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ABSTRACT. In this paper we introduce the concepts of neutro-
sophic upper and neutrosophic lower semi-continuous multifunc-
tions and study some of their basic properties.

1. INTRODUCTION

There is no doubt that the theory of multifunctions plays an impor-
tant role in functional analysis and fixed point theory. It also has
a wide range of applications in economic theory, decision theory, non-
cooperative games, artificial intelligence, medicine and information sci-
ences. Inspired by the research works of F. Smarandache [[1],[2]], we
introduce and study the notions of neutrosophic upper and neutro-
sophic lower semi-continuous multifunctions in this paper. Further, we
present some characterizations and properties of such notions.

2. PRELIMINARIES

Throughout this paper, by (X, 7) or simply by X we will mean a topo-
logical space in the classical sense, and (Y, 7;) or simply Y will stand
for a neutrosophic topological space as defined by Salama [?].

Definition 2.1. [1] Let X be a non-empty fized set. A neutrosophic
set A is an object having the form A =< z,pua(z),04(x),va(x) >,
where pa(x), oa(x) and ya(z) which represent the degree of mem-
ber ship function, the degree of indeterminacy, and the degree of non-
membership, respectively of each element x € X to the set A.

Definition 2.2. [3] A neutrosophic topology on a nonempty set X is
a family T of neutrosophic subsets of X which satisfies the following
three conditions:

(1) 0,1 e,

(2) If g,h €T, theirg Nh € T,

(3) If fi € T for each i € I, then Ve f; € T.

The pair (X, 7) is called a neutrosophic topological space.
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Definition 2.3. Members of T are called neutrosophic open sets, de-
noted by NO(X), and complement of neutrosophic open sets are called
neutrosophic closed sets, where the complement of a neutrosophic set

A, denoted by A, is 1 — A.

Neutrosophic sets in Y will be denoted by A, 7, d, p, etc., and although
subsets fo X will be denoted by A, B,U,V, etc. A neutrosophic point
in Y with support y € Y and value (0 < a < 1) is denoted by y,.
A neutrosophic set A in Y is said to be quasi-coincident (q-coincident)
with a neutrosophic set u, denoted by Aqu, if and only if there exists
y € Y such that A(y) + u(y) > 1. A neutrosophic set A of Y is
called a neutrosophic neighbourhood of a fuzy point y, in Y if there
exists a neutrosophic open set p in Y such that y, € p < A. The
intersection of all neutrosophic closed sets of Y containing A is called
the neutrosophic closure of A and is denoted by CI(\). The union of
all neutrosophic open sets contained in A is called the neutrosophic
interior of A and is denoted by Int(A). The family of all open sets of
a topological space X is denoted by O(X) and O(X,z) denoted the
family {A € O(X)|x € A}, where z is a point of X.

Definition 2.4. Let (X, ) be a topological space in the classical sense
and (Y, 11) be an neutrosophic topological space. F : (X, 1) — (Y, 1) is
called a neutrosophic multifunction if and only if for each x € X, F(x)
18 a neutrosophic set in'Y .

Definition 2.5. For a neutrosophic multifunction F : (X, 1) — (Y, 1),
the upper inverse F*(\) and lower inverse F'~(\) of a neutrosophic set
Ain'Y are defined as follows:

Ft(\) ={z € X|F(x) < A} and F~(\) = {z € X|F(x)g\}.

Lemma 2.6. For a neutrosophic multifunction F : (X, 1) — (Y, 1),
we have F~(1 — X\) = X — FT()), for any neutrosophic set \ in'Y.

3. NEUTROSOPHIC SEMICONTINUOUS MULTIFUNCTIONS

Definition 3.1. A neutrosophic multifunction F : (X,7) — (Y, 1) is
said to be

(1) neutrosophic upper semicontinuous at a point x € X if for each
A € NO(Y') containing F(x) (therefore, F(x) < X), there exists
U € O(X,z) such that F(U) < X\ (therefore U C Ft(\)).

(2) neutrosophic lower semicontinuous at a