138^{3}=172^{3}-1$

Result:

True

Left hand side:

$135^{3}+138^{3}=5088447$

Right hand side:
$172^{3}-1=5088447$

5088447
$\ln \left(135^{\wedge} 3+138^{\wedge} 3\right)$

Input:

$\log \left(135^{3}+138^{3}\right)$

Exact result:

$\log (5088447)$

Decimal approximation:

15.44248323391676327573091977987313063668255249261267663169...
$15.4424832339 \ldots$ result very near to the black hole entropy 15.6730

Property:

$\log (5088447)$ is a transcendental number

Alternate forms:

$3 \log (3)+\log (188461)$
$3 \log (3)+\log (7)+\log (13)+\log (19)+\log (109)$

Alternative representations:

$\log \left(135^{3}+138^{3}\right)=\log _{e}\left(135^{3}+138^{3}\right)$
$\log \left(135^{3}+138^{3}\right)=\log (a) \log _{a}\left(135^{3}+138^{3}\right)$
$\log \left(135^{3}+138^{3}\right)=-\operatorname{Li}_{1}\left(1-135^{3}-138^{3}\right)$

Integral representations:

$\log \left(135^{3}+138^{3}\right)=\int_{1}^{5088447} \frac{1}{t} d t$
$\log \left(135^{3}+138^{3}\right)=-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{5088446^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s$ for $-1<\gamma<0$
$\mathrm{Pi}^{*}\left(135^{\wedge} 3+138^{\wedge} 3\right)^{\wedge} 1 / 4-11+$ golden ratio

Input:

$\pi \sqrt[4]{135^{3}+138^{3}}-11+\phi$

Result:

$\phi-11+3 \sqrt[3 / 4]{188461} \pi$

Decimal approximation:

139.8274348634976023813964821274141235673143122042902745354...
$139.8274348 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$-11+\phi+3 \sqrt[3 / 4]{\sqrt[4]{188461} \pi} \pi$ is a transcendental number

Alternate forms:

$\frac{1}{2}\left(-21+\sqrt{5}+2 \times 3^{3 / 4} \sqrt[4]{188461} \pi\right)$
$-\frac{21}{2}+\frac{\sqrt{5}}{2}+3 \sqrt[3 / 4]{188461} \pi$
$-11+\frac{1}{2}(1+\sqrt{5})+3^{3 / 4} \sqrt[4]{188461} \pi$

Alternative representations:

$\pi \sqrt[4]{135^{3}+138^{3}}-11+\phi=-11-2 \cos \left(216^{\circ}\right)+\pi \sqrt[4]{135^{3}+138^{3}}$
$\pi \sqrt[4]{135^{3}+138^{3}}-11+\phi=-11+2 \cos \left(\frac{\pi}{5}\right)+\pi \sqrt[4]{135^{3}+138^{3}}$
$\pi \sqrt[4]{135^{3}+138^{3}}-11+\phi=-11-2 \cos \left(216^{\circ}\right)+180 \cdot \sqrt[4]{135^{3}+138^{3}}$

Series representations:

$$
\pi \sqrt[4]{135^{3}+138^{3}}-11+\phi=-\frac{21}{2}+\frac{\sqrt{5}}{2}+4 \times 3^{3 / 4} \sqrt[4]{188461} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
$$

$$
\begin{aligned}
& \pi \sqrt[4]{135^{3}+138^{3}}-11+\phi= \\
& -\frac{21}{2}+\frac{\sqrt{5}}{2}+\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 3^{3 / 4} \times 1195^{-1-2 k} \sqrt[4]{188461}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k} \\
& \pi \sqrt[4]{135^{3}+138^{3}}-11+\phi= \\
& -\frac{21}{2}+\frac{\sqrt{5}}{2}+3^{3 / 4} \sqrt[4]{188461} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\end{aligned}
$$

Integral representations:

$\pi \sqrt[4]{135^{3}+138^{3}}-11+\phi=-\frac{21}{2}+\frac{\sqrt{5}}{2}+4 \times 3 / 4 \sqrt[4]{188461} \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\pi \sqrt[4]{135^{3}+138^{3}}-11+\phi=-\frac{21}{2}+\frac{\sqrt{5}}{2}+2 \times 3^{3 / 4} \sqrt[4]{188461} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t$
$\pi \sqrt[4]{135^{3}+138^{3}}-11+\phi=-\frac{21}{2}+\frac{\sqrt{5}}{2}+2 \times 3^{3 / 4} \sqrt[4]{188461} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$
$\mathrm{Pi}^{*}\left(135^{\wedge} 3+138^{\wedge} 3\right)^{\wedge} 1 / 4-29+4+$ golden ratio

Input:

$\pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi$

Result:

$\phi-25+3 \sqrt[3 / 4]{188461} \pi$

Decimal approximation:

125.8274348634976023813964821274141235673143122042902745354...
$125.82743486 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Property:

$-25+\phi+3 \sqrt[3 / 4]{188461} \pi$ is a transcendental number

Alternate forms:

$\frac{1}{2}\left(-49+\sqrt{5}+2 \times 3^{3 / 4} \sqrt[4]{188461} \pi\right)$
$-\frac{49}{2}+\frac{\sqrt{5}}{2}+3^{3 / 4} \sqrt[4]{188461} \pi$
$-25+\frac{1}{2}(1+\sqrt{5})+3^{3 / 4} \sqrt[4]{188461} \pi$

Alternative representations:

$\pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi=-25-2 \cos \left(216^{\circ}\right)+\pi \sqrt[4]{135^{3}+138^{3}}$
$\pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi=-25+2 \cos \left(\frac{\pi}{5}\right)+\pi \sqrt[4]{135^{3}+138^{3}}$
$\pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi=-25-2 \cos \left(216^{\circ}\right)+180 \cdot \sqrt[4]{135^{3}+138^{3}}$

Series representations:

$$
\pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi=-\frac{49}{2}+\frac{\sqrt{5}}{2}+4 \times 3^{3 / 4} \sqrt[4]{188461} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
$$

$$
\begin{aligned}
& \pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi= \\
& -\frac{49}{2}+\frac{\sqrt{5}}{2}+\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 3^{3 / 4} \times 1195^{-1-2 k} \sqrt[4]{188461}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}
\end{aligned}
$$

$$
\begin{aligned}
& \pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi= \\
& -\frac{49}{2}+\frac{\sqrt{5}}{2}+3^{3 / 4} \sqrt[4]{188461} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\end{aligned}
$$

Integral representations:

$\pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi=-\frac{49}{2}+\frac{\sqrt{5}}{2}+4 \times 3 \sqrt[3 / 4]{\sqrt[4]{188461}} \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi=-\frac{49}{2}+\frac{\sqrt{5}}{2}+2 \times 3^{3 / 4} \sqrt[4]{188461} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t$
$\pi \sqrt[4]{135^{3}+138^{3}}-29+4+\phi=-\frac{49}{2}+\frac{\sqrt{5}}{2}+2 \times 3 \sqrt[3 / 4]{\sqrt[4]{188461}} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$

We have also:
$\left(135^{\wedge} 3+138^{\wedge} 3\right)^{\wedge} 1 / 31$

Input:

$\sqrt[31]{135^{3}+138^{3}}$

Result:

$3 \sqrt[3 / 31]{188461}$

Decimal approximation:

1.645665103021282483289882047076548993334552545217523451761...
$1.645665103 \ldots . \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate form:

```
root of \mp@subsup{x}{}{31}-5088447 near }x=1.6456
```

Now, we have:

$$
\begin{aligned}
f_{R}^{*}=\frac{4}{49 \pi} & {\left[\frac{80 \arctan \left(y^{1 / 2}\right)}{(1+y)^{2}(3 y+1) y^{1 / 2}}\right.} \\
& \left.+\frac{3 y^{4}+41 y^{3}+25 y^{2}-589 y-240}{3(1+y)^{4}(1+3 y)}\right]
\end{aligned}
$$

$c \simeq 0.275 / R^{2}$.
$y=c R^{2}$
$y=0.275$

4/(49Pi)*(((80
$\left.\left.\operatorname{atan}\left(0.275^{\wedge} 1 / 2\right)\right)\right) /\left(\left((1+0.275)^{\wedge} 2\left(3^{*} 0.275+1\right) 0.275^{\wedge} 1 / 2\right)\right)+\left(3^{*} 0.275^{\wedge} 4+41 * 0.275^{\wedge} 3+2\right.$
$\left.5 * 0.275^{\wedge} 2-589^{*} 0.275-240\right) /\left(3(1+0.275)^{\wedge} 4(1+3 * 0.275)\right)$

Input:

$$
\begin{aligned}
& \frac{4}{49 \pi}\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\right. \\
& \left.\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)
\end{aligned}
$$

Result:

-0.0716284...
(result in radians)
$-0.0716284 \ldots$

Alternative representations:

$\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}=$

$$
\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}=
$$

$$
\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}=
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi} \\
& -\frac{2.2524}{\pi}+\frac{4.19763 \sum_{k=0}^{\infty} \frac{(-1)^{k} 0.524404^{1+2 k}}{1+2 k}}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}= \\
& -\frac{2.2524}{\pi}+\frac{4.19763 \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 1.04881^{1+2 k} F_{1+2 k}\left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2 k}}{1+2 k}}{\pi}
\end{aligned}
$$

$$
\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}=
$$

$$
-\frac{2.2524}{\pi}+\frac{2.09882 i \log (2)}{\pi}-\frac{2.09882 i \log (-i(-0.524404+i))}{\pi}-
$$

$$
2.09882 i \sum_{k=1}^{\infty} \frac{0.5^{k}(-i(-0.524404+i))^{k}}{k}
$$

F_{n} is the $n^{\text {th }}$ Fbonacci number
$\log (x)$ is the natural logarithm

Integral representations:

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{-\frac{2.2524}{\pi}+\frac{2.20126}{\pi} \int_{0}^{1} \frac{1}{1+0.275 t^{2}} d t}= \\
& \frac{\left(\frac{89 \pi}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{\left.\frac{29 \pi}{0.275}\right)}= \\
& \frac{2.2524}{\pi}-\frac{0.550314 i}{\pi^{5 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} e^{-0.242946 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2} \\
& \left.\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4 \\
& -\frac{2.2524}{\pi}+\frac{0.550314}{i \pi^{2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1.29098 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{49 \pi} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction representations:

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}= \\
& \frac{4\left(-27.5919+\frac{26.9654}{1.275+\underset{k=1}{\infty} \frac{\left.\left.0.55\left(1-2 \left\lvert\, \frac{1+k}{2}\right.\right\rfloor\right) \left\lvert\, \frac{1+k}{2}\right.\right\rfloor}{\left(1.1375+0.1375(-1)^{k}\right)(1+2 k)}}\right)}{49 \pi}= \\
& 4\left(-27.5919+\frac{26.9654}{\left.1.275+-\frac{0.55}{3-\frac{0.55}{6.375-\frac{3.3}{7-\frac{3.3}{11.475+\ldots}}}}\right)}\right. \\
& 49 \pi
\end{aligned}
$$

```
-128/((()4/(49Pi)*(((80
atan(0.275^1/2)))/(((1+0.275)^2(3*0.275+1)0.275^1/2))+(3*0.275^4+41*0.275^3+2
5*0.275^2-589*0.275-240)/(3(1+0.275)^4(1+3*0.275)))))))-55-3
```

Input:

$\tan ^{-1}(x)$ is the inverse tangent function

Result:

1729.00...
(result in radians)
1729
This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-

Zagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternative representations:

128
$\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{-55-3=}$
128
-58
$\frac{4\left(\frac{80 \mathrm{sc}^{-1}(\sqrt{0.275} p)}{1.825 \sqrt{0.275} 1.275^{2}}+\frac{-401.975+25 \times 0.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}}{5.475 \times 1.275^{4}}\right)}{49 \pi}$
128
$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$
40π
128
-58
$4\left(\frac{80 \tan ^{-1}(1, \sqrt{0.275})}{1.825 \sqrt{0.275} 1.275^{2}}+\frac{-401.975+25 \times 0.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}}{5.475 \times 1.275^{4}}\right)$
49π
128
$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{\left(\frac{1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}{}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)}\right.$
-58
128
$\frac{4\left(\frac{80 \cot ^{-1}\left(\frac{1}{\sqrt{0.275}}\right)}{1.825 \sqrt{0.275} 1.275^{2}}+\frac{-401.975+25 \times 0.275^{2}+41<0.275^{3}+30.275^{4}}{5.475 \times 1.275^{4}}\right)}{49 \pi}$

Series representations:

F_{n} is the $n^{\text {th }}$ Fibonacci number
$\arg (z)$ is the complex argument
$\lfloor x\rfloor$ is the floor function
i is the imaginary unit
R is the set of real numbers

Integral representations:

$$
128
$$

$\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{-58+\frac{49 \pi}{1.02323-\int_{0}^{1} \frac{1}{1+0.275 t^{2}} d t}}-55-3=$ $-\frac{128}{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)} 4-55-3=$

Continued fraction representations:

$-\frac{128}{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}-55-3=$
$-58+\frac{1568 \pi}{27.5919-\frac{26.9654}{1+\mathrm{K}_{k=1}^{\mathrm{K}} \frac{0.275 k^{2}}{1+2 k}}}=-58+\frac{1568 \pi}{27.5919-\frac{26.9654}{1+\frac{0.275}{3+\frac{2.1}{5+\frac{2.475}{7+\frac{4.4}{9+\ldots}}}}}}$ $-\frac{128}{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}-55-3=$
$-58-\frac{1568 \pi}{-27.5919+\frac{26.9654}{1+K_{k=1}^{\infty} \frac{0.275(1-2 k)^{2}}{1.275+1.45 k}}}=$
$-58-\frac{1568 \pi}{-27.5919+\frac{26.9654}{1+\frac{275}{2.725+\frac{2.475}{4.175+\frac{2.875}{5.625+\frac{13.475}{7.075+\ldots}}}}}}$

128

$\underset{k=k_{1}}{k_{2}} a_{k} / b_{k}$ is a continued fraction

```
-128/((()4/(49Pi)*(((80
atan(0.275^1/2)))/(((1+0.275)^2(3*0.275+1)0.275^1/2))+(3*0.275^4+41*0.275^3+2
5*0.275^2-589*0.275-240)/(3(1+0.275)^4(1+3*0.275)))))))-Pi
```


Input:

$\frac{4}{49 \pi}\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-5899.0 .275-240}{3(1+0.275)^{4}(1+3.0 .275)}\right)^{-\pi}$
$\tan ^{-1}(x)$ is the inverse tangent function

Result:

1783.86...
(result in radians)
$1783.86 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=1785.16$ GeV).

Alternative representations:

128
$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$

$$
-\pi-\frac{128 \pi}{4\left(\frac{89 \pi c^{-1}(\sqrt{0.275} p)}{1.825 \sqrt{0.275} 1.275^{2}}+\frac{-401.975+25 \times 0.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}}{5.475 \times 1.275^{4}}\right)}
$$

$-\frac{128}{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}-\pi=$

128
$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$

128 표
$-\pi-\overline{\left(\frac{80 \cot ^{-1}\left(\frac{1}{\sqrt{0.275}}\right)}{1.825 \sqrt{0.275} 1.275^{2}}+\frac{401.975+25}{} 0.275^{2}+41 \quad 0.275^{3}+3 \times 0.275^{4}\right.} \begin{aligned} & 5.475 \times 1.275^{4}\end{aligned}$
49π

Series representations:

$$
-\frac{128}{\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{30.4934 \pi}-\pi=}
$$

128

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}-\pi= \\
& -\pi-\frac{60.9868 \pi}{-1.07318+i \log (2)-i \log (-((-0.524404+i) i))-i \sum_{k=1}^{\infty} \frac{0.5^{k}(-((-0.524404+i) i))^{k}}{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi} 4^{60.9868 \pi} \\
& -\pi+\frac{\pi=}{1.07318+i \log (2)-i \log (-(i(0.524404+i)))-i \sum_{k=1}^{\infty} \frac{0.5^{k}(-(i(0.524404+i)) k}{k}}
\end{aligned}
$$

Integral representations:

128
$\frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+250.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}{-\pi=}$
$-\pi-\frac{150 \pi}{-27.5919-\frac{6.74135 i}{\pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} 1.275^{-5} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s}$ for $0<\gamma<\frac{1}{2}$

128

$$
\frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{46.8283 i \pi^{2}}-\pi=
$$

Continued fraction representations:

$\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$
$\pi\left(-1-\frac{1568}{-27.5919+\frac{26.9654}{1+\mathbb{K}_{k=1}^{0} \frac{0.275(1-2 k)^{2}}{1.275+1.45 k}}}\right)=$
$\pi\left(-1-\frac{1568}{-27.5919+\frac{26.9654}{1+\frac{0.275}{2.725+\frac{2.475}{6.175+\frac{675}{5.625+\frac{13.455}{7.075+\ldots}}}}}}\right)$

128
$\frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{40 \pi}$
49π
$\pi\left(-1-\frac{1568}{-0.6265-\frac{7.41548}{3+\underset{k=1}{\infty} \frac{0.275\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}}\right)=\pi\left(-1-\frac{1568}{\left.-0.6265-\frac{7.41548}{3+\frac{2.475}{5+\frac{1 .}{7+\frac{6.875}{9+\frac{4.4}{11+\ldots}}}}}\right)}\right.$
128
$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$
$\pi\left(-1-\frac{1568}{-27.5919+\frac{26.9654}{1.275+\sum_{k=1}^{\infty}} \frac{0.55\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor \backslash \frac{1+k}{2}\right\rfloor}{\left(1.1375+0.1375(-1)^{k}\right)(1+2 k)}}\right)=$
$\pi\left(-1-\frac{1568}{-27.5919+\frac{26.9654}{1.275+-\frac{0.55}{3-\frac{0.55}{6.375-\frac{3.3}{7-\frac{3.3}{11.475+\ldots}}}}}}\right)$
-55/((()4/(49Pi)*) ((80
$\left.\left.\operatorname{atan}\left(0.275^{\wedge} 1 / 2\right)\right)\right) /\left(\left((1+0.275)^{\wedge} 2\left(3^{*} 0.275+1\right) 0.275^{\wedge} 1 / 2\right)\right)+\left(3^{*} 0.275^{\wedge} 4+41^{*} 0.275^{\wedge} 3+2\right.$ $\left.\left.\left.\left.\left.\left.5^{*} 0.275^{\wedge} 2-589^{*} 0.275-240\right) /\left(3(1+0.275)^{\wedge} 4(1+3 * 0.275)\right)\right)\right)\right)\right)\right)$)34-Pi-sqrt7

Input:

55

$$
\begin{aligned}
& \frac{4}{49 \pi}\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589.0 .275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) \\
& 34-\pi-\sqrt{7}
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Result:

728.064...
(result in radians)
728.064... 728 (Ramanujan taxicab number)

Alternative representations:

55

55

Series representations:

55

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{4} \\
& 34-\pi-\sqrt{7}=-34-\pi+\frac{49 \pi}{13.1026 \pi}- \\
& \quad \exp \left(i \pi\left\lfloor\frac{\arg (7-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{30.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi} \\
& 34-\pi-\sqrt{7}=-\left(\int_{-18.244+12.566 \pi-0.536588 \sqrt{6} \sum_{k=0}^{\infty} 6^{-k}\binom{\frac{1}{2}}{k}+}^{1}\right. \\
& 34 \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 1.04881^{1+2 k} F_{1+2 k}\left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2 k}}{1+2 k}+ \\
& \pi \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 1.04881^{1+2 k} F_{1+2 k}\left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2 k}}{1+2 k}+ \\
& \left.\sqrt{6} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k_{2}} 1.04881^{1+2 k_{2} \times 6^{-k}\binom{\frac{1}{2}}{k_{1}} F_{1+2 k_{2}}\left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2 k_{2}}}}{1+2 k_{2}}\right) / \\
& \left.\left(-0.536588+\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 1.04881^{1+2 k} F_{1+2 k}\left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2 k}}{1+2 k}\right)\right)
\end{aligned}
$$

55
$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$

$$
34-\pi-\sqrt{7}=
$$

$$
-34-\pi-(13.1026 \pi) /\left(-0.536588+\tan ^{-1}(x)-\pi\left[\frac{\arg (i(-0.524404+x))}{2 \pi}\right\rfloor+\right.
$$

$$
\left.0.5 i \sum_{k=1}^{\infty} \frac{\left(-(-i-x)^{-k}+(i-x)^{-k}\right)(0.524404-x)^{k}}{k}\right)-
$$

$$
\exp \left(i \pi\left\lfloor\frac{\arg (7-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

for ($i x \in \mathbb{R}$ and $i x>1$ and $x \in \mathbb{R}$ and $x<0$)

Integral representations:

55

$$
\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)
$$

$$
34-\pi-\sqrt{7}=-34-\pi+\frac{49 \pi}{1.02323-9857 \pi} \int_{0}^{1} \frac{1}{1+0.275 t^{2}} d t \quad \sqrt{7}
$$

55
$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$
$34-\pi-\sqrt{7}=-34-\pi+$

$$
\frac{24.4184 \pi^{5 / 2}}{\pi^{3 / 2}+0.244324 i \int_{-i \infty+\gamma}^{i \infty+\gamma} e^{-0.242946 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s}-\sqrt{7} \text { for } 0<\gamma<\frac{1}{2}
$$

55
$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$
$34-\pi-\sqrt{7}=$
$-34-\pi+\frac{24.4184 i \pi^{2}}{i \pi-0.244324 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1.29098 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}-\sqrt{7}$ for $0<\gamma<\frac{1}{2}$

Continued fraction representations:
55
$\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}$
$34-\pi-\sqrt{7}=-34+\pi\left(-1+\frac{49 \pi}{110.368-\frac{2695}{1+\mathrm{K}_{k=1}^{\infty}} \frac{0.275 k^{2}}{1+2 k}}\right)-\sqrt{7}=$
$-34-\sqrt{7}+\pi\left(-1+\frac{2695}{\left.110.368-\frac{107.862}{1+\frac{0.275}{3+\frac{1.1}{5+\frac{2.475}{7+\frac{4.4}{9+\ldots}}}}}\right)}\right)$

55

$-\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{4}$

$$
34-\pi-\sqrt{7}=-35-4\left(\begin{array}{cc}
\infty & \frac{3}{\mathrm{~K}} \\
k=1 & \frac{8}{2}
\end{array}\right)+\pi\left(-1+\frac{2695}{110.368-\frac{107.862}{1+\mathrm{K}_{k=1}^{\infty}} \frac{0.275 k^{2}}{1+2 k}}\right)=
$$

$$
\left.-35-4 \frac{3}{\left(\frac{1}{2}+\frac{2695}{\left(\frac{1}{2}+\frac{3}{8\left(\frac{1}{2}+\frac{3}{8\left(\frac{1}{2}+\ldots\right)}\right)}\right)}+\pi\left(-1+\frac{\left.10.368-\frac{107.862}{1+\frac{0.275}{3+\frac{1.1}{5+\frac{2.475}{7+\frac{4.4}{9+\ldots}}}}}\right)}{110.3}\right)\right.}\right)
$$

$\underset{k=k_{1}}{k_{2}} a_{k} / b_{k}$ is a continued fraction

$$
\begin{aligned}
& \overline{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times .275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4} 4 \\
& 34-\pi-\sqrt{7}=-41-{\underset{k}{k}}_{\infty}^{\infty} \frac{-42}{14}+\pi\left(-1+\frac{2695}{110.368-\frac{107.862}{1+\mathbb{C}_{k=1}^{K}} \frac{0.275 k^{2}}{1+2 k}}\right)= \\
& \left.-41--\frac{42}{14-\frac{42}{14-\frac{42}{14-\frac{42}{14+\ldots}}}+\pi}-1+\frac{2695}{110.368-\frac{107.862}{1+\frac{0.275}{1.2}}}\right)
\end{aligned}
$$

$-11 /(((4 /(49 \mathrm{Pi}) *(($ (80
$\left.\left.\operatorname{atan}\left(0.275^{\wedge} 1 / 2\right)\right)\right) /\left(\left((1+0.275)^{\wedge} 2\left(3^{*} 0.275+1\right) 0.275^{\wedge} 1 / 2\right)\right)+\left(3^{*} 0.275^{\wedge} 4+41^{*} 0.275^{\wedge} 3+2\right.$ $\left.\left.\left.\left.\left.\left.5^{*} 0.27 \wedge^{\wedge} 2-589^{*} 0.275-240\right) /\left(3(1+0.275)^{\wedge} 4(1+3 * 0.275)\right)\right)\right)\right)\right)\right)-13-3+1 / 2$

Input:

11

$\frac{4}{49 \pi}\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589.0 .275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)$
$13-3+\frac{1}{2}$ $\tan ^{-1}(x)$ is the inverse tangent function

Result:

138.070...
(result in radians)
$138.070 \ldots \approx 138$ (Ramanujan taxicab number)

Alternative representations:

$-\frac{11}{\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{4(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi}-13-3+}$

11
$-\frac{11}{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times .275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}$
$\frac{1}{2}=-\frac{31}{2}-\frac{11}{4\left(\frac{89 \pi}{1.825 \sqrt{0.275} 1.275^{2}}{ }^{2}+\frac{-401.975+25 \times 0.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}}{5.475 \times 1.275^{4}}\right)}$
49π

Series representations:
11

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{13-3+\frac{1}{2}=-\frac{31}{2}-\frac{49 \pi}{2.62053 \pi}} 4 \\
& -0.536588+\sum_{k=0}^{\infty} \frac{(-1)^{k} 0.5244044^{1+2 k}}{1+2 k}
\end{aligned}
$$

11

$$
\begin{aligned}
& \frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{49 \pi} \\
& 13-3+\frac{1}{2}= \\
& -\frac{31}{2}-\frac{5.24105 \pi}{-1.07318+i \log (2)-i \log (-((-0.524404+i) i))-i \sum_{k=1}^{\infty} \frac{0.5^{k}(-((-0.524404+i) i))^{k}}{k}}
\end{aligned}
$$

11

$$
\begin{aligned}
& \frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}{49 \pi} \\
& 13-3+\frac{1}{2}= \\
& -\frac{31}{2}+\frac{5.24105 \pi}{1.07318+i \log (2)-i \log (-(i(0.524404+i)))-i \sum_{k=1}^{\infty} \frac{0.5^{k}\left(-(i(0.524404+i)) k^{k}\right.}{k}}
\end{aligned}
$$

Integral representations:

$$
\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4
$$

$$
13-3+\frac{1}{2}=-\frac{31}{2}+\frac{4.99715 \pi}{1.02323-\int_{0}^{1} \frac{1}{1+0.275 t^{2}} d t}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4 \\
\hline
\end{array} \\
& \frac{1}{2}=-\frac{31}{2}-\frac{49 \pi}{4\left(\frac{11}{\left(\frac{80 \cot ^{-1}\left(\frac{1}{\sqrt{0.275}}\right)}{1.825 \sqrt{0.275} 1.275^{2}}+\right.}+\frac{-401.975+25}{} \begin{array}{l}
0.275^{2}+41 \quad 0.275^{3}+3 \quad 0.275^{4} \\
5.475 \times 1.275^{4}
\end{array}\right)} 49 \pi_{\pi}
\end{aligned}
$$

$\frac{\left.-\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}{49 \pi}$
$13-3+\frac{1}{2}=$
$-\frac{31}{2}+\frac{4.88368 \pi^{5 / 2}}{\pi^{3 / 2}+0.244324 i \int_{-i \infty+\gamma}^{i \infty \infty+\gamma} e^{-0.242946 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s}$ for $0<\gamma<\frac{1}{2}$

11

$$
\begin{aligned}
& \frac{80 \tan ^{-1}(\sqrt{0.275})}{\left(\frac{11}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times .275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3}\right)} \\
& \frac{1}{3(1+0.275)^{4}(1+3 \times 0.275)}=-\frac{31}{2}+\frac{49 \pi}{i \pi-0.244324 \int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{e^{1.29098} 5}{} \frac{4\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction representations:

$$
-\frac{11}{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{\left.3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240\right)}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)}-13-
$$

11

$\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$

$$
13-3+\frac{1}{2}=-\frac{31}{2}+\frac{539 \pi}{110.368-\frac{107.862}{1+\mathbb{K}_{k=1}^{\infty} \frac{1.1(0.5-k)^{2}}{1.275+1.45 k}}}=
$$

$$
-\frac{31}{2}+\frac{539 \pi \quad k=11.2 / 5+1.4}{110.368-\frac{107.862}{1+\frac{e^{275}}{2.725+\frac{2.475}{4.175+\frac{5.875}{5.625+\frac{13.475}{7.075+\ldots}}}}}}
$$

$\underset{k=k_{1}}{\mathrm{~K}_{2}} a_{k} / b_{k}$ is a continued fraction
$-11 /((() 4 /(49 \mathrm{Pi}) *(() 80$
$\left.\left.\operatorname{atan}\left(0.275^{\wedge} 1 / 2\right)\right)\right) /\left(\left((1+0.275)^{\wedge} 2\left(3^{*} 0.275+1\right) 0.275^{\wedge} 1 / 2\right)\right)+\left(3 * 0.275^{\wedge} 4+41^{*} 0.275^{\wedge} 3+2\right.$ $\left.\left.\left.\left.\left.\left.5^{*} 0.275^{\wedge} 2-589^{*} 0.275-240\right) /\left(3(1+0.275)^{\wedge} 4(1+3 * 0.275)\right)\right)\right)\right)\right)\right)-13-5-1 / 2$

Input:

11

$\frac{4}{49 \pi}\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589.0 .275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)$
$13-5-\frac{1}{2}$ $\tan ^{-1}(x)$ is the inverse tangent function

Result:

135.070...
(result in radians)
135.070 $\ldots \approx 135$ (Ramanujan taxicab number)

Alternative representations:

11	
$\left(80 \tan ^{-1}(\sqrt{0}\right.$	$\left.\sqrt{0.275})++\frac{3 \times .275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{0 .}\right)_{4}$
$\underline{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3(1+0.275)^{4}(1+3 \times 0.275)}{}$	
137	$49 \pi \quad 11$
$224 \frac{4\left(\frac{80 \mathrm{sc}^{-1}(\sqrt{0.275} \mathrm{l})}{1.825 \sqrt{0.275} 1.275^{2}}+\frac{-401.975+25 \times 0.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}}{5.475 \times 1.275^{4}}\right)}{}$	
	49π

11

$\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4$	
137	$49 \pi \quad 11$
$\overline{2}=-\frac{\overline{2}}{2}$	$4\left(\frac{80 \tan ^{-1}(1, \sqrt{0.275})}{1.825 \sqrt{0.275} 1.275^{2}}+\frac{-401.975+25 \times 1.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}}{5.475 \times 1.275^{4}}\right)$

$\frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \quad 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)}{\frac{1}{2}=-\frac{37}{2}-\frac{11}{49 \pi}}-13-$

Series representations:

11

$$
\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{13-5-\frac{1}{2}=-\frac{37}{2}-\frac{49.62053 \pi}{-0.536588+\sum_{k=0}^{\infty} \frac{(-1)^{k} 0.524404^{1+2 k}}{1+2 k}}}
$$

11

$$
\begin{aligned}
& \frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}{49 \pi} \\
& 13-5-\frac{1}{2}= \\
& -\frac{37}{2}-\frac{5.24105 \pi}{-1.07318+i \log (2)-i \log (-((-0.524404+i) i))-i \sum_{k=1}^{\infty} \frac{0.5^{k}(-((-0.524404+i) i))^{k}}{k}}
\end{aligned}
$$

11

$$
\begin{aligned}
& \frac{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}{49 \pi} \\
& 13-5-\frac{1}{2}= \\
& -\frac{37}{2}+\frac{5.24105 \pi}{1.07318+i \log (2)-i \log (-(i(0.524404+i)))-i \sum_{k=1}^{\infty} \frac{0.5^{k}(-(i(0.524404+i)) k}{k}}
\end{aligned}
$$

Integral representations:

$$
\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4
$$

$$
13-5-\frac{1}{2}=-\frac{37}{2}+\frac{4.99715 \pi}{1.02323-\int_{0}^{1} \frac{1}{1+0.275 t^{2}} d t}
$$

$\frac{\left.-\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}{49 \pi}$
$13-5-\frac{1}{2}=$
$-\frac{37}{2}+\frac{4.88368 \pi^{5 / 2}}{\pi^{3 / 2}+0.244324 i \int_{-i \infty+\gamma}^{i \infty \infty+\gamma} e^{-0.242946 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s}$ for $0<\gamma<\frac{1}{2}$

11

$$
\begin{aligned}
& \frac{80 \tan ^{-1}(\sqrt{0.275})}{\left(\frac{11}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times .275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}} \\
& \frac{1}{2}=-\frac{37}{2}+\frac{49 \pi}{i \pi-0.244324 \int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{e^{1.29098} 5}{} \frac{1\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction representations:

$$
-\frac{11}{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{\left(\frac{1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}{}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}-13-\right.}
$$

11

$\overline{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}$

$$
13-5-\frac{1}{2}=-\frac{37}{2}+\frac{539 \pi}{110.368-\frac{107.862}{1+\mathbb{K}_{k=1}^{\infty} \frac{1.1(0.5-k)^{2}}{1.275+1.45 k}}}=
$$

$$
-\frac{37}{2}+\frac{539 \pi \quad k=1+2 / 5+1.4}{110.368-\frac{107.862}{1+\frac{\mathbf{0}^{275}}{2.725+\frac{2.475}{4.175+\frac{5.85}{5.625+\frac{13.475}{7.075+\ldots}}}}}}
$$

$$
\begin{aligned}
& \frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{30.275^{4}+410.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right) 4}{13-5-\frac{1}{2}=-\frac{37}{2}-\frac{49 \pi}{539 \pi}}= \\
& -\frac{37}{2}-\frac{539 \pi}{4\left(-0.6265-\frac{7.41548}{3+K_{k=1}^{\infty} \frac{0.275\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}\right)} \\
& 4\left(-0.6265-\frac{7.41548}{\left.3+\frac{2.475}{5+\frac{1.1}{7+\frac{6.875}{9+\frac{4.4}{11+\ldots}}}}\right)}\right.
\end{aligned}
$$

11

$\underset{k=k_{1}}{\mathrm{~K}_{2}} a_{k} / b_{k}$ is a continued fraction
-11/((()4/(49Pi)*) ((80
$\left.\left.\operatorname{atan}\left(0.275^{\wedge} 1 / 2\right)\right)\right) /\left(\left((1+0.275)^{\wedge} 2\left(3^{*} 0.275+1\right) 0.275^{\wedge} 1 / 2\right)\right)+\left(3^{*} 0.275^{\wedge} 4+41 * 0.275^{\wedge} 3+2\right.$ $\left.\left.\left.\left.\left.\left.5^{*} 0.275^{\wedge} 2-589^{*} 0.275-240\right) /\left(3(1+0.275)^{\wedge} 4(1+3 * 0.275)\right)\right)\right)\right)\right)\right)+18+1 / 2$

Input:
$-\frac{11}{\frac{4}{49 \pi}\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)}+18+\frac{1}{2}$ $\tan ^{-1}(x)$ is the inverse tangent function

Result:

172.0703082299606398136043749780507770604998554678811792291...
(result in radians)
$172.070308 \ldots \approx 172$ (Ramanujan taxicab number)

Alternative representations:

$$
\frac{37}{2}-\frac{11}{4\left(\frac{80 \pi}{1.825 \sqrt{0.275} 1.275^{2}}+\frac{-401.975+25 \times 0.275^{2}+41 \times 0.275^{3}+3 \times 0.275^{4}}{5.475 \times 1.275^{4}}\right)}
$$

Series representations:

$$
\begin{aligned}
& \begin{array}{l}
-\frac{11}{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3}{\left.\frac{3.0 .275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{}\right)}+18\right.}+\frac{1}{3(1+0.275)^{4}(1+3 \times 0.275)}= \\
\frac{2.62053 \pi}{2}-\frac{49 \pi}{-0.536588+\sum_{k=0}^{\infty} \frac{(-1)^{k} 0.524404^{1+2 k}}{1+2 k}}
\end{array} \\
& -\frac{11}{\left(\frac{80 \mathrm{tan}^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}+18+\frac{1}{2}= \\
& \frac{37}{2}-\frac{2.62053 \pi}{-0.536588+\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 1.04881^{1+2 k_{F_{1+2}}\left(\frac{1}{1+\sqrt{1.22}}\right)^{1+2 k}}}{1+2 k}} \\
& -\frac{11}{\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{}\right)^{3(1+0.275)^{4}(1+3 \times 0.275)}}{49 \pi}}+18+\frac{1}{2}= \\
& \begin{array}{l}
\frac{37}{2}+(2.62053 \pi) /\left(0.536588-\tan ^{-1}(x)+\pi\left[\frac{\arg (i(-0.524404+x))}{2 \pi}\right]-\right. \\
\left.0.5 i \sum_{k=1}^{\infty} \frac{\left(-(-i-x)^{-k}+(i-x)^{-k}\right)(0.524404-x)^{k}}{k}\right) \text { for }(i x \in \mathbb{R} \text { and } i x>1)
\end{array}
\end{aligned}
$$

Integral representations:

$-\frac{11}{\frac{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-58900.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{2}}{\frac{37}{2}+\frac{49 \pi}{\pi^{3 / 2}+0.244324 i \int_{-i \infty+\gamma}^{i \infty+\gamma} e^{-0.242946 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s}}+18+\frac{1}{2}=}$ for $0<\gamma<\frac{1}{2}=$
$-\frac{11}{\left(\frac{80 \tan ^{-1}(\sqrt{0.275})}{(1+0.275)^{2}(3 \times 0.275+1) \sqrt{0.275}}+\frac{3 \times 0.275^{4}+41 \times 0.275^{3}+25 \times 0.275^{2}-589 \times 0.275-240}{3(1+0.275)^{4}(1+3 \times 0.275)}\right)^{4}}+18+\frac{1}{2}=$

$$
\frac{37}{2}+\frac{4.88368 i \pi^{2}}{i \pi-0.244324 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1.29098 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s} \text { for } 0<\gamma<\frac{1}{2}
$$

Continued fraction representations:

$\underset{k=k_{1}}{k_{2}} a_{k} / b_{k}$ is a continued fraction

From:

Holographic entanglement entropy under the minimal geometric deformation and extensions

R. da Rocha, A. A. Tomaz - arXiv:1905.01548v2 [hep-th] 29 Dec 2019

Now, we have that:
for $\kappa_{1}=\frac{M \chi}{1-M / R}$. Now, in order to the radial metric component asymptotically approach the Schwarzschild behavior with ADM mass $\mathbb{M}_{1}=2 M, e^{-\lambda(r)} \sim 1-\frac{2 \mathrm{M}_{1}}{r}+\mathcal{O}\left(r^{-2}\right)$, one must necessarily have $\kappa_{1}=-2 M$. In this case, the temporal and spatial components of the metric will be inversely equal to each other (as it is the case of the Schwarzschild solution), containing a tidal charge $\mathbb{Q}_{1}=4 M^{2}$ reproducing a solution that is tidally charged by the Weyl fluid [45]:

$$
\begin{equation*}
e^{v}=e^{-\lambda}=1-\frac{2 \mathbb{M}_{1}}{r}+\frac{\mathbb{Q}_{1}}{r^{2}} \tag{14}
\end{equation*}
$$

It is worth to emphasize that the metric of Eq. (14) has a degenerate event horizon at $r_{h}=2 M=$ \mathbb{M}_{1}. Since the degenerate horizon lies behind the Schwarzschild event horizon, $r_{h}=\mathbb{M}_{1}<r_{s}=2 \mathbb{M}_{1}$, bulk effects are then responsible for decreasing the gravitational field strength on the brane.

Now the exterior solution for $k=2$ can be constructed, making Eq. (12) to yield

$$
\begin{equation*}
e^{v(r)}=1-\frac{2 \mathbb{M}_{2}}{r}+\frac{\mathbb{Q}_{2}}{r^{2}}-\frac{2 \mathbb{Q}_{2} \mathbb{M}_{2}}{9 r^{3}}, \tag{15}
\end{equation*}
$$

where $\mathbb{Q}_{2}=12 M^{2}$ and $\mathbb{M}_{2}=3 M$. The radial component, on the other hand, reads

$$
\begin{equation*}
e^{-\lambda(r)}=\frac{1}{1-\frac{2 \mathrm{M}_{2}}{3 r}} \sum_{m=0}^{8} \frac{c_{m}}{r^{m}} \tag{16}
\end{equation*}
$$

where the coefficients $c_{m} \equiv c_{m}\left(\mathbb{M}_{2}, \mathbb{Q}_{2}, \mathrm{~s}\right)$ are

$$
\begin{array}{lll}
c_{0}=1, & c_{1}=\mathrm{s}-\frac{4 \mathbb{M}_{2}}{3}, & c_{2}=\frac{1}{6}\left(5 \mathbb{Q}_{2}-7 \mathrm{sM}_{2}\right), \\
c_{3}=\frac{\mathrm{M}_{2}}{12}\left(7 \mathrm{sM}_{2}-5 \mathbb{Q}_{2}\right), & c_{4}=\frac{25 \mathbb{Q}_{2}^{2}}{288}-\frac{7}{216} \mathrm{sM}_{2}^{3}, & c_{5}=\frac{35}{1296} \mathrm{sM}_{2}^{4}-\frac{35}{1728} \mathbb{Q}_{2}^{2} \mathbb{M}_{2}, \\
c_{6}=\frac{5 \mathbb{Q}_{2}^{3}}{20736}-\frac{7 \mathrm{sM}_{2}^{5}}{2592}, & c_{7}=\frac{28 \mathrm{sM}_{2}^{6}-15 \mathbb{Q}_{2}^{3} \mathbb{M}_{2}}{186624}, & c_{8}=\frac{5 \mathbb{Q}_{2}^{4}}{4644864}-\frac{\mathrm{sM}_{2}^{7}}{279936}, \tag{17c}
\end{array}
$$

and $\mathrm{s}=R \chi\left(1-2 \mathbb{M}_{2} / 3 R\right) /\left(2-\mathbb{M}_{2} / 3 R\right)^{7}$. The asymptotic Schwarzschild behavior is then assured when $s=-\mathbb{M}_{2} / 96$. In this case, the degenerate event horizon is at $r_{e} \approx 1.12 \mathbb{M}_{2}$ [5]. Hence, the bulk Weyl fluid weakens gravitational field effects. The classical tests of GR applied to the EMGD metric provide the following constraints on the value of the deformation parameter, $k \lesssim 4.2$ for the gravitational redshift of light. The standard MGD corresponds to $k=0$, whereas the ReissnerNordström solution represents the $k=1$ case with the ADM mass \mathbb{M}_{1}, instead.

For $\mathrm{M}=1.312806 \mathrm{e}+40$

$$
\mathbb{Q}_{2}=12 M^{2} \text { and } \mathbb{M}_{2}=3 M .
$$

$\left(-3^{*} 1.312806 \mathrm{e}+40\right) / 96$

Result:

$-4.10251875 \times 10^{38}$
$-4.10251875^{*} 10^{38}=\mathrm{s}$

Thence:

$$
c_{1}=\mathrm{s}-\frac{4 \mathbb{M}_{2}}{3}
$$

$-4.10251875 \mathrm{e}+38-(4 * 3 * 1.312806 \mathrm{e}+40) / 3$

Input interpretation:

$-4.10251875 \times 10^{38}-\frac{1}{3}\left(4 \times 3 \times 1.312806 \times 10^{40}\right)$

Result:

$-5.2922491875 \times 10^{40}$
$-5.2922491875 * 10^{40}$

$$
c_{2}=\frac{1}{6}\left(5 \mathbb{Q}_{2}-7 \mathrm{sM}_{2}\right)
$$

$1 / 6^{*}\left(\left(\left(5 * 12 * 1.312806 \mathrm{e}+40^{\wedge} 2-7 *(-4.10251875 \mathrm{e}+38) * 3 * 1.312806 \mathrm{e}+40\right)\right)\right)$

Input interpretation:

$\frac{1}{6}\left(5 \times 12\left(1.312806 \times 10^{40}\right)^{2}-7\left(-4.10251875 \times 10^{38}\right) \times 3 \times 1.312806 \times 10^{40}\right)$

Result:

174230993294139375000 : 000000000000000000000

Scientific notation:

$1.74230993294139375 \times 10^{81}$
$1.74230993294139375 * 10^{81}$

$$
c_{3}=\frac{\mathbb{M}_{2}}{12}\left(7 \mathrm{sM}_{2}-5 \mathbb{Q}_{2}\right)
$$

$(3 * 1.312806 \mathrm{e}+40) / 12 *(((7 *(-4.10251875 \mathrm{e}+38) * 3 * 1.312806 \mathrm{e}+40)-($ $\left.\left.5 * 12 * 1.312806 \mathrm{e}+40^{\wedge} 2\right)\right)$)

Input interpretation:

```
\(\left(\frac{1}{12}\left(3 \times 1.312806 \times 10^{40}\right)\right)\)
    \(\left(7\left(-4.10251875 \times 10^{38}\right) \times 3 \times 1.312806 \times 10^{40}-5 \times 12\left(1.312806 \times 10^{40}\right)^{2}\right)\)
```


Result:

-34309724007375890450437500000000000000000000000000000000000 : 000 : 000000

Result:

$-3.43097240073758904504375 \times 10^{121}$
$-3.43097240073758904504375 * 10^{121}$

We note that:
$-1 /\left(-3.43097240073758904504375^{*} 10^{\wedge} 121\right)$

Input interpretation:

$$
\frac{-1}{-\left(3.43097240073758904504375 \times 10^{121}\right)}
$$

Result:

$2.914625602307440329550301955454831693427965914286452 \ldots \times 10^{-122}$
$2.9146256 \ldots$... 10^{-122} result very near to the value of Cosmological Constant in Planck units $2.888 * 10^{-122}$
$c_{4}=\frac{25 \mathbb{Q}_{2}^{2}}{288}-\frac{7}{216} \mathrm{SM}_{2}^{3}$
For $\mathrm{M}=1.312806 \mathrm{e}+40$
$\mathbb{Q}_{2}=12 M^{2}$ and $\mathbb{M}_{2}=3 M$.
$-4.10251875 * 10^{38}=\mathrm{s}$
$\left(25^{*}\left(12^{*} 1.312806 \mathrm{e}+40^{\wedge} 2\right)^{\wedge} 2\right) / 288-7 / 216^{*}(-$ $4.10251875 \mathrm{e}+38)^{*}(3 * 1.312806 \mathrm{e}+40)^{\wedge} 3$

Input interpretation:

$$
\frac{1}{288}\left(25\left(12\left(1.312806 \times 10^{40}\right)^{2}\right)^{2}\right)-\frac{7}{216}\left(-4.10251875 \times 10^{38}\right)\left(3 \times 1.312806 \times 10^{40}\right)^{3}
$$

Result:

3.72101×10^{161}

Scientific notation:

$3.72101316314975147234511354375 \times 10^{161}$
$3.72101 * 10^{161}$

$$
c_{5}=\frac{35}{1296} \mathrm{sM}_{2}^{4}-\frac{35}{1728} \mathbb{Q}_{2}^{2} \mathbb{M}_{2}
$$

$35 / 1296 *(-4.10251875 \mathrm{e}+38)^{*}\left(3^{*} 1.312806 \mathrm{e}+40\right)^{\wedge} 4-35 / 1728 *$ $\left(12 * 1.312806 \mathrm{e}+40^{\wedge} 2\right)^{\wedge} 2 *(3 * 1.312806 \mathrm{e}+40)$

Input interpretation:

$$
\begin{aligned}
& \frac{35}{1296}\left(-4.10251875 \times 10^{38}\right)\left(3 \times 1.312806 \times 10^{40}\right)^{4}- \\
& \frac{35}{1728}\left(12\left(1.312806 \times 10^{40}\right)^{2}\right)^{2}\left(3 \times 1.312806 \times 10^{40}\right)
\end{aligned}
$$

Result:

-3438670463997319368691424785794656250000000000000000000000 : 00 000: 000 : 000000000000000000000000000000

Input interpretation:

$$
\begin{aligned}
& \frac{35}{1296}\left(-4.10251875 \times 10^{38}\right)\left(3 \times 1.312806 \times 10^{40}\right)^{4}- \\
& \quad \frac{35}{1728}\left(12\left(1.312806 \times 10^{40}\right)^{2}\right)^{2}\left(3 \times 1.312806 \times 10^{40}\right)=-\left(3.438670463997 \times 10^{201}\right)
\end{aligned}
$$

Result:

True
$-3.438670463997 * 10^{201}$

Note that:
$35 / 1296 *(-4.10251875 \mathrm{e}+38) *(3 * 1.312806 \mathrm{e}+40)^{\wedge} 4-35 / \mathrm{x} *$ $\left(12 * 1.312806 \mathrm{e}+40^{\wedge} 2\right)^{\wedge} 2 *(3 * 1.312806 \mathrm{e}+40)=-3.438670463997 * 10^{\wedge} 201$

Input interpretation:

$\frac{35}{1296}\left(-4.10251875 \times 10^{38}\right)\left(3 \times 1.312806 \times 10^{40}\right)^{4}-$

$$
\frac{35}{x}\left(12\left(1.312806 \times 10^{40}\right)^{2}\right)^{2}\left(3 \times 1.312806 \times 10^{40}\right)=-\left(3.438670463997 \times 10^{201}\right)
$$

Result:

$-\frac{5.89596 \times 10^{204}}{x}-2.66564 \times 10^{199}=-3.438670463997 \times 10^{201}$

Plot:

Alternate form assuming x is real:

$\frac{5.89596 \times 10^{204}}{x}=3.41201 \times 10^{201}$

Alternate form:

$\frac{-2.66564 \times 10^{199} x-5.89596 \times 10^{204}}{x}=-3.438670463997 \times 10^{201}$

Alternate form assuming x is positive:

```
3.41201\times1\mp@subsup{0}{}{201}}x=5.89596\times1\mp@subsup{0}{}{204}\mathrm{ (for }x\not=0
```


Solution:

$$
x \approx 1728 \text {. }
$$

1728

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

$$
c_{6}=\frac{5 \mathbb{Q}_{2}^{3}}{20736}-\frac{7 \mathrm{sM}_{2}^{5}}{2592}
$$

For $\mathrm{M}=1.312806 \mathrm{e}+40$

$$
\mathbb{Q}_{2}=12 M^{2} \text { and } \mathbb{M}_{2}=3 M
$$

$$
-4.10251875 \mathrm{e}+38=\mathrm{s}
$$

(for this expression, we have considered $12 \mathrm{M}^{2}=12 \mathrm{M}$)
$5 / 20736 *(12 * 1.312806 \mathrm{e}+40)^{\wedge} 3-7 / 2592 *(-4.10251875 \mathrm{e}+38)^{*}(3 * 1.312806 \mathrm{e}+40)^{\wedge} 5$

Input interpretation:

$$
\frac{5}{20736}\left(12 \times 1.312806 \times 10^{40}\right)^{3}-\frac{7}{2592}\left(-4.10251875 \times 10^{38}\right)\left(3 \times 1.312806 \times 10^{40}\right)^{5}
$$

Result:

1.04984×10^{239}
$1.04984 * 10^{239}$

Scientific notation:

$1.0498388877112708956126313040325440681250000000000000 \ldots \times 10^{239}$

$$
c_{7}=\frac{28 \mathrm{sM}_{2}^{6}-15 \mathbb{Q}_{2}^{3} \mathbb{M}_{2}}{186624}
$$

$\left(\left(28^{*}(-4.10251875 \mathrm{e}+38) *(3 * 1.312806 \mathrm{e}+40)^{\wedge} 6-\right.\right.$
$\left.\left.15 *\left(12^{*} 1.312806 \mathrm{e}+40^{\wedge} 2\right)^{\wedge} 3^{*}\left(3^{*} 1.312806 \mathrm{e}+40\right)\right)\right)^{*} 1 / 186624$

Input interpretation:

$$
\begin{aligned}
& \left(28\left(-4.10251875 \times 10^{38}\right)\left(3 \times 1.312806 \times 10^{40}\right)^{6}-\right. \\
& \left.\quad 15\left(12\left(1.312806 \times 10^{40}\right)^{2}\right)^{3}\left(3 \times 1.312806 \times 10^{40}\right)\right) \times \frac{1}{186624}
\end{aligned}
$$

Result:

-28231936469112555929478782932490727870056218125000000000000: 000 : 000 : 000 : 000

Input interpretation:

$$
\begin{aligned}
& \left(28\left(-4.10251875 \times 10^{38}\right)\left(3 \times 1.312806 \times 10^{40}\right)^{6}-\right. \\
& \left.15\left(12\left(1.312806 \times 10^{40}\right)^{2}\right)^{3}\left(3 \times 1.312806 \times 10^{40}\right)\right) \times \\
& \frac{1}{186624}=-\left(2.82319364691125 \times 10^{280}\right)
\end{aligned}
$$

Result:

True
$-2.82319364691125 * 10^{280}$

$$
c_{8}=\frac{5 \mathbb{Q}_{2}^{4}}{4644864}-\frac{\mathrm{sM}_{2}^{7}}{279936}
$$

$\left(1 / 4644864 *\left(5^{*}\left(12 * 1.312806 \mathrm{e}+40^{\wedge} 2\right)^{\wedge} 4\right)\right)-1 / 279936$ * $(-$
$4.10251875 \mathrm{e}+38)^{*}(3 * 1.312806 \mathrm{e}+40)^{\wedge} 7$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{4644864}\left(5\left(12\left(1.312806 \times 10^{40}\right)^{2}\right)^{4}\right)- \\
& \frac{1}{279936}\left(-4.10251875 \times 10^{38}\right)\left(3 \times 1.312806 \times 10^{40}\right)^{7}
\end{aligned}
$$

Result:

$1.9909058199156373302495401048779828155564178501577678 \ldots \times 10^{319}$

Repeating decimal:

$1.9909058199156373302495401048779828155564178501577678 \ldots \times 10^{319}$
(period 6)
$1.990905819 \ldots * 10^{319}$

Now, we have that:
$\left(3.72101 * 10^{\wedge} 161\right) * 1 /\left(-3.43097240073758904504375^{*} 10^{\wedge} 121\right)^{*} 1$
$/\left(1.74230993294139375 * 10^{\wedge} 81\right) * 1 /(-5.2922491875 * 10 \wedge 40)$

Input interpretation:

$$
\begin{gathered}
\left(3.72101 \times 10^{161}\right)\left(-\frac{1}{3.43097240073758904504375 \times 10^{121}}\right) \times \\
\frac{1}{1.74230993294139375 \times 10^{81}}\left(-\frac{1}{5.2922491875 \times 10^{40}}\right)
\end{gathered}
$$

Result:

$1.1761911712325356994330818948413805998749667307530395 \ldots \times 10^{-82}$
$1.176191171 . . . * 10^{-82}$
$\left(1.990905819 * 10^{\wedge} 319\right) /\left(-2.82319364691125^{*} 10^{\wedge} 280\right) *\left(1.04984^{*} 10^{\wedge} 239\right) /(-$ $\left.3.438670463997^{*} 10^{\wedge} 201\right) 1.1761911712325356994330818948413805998749667307$ $530395 \times 10^{\wedge}-82$

Input interpretation:

```
\(-\frac{1.990905819 \times 10^{319}}{2.82319364691125 \times 10^{280}}\left(-\frac{1.04984 \times 10^{239}}{3.438670463997 \times 10^{201}}\right) \times\) \(1.1761911712325356994330818948413805998749667307530395 \times 10^{-82}\)
```


Result:

$2.5323312858584196635120552564656133384290463417856282 \ldots \times 10^{-6}$
$2.532331285 \ldots * 10^{-6}$
$1 /\left(\left(\left(1.990905819^{*} 10^{\wedge} 319\right) /\left(-2.82319364691125^{*} 10^{\wedge} 280\right) *\left(1.04984^{*} 10^{\wedge} 239\right) /(-\right.\right.$ $\left.3.438670463997^{*} 10^{\wedge} 201\right) 1.1761911712325356994330818948413805998749667307$ $\left.530395 \times 10^{\wedge}-82\right)$))

Input interpretation:

$\begin{aligned} & 1 /\left(-\frac{1.990905819 \times 10^{319}}{2.82319364691125 \times 10^{280}}\left(-\frac{1.04984 \times 10^{239}}{3.438670463997 \times 10^{201}}\right) \times\right. \\ &\left.1.1761911712325356994330818948413805998749667307530395 \times 10^{-82}\right)\end{aligned}$

Result:

$394893.0400948768633952659389016200041288760404251492327551 \ldots$
394893.040094876...

Note that, from the formula of coefficients of the '5th order' mock theta function $\psi_{1}(\mathrm{q})$: (A053261 OEIS Sequence)
sqrt(golden ratio) * $\exp \left(\mathrm{Pi}^{*} \operatorname{sqrt(n/15))} /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{n})\right)\right.$
we obtain, for $\mathrm{n}=427$:

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{427}{15}}\right)}{2 \sqrt[4]{5} \sqrt{427}}+64\left(2^{5}+2^{4}\right)+55+\left(\frac{1}{30}\left(13 w_{\text {Wad }}\right)+\pi\right)$

Exact result:

$\frac{13 \mathcal{W}_{\mathrm{Wad}}}{30}+\frac{e^{\sqrt{427 / 15} \pi} \sqrt{\frac{\phi}{427}}}{2 \sqrt[4]{5}}+3127+\pi$

Exact form:

$\frac{e^{\sqrt{427 / 15} \pi} \sqrt{\frac{\phi}{427}}}{2 \sqrt[4]{5}}+\frac{312713}{100}+\pi$

Decimal approximation:

394893.0479637474441478828132726070965329840167922103608634...
394893.047963747...

Alternate forms:

$$
\begin{aligned}
& \frac{13 W_{\mathrm{Wad}}}{30}+3127+\frac{1}{2} \sqrt{\frac{5+\sqrt{5}}{4270}} e^{\sqrt{427 / 15} \pi}+\pi \\
& \frac{13 W_{\mathrm{Wad}}}{30}+3127+\frac{\sqrt{\frac{1}{854}(1+\sqrt{5})} e^{\sqrt{427 / 15} \pi}}{2 \sqrt[4]{5}}+\pi \\
& \frac{11102 W_{\mathrm{Wad}}+80113740+3 \times 5^{3 / 4} \sqrt{854(1+\sqrt{5})} e^{\sqrt{427 / 15} \pi}+25620 \pi}{25620}
\end{aligned}
$$

We have also:
$(2 \mathrm{Pi}) / 10^{\wedge} 3+\left(\left(() /\left(()\left(1.990905819^{*} 10^{\wedge} 319\right) /\left(-2.82319364691125^{*} 10^{\wedge} 280\right) *\right.\right.\right.$ (1.04984* $\left.10^{\wedge} 239\right) /\left(-3.438670463997 * 10^{\wedge} 201\right) 1.1761911712325 \times 10^{\wedge}-$ 82))))))) $\wedge 1 / 27$

Input interpretation:

$\frac{2 \pi}{10^{3}}+\sqrt[27]{\frac{1}{-\frac{1.990905819 \times 10^{319}}{2.82319364691125 \times 10^{280}}\left(-\frac{1.04984 \times 10^{239}}{3.438670463997 \times 10^{201}}\right) \times 1.1761911712325 \times 10^{-82}}}$

Result:

1.617956509737327899315037118954996065365180408731368968425
$1.6179565097 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

And:

Input interpretation:

1

$\frac{2 \pi}{10^{3}}+\sqrt[27]{\frac{1}{-\frac{1.990905819 \times 10^{319}}{2.82319364691125 \times 10^{280}}\left(-\frac{1.04984 \times 10^{239}}{3.438670463997 \times 10^{201}}\right) \times 1.1761911712325 \times 10^{-82}}}$

Result:

$0.618063584516463956192381021086135475503461967952711821252 \ldots$
0.618063584516....

And:
$(2 \mathrm{Pi}) / 10^{\wedge} 3+\left(\left(\left(\left(\left(\operatorname{sqrt}(\right.\right.\right.\right.\right.$ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(427 / 15)\right) /$
$\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(427)\right)+64 *\left(2^{\wedge} 5+2^{\wedge} 4\right)+55+(((13 *$ Wadsworth constant $) / 30+\pi$))))))) $)^{\wedge} 1 / 27$

Input:
$\frac{2 \pi}{10^{3}}+\sqrt[27]{\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{427}{15}}\right)}{2 \sqrt[4]{5} \sqrt{427}}+64\left(2^{5}+2^{4}\right)+55+\left(\frac{1}{30}\left(13 W_{\mathrm{Wad}}\right)+\pi\right)}$
ϕ is the golden ratio
$W_{\text {Wad }}$ is the Wadsworth constant

Exact result:

$\sqrt[27]{\frac{13 \mathcal{W}_{\mathrm{Wad}}}{30}+\frac{e^{\sqrt{427 / 15} \pi} \sqrt{\frac{\phi}{427}}}{2 \sqrt[4]{5}}+3127+\pi}+\frac{\pi}{500}$

Exact form:

$\sqrt[27]{\frac{e^{\sqrt{427 / 15} \pi} \sqrt{\frac{\phi}{427}}}{2 \sqrt[4]{5}}+\frac{312713}{100}+\pi+\frac{\pi}{500}}$

Decimal approximation:

1.617956510926776037873729494000276701147205658273489385975...
$1.61795651092 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$\sqrt[27]{\frac{13 W_{\mathrm{Wad}}}{30}+3127+\frac{1}{2} \sqrt{\frac{5+\sqrt{5}}{4270}} e^{\sqrt{427 / 15} \pi}+\pi}+\frac{\pi}{500}$
$\sqrt[27]{\frac{13 W_{\mathrm{Wad}}}{30}+3127+\frac{\sqrt{\frac{1}{854}(1+\sqrt{5})} e^{\sqrt{427 / 15} \pi}}{2 \sqrt[4]{5}}+\pi+\frac{\pi}{500}}$
$\frac{1}{640500}\left(50 \times 2^{25 / 27} \times 6405^{26 / 27}\right.$
$\sqrt[27]{11102 W_{\mathrm{Wad}}+80113740+3 \times 5^{3 / 4} \sqrt{854(1+\sqrt{5})} e^{\sqrt{427 / 15} \pi}+25620 \pi}+$
1281π
$1 /\left[(2 \mathrm{Pi}) / 10^{\wedge} 3+\left(\left(\left(\left(\left(\operatorname{sqrt}(\right.\right.\right.\right.\right.\right.$ golden ratio $) * \exp \left(\mathrm{Pi}^{*}\right.$ sqrt(427/15)) /
$\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(427)\right)+64 *\left(2^{\wedge} 5+2^{\wedge} 4\right)+55+(((13 *$ Wadsworth constant $) / 30+\pi$
)))()))) $)^{\wedge} 1 / 27$]

Input:

1
$\frac{2 \pi}{10^{3}}+\sqrt[27]{\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{427}{15}}\right)}{2 \sqrt[4]{5} \sqrt{427}}+64\left(2^{5}+2^{4}\right)+55+\left(\frac{1}{30}\left(13 \mathcal{W}_{\mathrm{Wad}}\right)+\pi\right)}$

Exact result:

 1$\sqrt[27]{\frac{13 W_{\text {Wad }}}{30}+\frac{e^{\sqrt{427 / 15} \pi} \sqrt{\frac{\phi}{427}}}{2 \sqrt[4]{5}}+3127+\pi+\frac{\pi}{500}}$

Exact form:

1
$\sqrt[27]{\frac{e^{\sqrt{427 / 15} \pi} \sqrt{\frac{\phi}{427}}}{2 \sqrt[4]{5}}+\frac{312713}{100}+\pi+\frac{\pi}{500}}$

Decimal approximation:

0.618063584062091681567447030367761025027834117969898872030...
0.618063584...

Alternate forms:

$\frac{1}{\sqrt[27]{\frac{13 W_{\text {Wad }}+3127+\frac{1}{2} \sqrt{\frac{5+\sqrt{5}}{4270}} e^{\sqrt{427 / 15} \pi}+\pi+\frac{\pi}{500}}{1}}}$
$\sqrt[27]{\frac{13 W_{\text {Wad }}}{30}+3127+\frac{\sqrt{\frac{1}{854}(1+\sqrt{5})} e^{\sqrt{427 / 15} \pi}}{2 \sqrt[4]{5}}+\pi}+\frac{\pi}{500}$
$640500 /\left(50 \times 2^{25 / 27} \times 6405^{26 / 27}\right.$

$$
\begin{aligned}
& \sqrt[27]{11102 W_{\mathrm{Wad}}+80113740+3 \times 5^{3 / 4} \sqrt{854(1+\sqrt{5})} e^{\sqrt{427 / 15} \pi}+25620 \pi} \\
& +1281 \pi
\end{aligned}
$$

Now, we have that:

Now, the next order reads

$$
\begin{aligned}
\mathcal{S}_{2}^{\text {MGD }} & =\frac{A_{2}}{4} \\
& =\frac{\varepsilon^{2}}{4} \int_{y_{0}}^{0} d y \mathcal{L}_{2}=\frac{\pi M^{2}}{32}\left\lceil\mathrm{U}_{1}\left(\xi, y_{0}\right)+\mathrm{U}_{2}(\xi) \log \left(\frac{2}{1+y_{0}}\right)+\mathrm{U}_{3}(\xi) \log \left(y_{0}\right)\right]
\end{aligned}
$$

with ancillary functions $\mathrm{U}_{1}\left(\zeta, y_{0}\right)=\left[2 \zeta\left(13-3 y_{0}\right)-\left(\zeta^{2}+4\right)\left(7-y_{0}\right)\right]\left(1-y_{0}\right), \mathrm{U}_{2}(\zeta)=16(\zeta-2)^{2}$ and $\mathrm{U}_{3}(\xi)=2\left[(\xi-2)^{2}-2 \xi\right]$. One can notice the contribution of the MGD parameter, encoding the finite brane tension, as one compares with the HEE for the Schwarzschild spacetime, corresponding to $\ell \rightarrow 0$ and, hence, $\xi \rightarrow 0$. Henceforth, in the general relativistic case of a rigid brane, $o \rightarrow \infty$, one recovers the $2^{\text {nd }}$-order correction for Schwarzschild spacetimes. On the other hand, the $2^{\text {nd }}$-order corrections ratio are given by

$$
\begin{equation*}
\Phi_{2}^{\text {MCD }}=\frac{\mathcal{S}_{2}^{\text {MGD }}}{S_{2}^{\text {Siw }}}=1+\frac{\zeta}{4}(\xi-6)+4 \xi\left[\frac{1-y_{0}-2 \log \left(\frac{2}{1 \mid y_{0}}\right)}{7-8 y_{0}+y_{0}^{2}-2 \log y_{0}-16 \log \left(\frac{2}{1+y_{0}}\right)}\right] \tag{37}
\end{equation*}
$$

Both corrections, the $1^{\text {st }}$ - and the $2^{\text {nd }}$-order ones, have the MGD parameter as a dominant variable, when considering the minimal surface in large range, correspondly, the lower limit very close to zero. The $1^{\text {st }}$-order ratio does not depend on such range. However, the $2^{\text {nc }}$-order ratio has the limit

$$
\begin{equation*}
\left.\Phi_{2}^{\mathrm{MCD}}\right|_{y_{0} \rightarrow 0}=1+\frac{\xi}{4}(\xi-6) \tag{38}
\end{equation*}
$$

As $\xi<0$, it is observed an increment of the value of this order of correction to the HEE. Irrespectively of the limit taken, the limit $\xi \rightarrow 0$ recovers the $2^{\text {nd }}$ order correction for the HEE in a Schwarzschild spacetime.

From (37), for $\mathrm{y}_{0}=1$, we obtain (38). From the following Ramanujan mock theta function:

(https://en.wikipedia.org/wiki/Mock modular form\#Order 6)

$\sigma(q)=\sum_{n \geq 0} \frac{q^{(n+1)(n+2) / 2}(-q ; q)_{n}}{\left(q ; q^{2}\right)_{n+1}}$
That is: (A053271 sequence OEIS)
Sum_\{n>=0\} $q^{\wedge}((n+1)(n+2) / 2)(1+q)\left(1+q^{\wedge} 2\right) \ldots\left(1+q^{\wedge} n\right) /\left((1-q)\left(1-q^{\wedge} 3\right) \ldots(1-\right.$ $\left.\left.\mathrm{q}^{\wedge}(2 \mathrm{n}+1)\right)\right)$

From which:

$\left.\left.\operatorname{sum} q^{\wedge}((n+1)(n+2) / 2)(1+q)\left(1+q^{\wedge} 2\right)\left(1+q^{\wedge} n\right)\right)\right) /\left((1-q)\left(1-q^{\wedge} 3\right)\left(1-q^{\wedge}(2 n+1)\right)\right), n=0$ to k
$\sum_{n=0}^{k} \frac{q^{1 / 2(n+1)(n+2)}(1+q)\left(1+q^{2}\right)\left(1+q^{n}\right)}{(1-q)\left(1-q^{3}\right)\left(1-q^{2 n+1}\right)}$
$\sum_{n=0}^{k} \frac{q^{1 / 2(n+1)(n+2)}(1+q)\left(1+q^{2}\right)\left(1+q^{n}\right)}{(1-q)\left(1-q^{3}\right)\left(1-q^{2 n+1}\right)}$

For $\mathrm{q}=0.5$ and $\mathrm{n}=2$, we develop the above formula in the following way:
$\left(\left(\left(0.5^{\wedge}((2+1)(2+2) / 2)(1+0.5)\left(1+0.5^{\wedge} 2\right)\left(1+0.5^{\wedge} 2\right)\right)\right) /\left(\left((1-0.5)\left(1-0.5^{\wedge} 3\right)(1-\right.\right.\right.$ $\left.\left.0.5^{\wedge}(2 * 2+1)\right)\right)$
$\frac{0.5^{(2+1) \times(2+2) / 2}(1+0.5)\left(1+0.5^{2}\right)\left(1+0.5^{2}\right)}{(1-0.5)\left(1-0.5^{3}\right)\left(1-0.5^{2 \times 2+1}\right)}$
0.086405529953917050691244239631336405529953917050691244239
0.0864055...

For $\xi=0.0864055$, that is the result of above Ramanujan mock theta function, we obtain:
$1+(0.0864055 / 4) *(0.0864055-6)$

Input interpretation:

$1+\frac{0.0864055}{4}(0.0864055-6)$

Result:

0.8722582276075625
0.8722582276075625

From which:
$(((1+(0.0864055 / 4) *(0.0864055-6))))^{\wedge} 1 / 256$

Input interpretation:

$\sqrt[256]{1+\frac{0.0864055}{4}(0.0864055-6)}$

Result:

0.999466276 ..
$0.999466276 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$
$1 / 2 \log$ base $0.999466276(((1+(0.0864055 / 4) *(0.0864055-6))))-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:
$\frac{1}{2} \log _{0.999466276}\left(1+\frac{0.0864055}{4}(0.0864055-6)\right)-\pi+\frac{1}{\phi}$
$\log _{b}(x)$ is the base- b logarithm
ϕ is the golden ratio

Result:

125.476...
125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representation:

$\frac{1}{2} \log _{0.099466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-\pi+\frac{1}{\phi}=-\pi+\frac{1}{\phi}+\frac{\log \left(1-\frac{0.510967}{4}\right)}{2 \log (0.999466)}$

Series representations:

$\frac{1}{2} \log _{0.099466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.127742)^{k}}{k}}{2 \log (0.999466)}
$$

$\frac{1}{2} \log _{0.099466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-936.564 \log (0.872258)-\frac{1}{2} \log (0.872258) \sum_{k=0}^{\infty}(-0.000533724)^{k} G(k)
$$

$$
\text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

$1 / 2 \log$ base $0.999466276(((1+(0.0864055 / 4) *(0.0864055-6))))+11+1 /$ golden ratio

Input interpretation:
$\frac{1}{2} \log _{0.099466276}\left(1+\frac{0.0864055}{4}(0.0864055-6)\right)+11+\frac{1}{\phi}$
$\log _{b}(x)$ is the base- b logarithm
ϕ is the golden ratio

Result:

139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representation:

$\frac{1}{2} \log _{0.999466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)+11+\frac{1}{\phi}=11+\frac{1}{\phi}+\frac{\log \left(1-\frac{0.510967}{4}\right)}{2 \log (0.999466)}$

Series representations:

$\frac{1}{2} \log _{0.099466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)+11+\frac{1}{\phi}=$

$$
11+\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.127742)^{k}}{k}}{2 \log (0.999466)}
$$

$\frac{1}{2} \log _{0.099466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)+11+\frac{1}{\phi}=$ $11+\frac{1}{\phi}-936.564 \log (0.872258)-\frac{1}{2} \log (0.872258) \sum_{k=0}^{\infty}(-0.000533724)^{k} G(k)$
for $\left(G(0)=0\right.$ and $\left.G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)$
$27 * 1 / 4 \log$ base $0.999466276(((1+(0.0864055 / 4) *(0.0864055-6))))+1$

Input interpretation:

$27 \times \frac{1}{4} \log _{0.099466276}\left(1+\frac{0.0864055}{4}(0.0864055-6)\right)+1$
$\log _{b}(x)$ is the base $-b$ logarithm

Result:

1729.00...

1729
This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternative representation:

$\frac{27}{4} \log _{0.999466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)+1=1+\frac{27 \log \left(1-\frac{0.510967}{4}\right)}{4 \log (0.999466)}$

Series representations:

$\frac{27}{4} \log _{0.999466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)+1=1-\frac{27 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.127742)^{k}}{k}}{4 \log (0.999466)}$
$\frac{27}{4} \log _{0.999466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)+1=$
$1-12643.6 \log (0.872258)-6.75 \log (0.872258) \sum_{k=0}^{\infty}(-0.000533724)^{k} G(k)$
for $\left(G(0)=0\right.$ and $\left.G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)$

12*1/4log base $0.999466276(((1+(0.0864055 / 4) *(0.0864055-6))))-29-11$

Input interpretation:

$12 \times \frac{1}{4} \log _{0.999466276}\left(1+\frac{0.0864055}{4}(0.0864055-6)\right)-29-11$

Result:

728.000...

728 (Ramanujan taxicab number)

Alternative representation:

$$
\begin{aligned}
& \frac{12}{4} \log _{0.999466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-29-11= \\
& -40+\frac{12 \log \left(1-\frac{0.510967}{4}\right)}{4 \log (0.999466)}
\end{aligned}
$$

Series representations:

$\frac{12}{4} \log _{0.099466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-29-11=$ $-40-\frac{3 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.127742)^{k}}{k}}{\log (0.999466)}$

$$
\begin{aligned}
& \frac{12}{4} \log _{0.990466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-29-11= \\
& \quad-40-5619.38 \log (0.872258)-3 \log (0.872258) \sum_{k=0}^{\infty}(-0.000533724)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

$12 * 1 / 4 \log$ base $0.999466276(((1+(0.0864055 / 4) *(0.0864055-6))))-29-11+47$

Input interpretation:

$12 \times \frac{1}{4} \log _{0.999466276}\left(1+\frac{0.0864055}{4}(0.0864055-6)\right)-29-11+47$
$\log _{b}(x)$ is the base- b logarithm

Result:

775.000...

775 result practically equal to the rest mass of Charged rho meson 775.11

Alternative representation:

$$
\begin{aligned}
& \frac{12}{4} \log _{0.999466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-29-11+47= \\
& 7+\frac{12 \log \left(1-\frac{0.510967}{4}\right)}{4 \log (0.999466)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{12}{4} \log _{0.999466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-29-11+47= \\
& 7-\frac{3 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.127742)^{k}}{k}}{\log (0.999466)} \\
& \frac{12}{4} \log _{0.999466}\left(1+\frac{1}{4} \times 0.0864055(0.0864055-6)\right)-29-11+47= \\
& \quad 7-5619.38 \log (0.872258)-3 \log (0.872258) \sum_{k=0}^{\infty}(-0.000533724)^{k} G(k) \\
& \quad \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Now, we have that:

$$
\begin{equation*}
\Phi_{2}^{\mathrm{EMGD}_{1}}=8\left[\frac{y_{0}^{2}-4 y_{0}+3-2 \log \left(y_{0}\right)-8 \log \left(\frac{2}{1+y_{0}}\right)}{y_{0}^{2}-8 y_{0}+7-2 \log \left(y_{0}\right)-16 \log \left(\frac{2}{1+y_{0}}\right)}\right] \tag{52}
\end{equation*}
$$

For $y_{0}=0.99$, we obtain:
$8 *\left[\left(\left(\left(0.99^{\wedge} 2-4 * 0.99+3-2 \ln (0.99)-8 \ln (2 / 1.99)\right)\right)\right) /\left(\left(\left(0.99^{\wedge} 2-8^{*} 0.99+7-2 \ln (0.99)-16\right.\right.\right.\right.$ $\ln (2 / 1.99))))]$

Input:

$$
8 \times \frac{0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}
$$

Result:

317234.6106478058859430701207273346791451318951095538859066...
317234.6106478...

Alternative representations:

$$
\begin{aligned}
& \frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}= \\
& \left(\frac{8\left(-0.96-2 \log (a) \log _{a}(0.99)-8 \log (a) \log _{a}\left(\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92-2 \log (a) \log _{a}(0.99)-16 \log (a) \log _{a}\left(\frac{2}{1.99}\right)+0.99^{2}}=\right. \\
& \left.\frac{8\left(0.0201-2 \log (a) \log _{a}(0.99)-8 \log (a) \log _{a}(1.00503)\right)}{0.0601-2 \log (a) \log _{a}(0.99)-16 \log (a) \log _{a}(1.00503)}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}= \\
\left(\frac{8\left(-0.96-2 \log _{e}(0.99)-8 \log _{e}\left(\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92-2 \log _{e}(0.99)-16 \log _{e}\left(\frac{2}{1.99}\right)+0.99^{2}}=\right. \\
\left.\frac{8\left(0.0201-2 \log _{e}(0.99)-8 \log _{e}(1.00503)\right)}{0.0601-2 \log _{e}(0.99)-16 \log _{e}(1.00503)}\right)
\end{array}
$$

$$
\begin{aligned}
& \frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}= \\
& \frac{8\left(-0.96+2 \mathrm{Li}_{1}(0.01)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92+2 \mathrm{Li}_{1}(0.01)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.99}\right)+0.99^{2}}= \\
& \left.\frac{8\left(0.0201+8 \mathrm{Li}_{1}(-0.00502513)+2 \mathrm{Li}_{1}(0.01)\right)}{0.0601+16 \mathrm{Li}_{1}(-0.00502513)+2 \mathrm{Li}_{1}(0.01)}\right)
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.90}\right)}= \\
\frac{-0.0804+\sum_{k=1}^{\infty} \frac{-8(-1)^{k}(-0.01)^{k}-32(-0.00502513)^{k}}{k}}{-0.03005+\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.01)^{k}-8(-0.00502513)^{k}}{k}}
\end{gathered}
$$

$\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}=$

$$
\left(8 \left(-0.005025+i \pi\left\lfloor\frac{\arg (0.99-x)}{2 \pi}\right\rfloor+4 i \pi\left\lfloor\frac{\arg (1.00503-x)}{2 \pi}\right\rfloor+2.5 \log (x)+\right.\right.
$$

$$
\left.\left.0.125 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-4(0.99-x)^{k}-16(1.00503-x)^{k}\right) x^{-k}}{k}\right)\right) /
$$

$$
\left(-0.015025+i \pi\left\lfloor\frac{\arg (0.99-x)}{2 \pi}\right\rfloor+8 i \pi\left\lfloor\frac{\arg (1.00503-x)}{2 \pi}\right\rfloor+4.5 \log (x)+\right.
$$

$$
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.5(0.99-x)^{k}-4(1.00503-x)^{k}\right) x^{-k}}{k}\right) \text { for } x<0
$$

```
\(\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}=\)
    \(\frac{-0.0804+\sum_{j=1}^{\infty}\left(8\left(\operatorname{Res}_{s=-j} \frac{(-0.01)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)}\right)+32\left(\operatorname{Res}_{s=-j} \frac{e^{5.2933 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)}\right)\right)}{-0.03005+\sum_{j=1}^{\infty}\left(\operatorname{Res}_{s=-j} \frac{(-0.01)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)}+8\left(\operatorname{Res}_{s=-j} \frac{e^{5.2933 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)}\right)\right)}\)
```

$\arg (z)$ is the complex argument
$\lfloor x\rfloor$ is the floor function
i is the imaginary unit
$\Gamma(x)$ is the gamma function

Res f is a complex residue $x=z_{0}$
and:
$1+1 / \operatorname{sqrt}\left(\left(8^{*}\left[\left(\left(\left(0.99^{\wedge} 2-4^{*} 0.99+3-2 \ln (0.99)-8 \ln (2 / 1.99)\right)\right)\right) /\left(\left(\left(0.99^{\wedge} 2-8^{*} 0.99+7-2\right.\right.\right.\right.\right.\right.$ $\ln (0.99)-16 \ln (2 / 1.99))))]))$

Input:

$1+\frac{1}{\sqrt{8 \times \frac{0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}}}$
$\log (x)$ is the natural logarithm

Result:

1.001775455200579765569659068701249369523822062429397193634...
$1.0017754552 \ldots$ result very near to the following Rogers-Ramanujan continued fraction:

Alternative representations:

$1+\frac{1}{\sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}}}=$

$1+\frac{1}{\sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}}}=$
$\left(1+\frac{1}{\sqrt{\frac{8\left(-0.96-2 \log (a) \log _{a}(0.99)-8 \log (a) \log _{a}\left(\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92-2 \log (a) \log _{a}(0.99)-16 \log (a) \log _{a}\left(\frac{2}{1.99}\right)+0.99^{2}}}}=\right.$
$1+\frac{1}{\sqrt{\frac{8\left(0.0201-2 \log (a) \log _{a}(0.99)-8 \log (a) \log _{a}(1.00503)\right)}{0.0601-2 \log (a) \log _{a}(0.99)-16 \log (a) \log _{a}(1.00503)}}}$

$$
\left.\begin{array}{l}
1+\frac{1}{\sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}}}= \\
1+\frac{1}{\sqrt{\frac{8\left(-0.96+2 \mathrm{Li}_{1}(0.01)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92+2 \mathrm{Li}_{1}(0.01)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.99}\right)+0.99^{2}}}}= \\
1+\frac{1}{\sqrt{\frac{8\left(0.0201+8 \mathrm{Li}_{1}(-0.00502513)+2 \mathrm{Li}_{1}(0.01)\right.}{0.0601+16 \mathrm{Li}_{1}(-0.00502513)+2 \mathrm{Li}_{1}(0.01)}}}
\end{array}\right)
$$

Series representations:

$$
\begin{aligned}
& 1+\frac{1}{\sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}}}= \\
& 1+1 /\left(\sqrt{\frac{7(-0.00719286+\log (0.99)+3.42857 \log (1.00503))}{-0.03005+\log (0.99)+8 \log (1.00503)}}\right. \\
& \left.\quad \sum_{k=0}^{\infty} e^{-1.94591 k}\binom{\frac{1}{2}}{k}\left(\frac{-0.00719286+\log (0.99)+3.42857 \log (1.00503)}{-0.03005+\log (0.99)+8 \log (1.00503)}\right)^{-k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1+\frac{1}{\sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}}}= \\
& 1+1 /\left(\sqrt{\frac{7(-0.00719286+\log (0.99)+3.42857 \log (1.00503))}{-0.03005+\log (0.99)+8 \log (1.00503)}}\right. \\
& \left.\quad \sum_{k=0}^{\infty} \frac{(-0.142857)^{k}\left(\frac{-0.00719286+\log (0.99)+3.42857 \log (1.00503)}{-0.03005+\log (0.99)+8 \log (1.00503)}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

Pi*sqrt(((8*[(((0.99^2-4*0.99+3-2 $\ln (0.99)-8 \ln (2 / 1.99)))) /\left(\left(\left(0.99^{\wedge} 2-8 * 0.99+7-2\right.\right.\right.$
$\ln (0.99)-16 \ln (2 / 1.99))))])))-29-11-2 / 5$

Input:

$\pi \sqrt{8 \times \frac{0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}}-29-11-\frac{2}{5}$
$\log (x)$ is the natural logarithm

Result:

1729.057574915955445991506989948194881041631226369839617527...
1729.05757491...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternative representations:

$$
\begin{gathered}
\pi \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}-29-11-\frac{2}{5}=} \\
\left(-40-\frac{2}{5}+\pi \sqrt{\frac{8\left(-0.96-2 \log (a) \log _{a}(0.99)-8 \log (a) \log _{a}\left(\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92-2 \log (a) \log _{a}(0.99)-16 \log (a) \log _{a}\left(\frac{2}{1.99}\right)+0.99^{2}}}=\right. \\
\left.-\frac{202}{5}+\pi \sqrt{\frac{8\left(0.0201-2 \log (a) \log _{a}(0.99)-8 \log (a) \log _{a}(1.00503)\right)}{0.0601-2 \log (a) \log _{a}(0.99)-16 \log (a) \log _{a}(1.00503)}}\right)
\end{gathered}
$$

$$
\begin{gathered}
\pi \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}-29-11-\frac{2}{5}}= \\
\left(-40-\frac{2}{5}+\pi \sqrt{\frac{8\left(-0.96-2 \log _{e}(0.99)-8 \log _{e}\left(\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92-2 \log _{e}(0.99)-16 \log _{e}\left(\frac{2}{1.99}\right)+0.99^{2}}}=\right. \\
\left.-\frac{202}{5}+\pi \sqrt{\frac{8\left(0.0201-2 \log _{e}(0.99)-8 \log _{e}(1.00503)\right)}{0.0601-2 \log _{e}(0.99)-16 \log _{e}(1.00503)}}\right)
\end{gathered}
$$

$$
\begin{gathered}
\pi \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}-29-11-\frac{2}{5}}= \\
\left(\begin{array}{c}
-40-\frac{2}{5}+\pi \sqrt{\frac{8\left(-0.96+2 \mathrm{Li}_{1}(0.01)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92+2 \mathrm{Li}_{1}(0.01)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.99}\right)+0.99^{2}}}
\end{array}=\right. \\
\left.-\frac{202}{5}+\pi \sqrt{\frac{8\left(0.0201+8 \mathrm{Li}_{1}(-0.00502513)+2 \mathrm{Li}_{1}(0.01)\right)}{0.0601+16 \mathrm{Li}_{1}(-0.00502513)+2 \mathrm{Li}_{1}(0.01)}}\right)
\end{gathered}
$$

Series representations:

$$
\begin{aligned}
& \pi \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}-29-11-\frac{2}{5}}= \\
& \frac{1}{5}\left(-202+5 \pi \sqrt{\frac{-0.0804+\sum_{k=1}^{\infty} \frac{-8(-1)^{k}(-0.01)^{k}-32(-0.00502513)^{k}}{k}}{-0.03005+\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.01)^{k}-8(-0.00502513)^{k}}{k}}}\right)
\end{aligned}
$$

$$
\begin{gathered}
\pi \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}-29-11-\frac{2}{5}}= \\
-\frac{202}{5}+\pi \sqrt{\frac{7(-0.00719286+\log (0.99)+3.42857 \log (1.00503))}{-0.03005+\log (0.99)+8 \log (1.00503)}} \\
\sum_{k=0}^{\infty} e^{-1.94591 k\binom{\frac{1}{2}}{k}\left(\frac{-0.00719286+\log (0.99)+3.42857 \log (1.00503)}{-0.03005+\log (0.99)+8 \log (1.00503)}\right)^{-k}}
\end{gathered}
$$

$$
\begin{array}{r}
\pi \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}-29-11-\frac{2}{5}}= \\
-\frac{202}{5}+\pi \sqrt{\frac{7(-0.00719286+\log (0.99)+3.42857 \log (1.00503))}{-0.03005+\log (0.99)+8 \log (1.00503)}} \\
\sum_{k=0}^{\infty} \frac{(-0.142857)^{k}\left(\frac{-0.00719286+\log (0.99)+3.42857 \log (1.00503)}{-0.03005+\log (0.99)+8 \log (1.00503)}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
\end{array}
$$

$\operatorname{sqrt}\left(\left(\left(8^{*}\left[\left(\left(\left(0.99^{\wedge} 2-4 * 0.99+3-2 \ln (0.99)-8 \ln (2 / 1.99)\right)\right)\right) /\left(\left(\left(0.99^{\wedge} 2-8 * 0.99+7-2\right.\right.\right.\right.\right.\right.\right.$ $\ln (0.99)-16 \ln (2 / 1.99))))])))+123+47-4-2 /$ golden ratio

Input:
$\sqrt{8 \times \frac{0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}}+123+47-4-\frac{2}{\phi}$
$\log (x)$ is the natural logarithm

Result:

$727.9997713010442438496196170375748496892713575184118989732 \ldots$
$727.9997713 \ldots \approx 728$ (Ramanujan taxicab number)

Alternative representations:

$$
\left.\begin{array}{l}
\sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}+123+47-4-\frac{2}{\phi}=} \\
\left(166-\frac{2}{\phi}+\sqrt{\frac{8\left(-0.96-2 \log (a) \log _{a}(0.99)-8 \log (a) \log _{a}\left(\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92-2 \log (a) \log _{a}(0.99)-16 \log (a) \log _{a}\left(\frac{2}{1.99}\right)+0.99^{2}}}=\right. \\
166-\frac{2}{\phi}+\sqrt{\frac{8\left(0.0201-2 \log (a) \log _{a}(0.99)-8 \log (a) \log _{a}(1.00503)\right)}{0.0601-2 \log (a) \log _{a}(0.99)-16 \log (a) \log _{a}(1.00503)}}
\end{array}\right)
$$

$$
\begin{aligned}
& \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}+123+47-4-\frac{2}{\phi}}= \\
& \left(166-\frac{2}{\phi}+\sqrt{\frac{8\left(-0.96-2 \log _{e}(0.99)-8 \log _{e}\left(\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92-2 \log _{e}(0.99)-16 \log _{e}\left(\frac{2}{1.99}\right)+0.99^{2}}}=\right. \\
& \left.166-\frac{2}{\phi}+\sqrt{\frac{8\left(0.0201-2 \log _{e}(0.99)-8 \log _{e}(1.00503)\right)}{0.0601-2 \log _{e}(0.99)-16 \log _{e}(1.00503)}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}+123+47-4-\frac{2}{\phi}=} \\
& \left(166-\frac{2}{\phi}+\sqrt{\frac{8\left(-0.96+2 \mathrm{Li}_{1}(0.01)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.99}\right)+0.99^{2}\right)}{-0.92+2 \mathrm{Li}_{1}(0.01)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.99}\right)+0.99^{2}}}=\right. \\
& \left.166-\frac{2}{\phi}+\sqrt{\frac{8\left(0.0201+8 \mathrm{Li}_{1}(-0.00502513)+2 \mathrm{Li}_{1}(0.01)\right)}{0.0601+16 \mathrm{Li}_{1}(-0.00502513)+2 \mathrm{Li}_{1}(0.01)}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}+123+47-4-\frac{2}{\phi}}= \\
& 166-\frac{2}{\phi}+\sqrt{\frac{7(-0.00719286+\log (0.99)+3.42857 \log (1.00503))}{-0.03005+\log (0.99)+8 \log (1.00503)}} \\
& \sum_{k=0}^{\infty} e^{-1.94591 k}\binom{\frac{1}{2}}{k}\left(\frac{-0.00719286+\log (0.99)+3.42857 \log (1.00503)}{-0.03005+\log (0.99)+8 \log (1.00503)}\right)^{-k}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}+123+47-4-\frac{2}{\phi}}= \\
& -2+166 \phi+\phi \sqrt{\frac{-0.0804+\sum_{k=1}^{\infty} \frac{-8(-1)^{k}(-0.01)^{k}-32(-0.00502513)^{k}}{k}}{-0.03005+\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.01)^{k}-8(-0.00502513)^{k}}{k}}}
\end{aligned}
$$

$$
\sqrt{\frac{8\left(0.99^{2}-4 \times 0.99+3-2 \log (0.99)-8 \log \left(\frac{2}{1.99}\right)\right)}{0.99^{2}-8 \times 0.99+7-2 \log (0.99)-16 \log \left(\frac{2}{1.99}\right)}+123+47-4-\frac{2}{\phi}}=
$$

$$
166-\frac{2}{\phi}+\sqrt{\frac{7(-0.00719286+\log (0.99)+3.42857 \log (1.00503))}{-0.03005+\log (0.99)+8 \log (1.00503)}}
$$

$$
\sum_{k=0}^{\infty} \frac{(-0.142857)^{k}\left(\frac{-0.00719286+\log (0.99)+3.42857 \log (1.00503)}{-0.03005+\log (0.99)+8 \log (1.00503)}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

For $\mathrm{y}_{0}=0.01$, we obtain:
$8 *\left[(((0.01 \wedge 2-4 * 0.01+3-2 \ln (0.01)-8 \ln (2 / 1.01)))) /\left(\left(\left(0.01^{\wedge} 2-8 * 0.01+7-2 \ln (0.01)-16\right.\right.\right.\right.$ $\ln (2 / 1.01))))$]

Input:

$8 \times \frac{0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}$

Result:

10.3166...
10.3166...

Alternative representations:

$$
\begin{aligned}
& \frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}= \\
& \frac{8\left(2.96-2 \log (a) \log _{a}(0.01)-8 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log (a) \log _{a}(0.01)-16 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}= \\
& \frac{8\left(2.96-2 \log _{e}(0.01)-8 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log _{e}(0.01)-16 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}= \\
& \frac{8\left(2.96+2 \mathrm{Li}_{1}(0.99)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92+2 \mathrm{Li}_{1}(0.99)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}= \\
& \frac{-11.8404+\sum_{k=1}^{\infty} \frac{-8(-1)^{k}(-0.99)^{k}-32(-0.980198)^{k}}{k}}{-3.46005+\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.98019)^{k}}{k}} \\
& \frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}= \\
& \left(8 \left(-0.740025+i \pi\left\lfloor\frac{\arg (0.01-x)}{2 \pi}|+4 i \pi| \frac{\arg (1.9802-x)}{2 \pi}\right]+2.5 \log (x)+\right.\right. \\
& \left.\left.0.125 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-4(0.01-x)^{k}-16(1.9802-x)^{k}\right) x^{-k}}{k}\right)\right) / \\
& \left(-1.73003+i \pi\left\lfloor\frac{\arg (0.01-x)}{2 \pi}\right]+8 i \pi\left\lfloor\left.\frac{\arg (1.9802-x)}{2 \pi} \right\rvert\,+4.5 \log (x)+\right.\right. \\
& \left(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.5(0.01-x)^{k}-4(1.9802-x)^{k}\right) x^{-k}}{k}\right) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}= \\
& \frac{-11.8404+\sum_{j=1}^{\infty}\left(8\left(\operatorname{Res}_{s=-j} \frac{(-0.99)^{-s} \Gamma\left((-s)^{2} \Gamma(1+s)\right.}{\Gamma(1-s)}\right)+32\left(\operatorname{Res}_{s=-j} \frac{e^{0.0200007 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)}\right)\right)}{-3.46005+\sum_{j=1}^{\infty}\left(\operatorname{Res}_{s=-j} \frac{(-0.99)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)}+8\left(\operatorname{Res}_{s=-j} \frac{e^{0.0200007 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)}\right)\right)}
\end{aligned}
$$

$\left(\left(\left(8^{*}\left[\left(\left(\left(0.01^{\wedge} 2-4 * 0.01+3-2 \ln (0.01)-8 \ln (2 / 1.01)\right)\right)\right) /\left(\left(\left(0.01^{\wedge} 2-8 * 0.01+7-2 \ln (0.01)-16\right.\right.\right.\right.\right.\right.\right.$ $\ln (2 / 1.01))))]))^{\wedge} 2+29+4$

Input:

$$
\left(8 \times \frac{0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+29+4
$$

Result:

139.432..
$139.432 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{aligned}
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+29+4= \\
& 33+\left(\frac{8\left(2.96-2 \log _{e}(0.01)-8 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log _{e}(0.01)-16 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}
\end{aligned}
$$

$$
\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+29+4=
$$

$$
33+\left(\frac{8\left(2.96-2 \log (a) \log _{a}(0.01)-8 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log (a) \log _{a}(0.01)-16 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}
$$

$$
\begin{aligned}
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+29+4= \\
& 33+\left(\frac{8\left(2.96+2 \mathrm{Li}_{1}(0.99)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92+2 \mathrm{Li}_{1}(0.99)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+29+4= \\
& \left(3 3 \left(16.2203-6.9201 \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}+\right.\right. \\
& \left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}- \\
& 5.7408 \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-4(-0.980198)^{k}}{k}+ \\
& \left.\left.1.93939\left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-4(-0.980198)^{k}}{k}\right)^{2}\right)\right) / \\
& \left(-3.46005+\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}
\end{aligned}
$$

$$
\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+29+4=
$$

$$
33+\left(6 4 \left(2.9601-2\left(2 i \pi\left[\frac{\arg (0.01-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.01-x)^{k} x^{-k}}{k}\right)-\right.\right.
$$

$$
8\left\{2 i \pi\left\lfloor\frac{\arg (1.9802-x)}{2 \pi}\right\rfloor+\log (x)-\right.
$$

$$
\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(1.9802-x)^{k} x^{-k}}{k}\right)\right)^{2}\right) /
$$

$$
\left(6.9201-2\left(2 i \pi\left[\frac{\arg (0.01-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.01-x)^{k} x^{-k}}{k}\right)-\right.
$$

$$
16\left(2 i \pi\left[\frac{\arg (1.9802-x)}{2 \pi}\right]+\log (x)-\right.
$$

$$
\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(1.9802-x)^{k} x^{-k}}{k}\right)\right)^{2} \text { for } x<0
$$

$$
\begin{aligned}
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+29+4= \\
& 33+\left(6 4 \left(-0.740025+i \pi\left[-\frac{-\pi+\arg \left(\frac{0.01}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+\right.\right. \\
& 4 i \pi\left[-\frac{-\pi+\arg \left(\frac{1.9802}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+2.5 \log \left(z_{0}\right)+ \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.5\left(0.01-z_{0}\right)^{k}-2\left(1.9802-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}\right)^{2}\right) / \\
& \left(-1.73003+i \pi\left[-\frac{-\pi+\arg \left(\frac{0.01}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+8 i \pi\left[-\frac{-\pi+\arg \left(\frac{1.9802}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+\right. \\
& \left.4.5 \log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.5\left(0.01-z_{0}\right)^{k}-4\left(1.9802-z_{0}\right)^{k}\right) z_{0}^{k}}{k}\right)^{2}
\end{aligned}
$$

$\left(\left(\left(8^{*}[(((0.01 \wedge 2-4 * 0.01+3-2 \ln (0.01)-8 \ln (2 / 1.01)))) /(((0.01 \wedge 2-8 * 0.01+7-2 \ln (0.01)-16\right.\right.\right.$ $\ln (2 / 1.01))))])))^{\wedge} 2+18+1 /$ golden ratio

Input:

$$
\left(8 \times \frac{0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+18+\frac{1}{\phi}
$$

$\log (x)$ is the natural logarithm

Result:

125.050...
125.050... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\begin{aligned}
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+18+\frac{1}{\phi}= \\
& 18+\frac{1}{\phi}+\left(\frac{8\left(2.96-2 \log _{e}(0.01)-8 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log _{e}(0.01)-16 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2} \\
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+18+\frac{1}{\phi}= \\
& 18+\frac{1}{\phi}+\left(\frac{8\left(2.96-2 \log (a) \log _{a}(0.01)-8 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log (a) \log _{a}(0.01)-16 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2} \\
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+18+\frac{1}{\phi}= \\
& 18+\frac{1}{\phi}+\left(\frac{8\left(2.96+2 \operatorname{Li}_{1}(0.99)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92+2 \operatorname{Li}_{1}(0.99)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+18+\frac{1}{\phi}= \\
& \left(1 8 \left(0.665108+19.7606 \phi-0.38445 \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}-\right.\right. \\
& 6.9201 \phi \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}+ \\
& 0.0555556\left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}+ \\
& \phi\left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}- \\
& 10.5248 \phi \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-4(-0.980198)^{k}}{k}+ \\
& \left.\left.3.55556 \phi\left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-4(-0.980198)^{k}}{k}\right)^{2}\right)\right) / \\
& \left(\phi\left(-3.46005+\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+18+\frac{1}{\phi}= \\
& 18+\frac{1}{\phi}+\left(6 4 \left(2.9601-2\left(2 i \pi\left[\frac{\arg (0.01-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.01-x)^{k} x^{-k}}{k}\right)-\right.\right. \\
& 8\left(2 i \pi\left[\frac{\arg (1.9802-x)}{2 \pi}\right]+\log (x)-\right. \\
& \left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(1.9802-x)^{k} x^{-k}}{k}\right)\right)^{2}\right) / \\
& \left(6.9201-2\left(2 i \pi\left[\frac{\arg (0.01-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.01-x)^{k} x^{-k}}{k}\right)-\right. \\
& 16\left(2 i \pi\left\lfloor\frac{\arg (1.9802-x)}{2 \pi}\right\rfloor+\log (x)-\right. \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(1.9802-x)^{k} x^{-k}}{k}\right)\right)^{2} \text { for } x<0 \\
& \begin{array}{l}
\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+18+\frac{1}{\phi}= \\
18+\frac{1}{\phi}+\left(6 4 \left(2.9601-2\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.01-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right.\right.
\end{array} \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.01-z_{0}\right)^{k} z_{0}^{k}}{k}\right)-8\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(1.9802-z_{0}\right)}{2 \pi}\right\rfloor\right. \\
& \left.\left.\left.\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.9802-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)^{2}\right) / \\
& \left\{6.9201-2\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.01-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.01-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)- \\
& 16\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(1.9802-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right. \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.9802-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)^{2}
\end{aligned}
$$

$27 * 1 / 2\left(\left(\left(\left(\left(() 8^{*}\left[(((0.01 \wedge 2-4 * 0.01+3-2 \ln (0.01)-8 \ln (2 / 1.01)))) /\left(\left(\left(0.01^{\wedge} 2-8 * 0.01+7-2\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\ln (0.01)-16 \ln (2 / 1.01))))]))^{\wedge} 2+21\right)\right)\right)\right)+8+1 /$ golden ratio

Input:

$27 \times \frac{1}{2}\left(\left(8 \times \frac{0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)+8+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm

Result:

1728.95...
1728.95...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternative representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)+8+\frac{1}{\phi}= \\
& 8+\frac{1}{\phi}+\frac{27}{2}\left(21+\left(\frac{8\left(2.96-2 \log _{e}(0.01)-8 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log _{e}(0.01)-16 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}\right) \\
& \frac{27}{2}\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)+8+\frac{1}{\phi}= \\
& 8+\frac{1}{\phi}+\frac{27}{2}\left(21+\left(\frac{8\left(2.96-2 \log (a) \log _{a}(0.01)-8 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log (a) \log _{a}(0.01)-16 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)+8+\frac{1}{\phi}= \\
& 8+\frac{1}{\phi}+\frac{27}{2}\left(21+\left(\frac{8\left(2.96+2 \mathrm{Li}_{1}(0.99)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92+2 \mathrm{Li}_{1}(0.99)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)+8+\frac{1}{\phi}= \\
& \left(2 9 1 . 5 \left(0.164281+73.8587 \phi+17.5474 \phi \sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+4 \times 0.980198^{k}\right)}{k}+\right.\right. \\
& 2.96398 \phi\left(\sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+4 \times 0.980198^{k}\right)}{k}\right)^{2}+ \\
& 0.0474792 \sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+8 \times 0.980198^{k}\right)}{k}+ \\
& 13.8402 \phi \sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+8 \times 0.980198^{k}\right)}{k}+ \\
& 0.00343053\left(\sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+8 \times 0.980198^{k}\right)}{k}\right)^{2}+ \\
& \left.\left.\phi\left(\sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+8 \times 0.980198^{k}\right)}{k}\right)^{2}\right)\right) / \\
& \left.\left(\phi\left(6.9201+\sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+8 \times 0.980198^{k}\right)}{k}\right)^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)+8+\frac{1}{\phi}= \\
& \text { 291.5 }\left(0.0410701+18.4647 \phi-0.0237396 \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}-\right. \\
& 6.9201 \phi \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}+ \\
& 0.00343053\left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}+ \\
& \phi\left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}- \\
& 8.77368 \phi \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-4(-0.980198)^{k}}{k}+ \\
& \left.\left.2.96398 \phi\left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-4(-0.980198)^{k}}{k}\right)^{2}\right)\right) / \\
& \left(\phi\left(-3.46005+\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}\right) \\
& \frac{27}{2}\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)+8+\frac{1}{\phi}=8+\frac{1}{\phi}+\frac{27}{2} \\
& \left(21+\left(6 4 \left(2.9601-2\left(2 i \pi\left[\frac{\arg (0.01-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.01-x)^{k} x^{-k}}{k}\right)-\right.\right.\right. \\
& 8\left\{2 i \pi\left[\frac{\arg (1.9802-x)}{2 \pi}\right]+\log (x)-\right. \\
& \left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(1.9802-x)^{k} x^{-k}}{k}\right)\right)^{2}\right) / \\
& \left(6.9201-2\left(2 i \pi\left[\frac{\arg (0.01-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.01-x)^{k} x^{-k}}{k}\right)-\right. \\
& 16\left(2 i \pi\left[\frac{\arg (1.9802-x)}{2 \pi}\right]+\log (x)-\right. \\
& \left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(1.9802-x)^{k} x^{-k}}{k}\right)\right)^{2}\right) \text { for } x<0
\end{aligned}
$$

$6^{*}\left(\left(\left(\left(\left(\left(8^{*}\left[\left(\left(\left(0.01^{\wedge} 2-4 * 0.01+3-2 \ln (0.01)-8 \ln (2 / 1.01)\right)\right)\right) /\left(\left(\left(0.01^{\wedge} 2-8 * 0.01+7-2\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\ln (0.01)-16 \ln (2 / 1.01))))])))^{\wedge} 2+21\right)\right)\right)\right)-34-2-1 / 2$

Input:

$$
6\left(\left(8 \times \frac{0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)-34-2-\frac{1}{2}
$$

Result:

728.092...
$728.092 \ldots \approx 728$ (Ramanujan taxicab number)

Alternative representations:

$$
\begin{aligned}
& 6\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)-34-2-\frac{1}{2}= \\
& -\frac{73}{2}+6\left(21+\left(\frac{8\left(2.96-2 \log _{e}(0.01)-8 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log _{e}(0.01)-16 \log _{e}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}\right)
\end{aligned}
$$

$$
6\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)-34-2-\frac{1}{2}=
$$

$$
-\frac{73}{2}+6\left(21+\left(\frac{8\left(2.96-2 \log (a) \log _{a}(0.01)-8 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92-2 \log (a) \log _{a}(0.01)-16 \log (a) \log _{a}\left(\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}\right)
$$

$$
6\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)-34-2-\frac{1}{2}=
$$

$$
-\frac{73}{2}+6\left(21+\left(\frac{8\left(2.96+2 \mathrm{Li}_{1}(0.99)+8 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}\right)}{6.92+2 \mathrm{Li}_{1}(0.99)+16 \mathrm{Li}_{1}\left(1-\frac{2}{1.01}\right)+0.01^{2}}\right)^{2}\right)
$$

Series representations:

$$
\begin{aligned}
& 6\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)-34-2-\frac{1}{2}= \\
& \left(8 9 . 5 \left(85.482+25.4006 \sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+4 \times 0.980198^{k}\right)}{k}+\right.\right. \\
& 4.2905\left(\sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+4 \times 0.980198^{k}\right)}{k}\right)^{2}+ \\
& 13.8402 \sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+8 \times 0.980198^{k}\right)}{k}+ \\
& \left.\left.\left(\sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+8 \times 0.980198^{k}\right)}{k}\right)^{2}\right)\right) / \\
& \left(6.9201+\sum_{k=1}^{\infty} \frac{2(-1)^{k}\left((-0.99)^{k}+8 \times 0.980198^{k}\right)}{k}\right)^{2}
\end{aligned}
$$

$$
6\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)-34-2-\frac{1}{2}=
$$

$$
89.5\left(21.3705-6.9201 \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}+\right.
$$

$$
\left(\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}-
$$

$$
12.7003 \sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-4(-0.980198)^{k}}{k}+
$$

$$
\left.\left.4.2905\left(\sum_{k=1}^{\infty=1} \frac{-(-1)^{k}(-0.99)^{k}-4(-0.980198)^{k}}{k}\right)^{2}\right)\right) /
$$

$$
\left(-3.46005+\sum_{k=1}^{\infty} \frac{-(-1)^{k}(-0.99)^{k}-8(-0.980198)^{k}}{k}\right)^{2}
$$

$$
\begin{gathered}
6\left(\left(\frac{8\left(0.01^{2}-4 \times 0.01+3-2 \log (0.01)-8 \log \left(\frac{2}{1.01}\right)\right)}{0.01^{2}-8 \times 0.01+7-2 \log (0.01)-16 \log \left(\frac{2}{1.01}\right)}\right)^{2}+21\right)-34-2-\frac{1}{2}=-\frac{73}{2}+ \\
6\left(21+\left(6 4 \left(2.9601-2\left(2 i \pi\left[\frac{\arg (0.01-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.01-x)^{k} x^{-k}}{k}\right)-\right.\right.\right. \\
8\left(2 i \pi\left\lfloor\frac{\arg (1.9802-x)}{2 \pi}\right]+\log (x)-\right. \\
\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(1.9802-x)^{k} x^{-k}}{k}\right)\right)^{2}\right) / \\
\left(6.9201-2\left(2 i \pi\left\lfloor\frac{\arg (0.01-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.01-x)^{k} x^{-k}}{k}\right)-\right. \\
16\left(2 i \pi\left\lfloor\frac{\arg (1.9802-x)}{2 \pi}\right\rfloor+\log (x)-\right. \\
\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(1.9802-x)^{k} x^{-k}}{k}\right)\right)^{2}\right) \text { for } x<0
\end{gathered}
$$

Appendix

From:
Three-dimensional AdS gravity and extremal CFTs at $\mathbf{c}=\mathbf{8 m}$
Spyros D. Avramis, Alex Kehagiasb and Constantina Mattheopoulou
Received: September 7, 2007 -Accepted: October 28, 2007 - Published: November 9, 2007

m	L_{0}	d	S	$S_{B H}$	m	L_{0}	d	S	$S_{B H}$
3	1	196883	12.1904	12.5664	6	1	42987519	17.5764	17.7715
	2	21296876	16.8741	17.7715		2	40448921875	24.4233	25.1327
	3	812600326	20.5520	21.7656		3	8163511703277	29.7668	30.7812
4	2/3	139503	11.8458	11.8477	7	2/3	7402775	15.8174	15.6730
	5/3	69193488	18.0524	18.7328		5/3	33934039437	24.2477	24.7812
	8/3	6928824200	22.6589	23.6954		8/3	16953652012291	30.4615	31.3460
5	1/3	20619	9.9340	9.3664	8	1/3	278511	12.5372	11.8477
	4/3	86645620	18.2773	18.7328		4/3	13996384631	23.3621	23.6954
	7/3	24157197490	23.9078	24.7812		7/3	19400406113385	30.5963	31.3460

Table 1: Degeneracies, microscopic entropies and semiclassical entropies for the first few values of m and L_{0}.

Conclusion

Modular equations and approximations to π

S. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372

Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})} .
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}=\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with $64,128,256,512,1024$ and $4096=64^{2}$

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

References

Stability of the graviton Bose-Einstein condensate in the brane-world
R. Casadio - Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy - INFN, Sezione di Bologna, viale B. Pichat 6, 40127 Bologna, Italy
Roldao da Rocha - CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil - arXiv: 1610.01572v1 [hep-th] 5 Oct 2016

Holographic entanglement entropy under the minimal geometric deformation and extensions
R. da Rocha, A. A. Tomaz - arXiv:1905.01548v2 [hep-th] 29 Dec 2019

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

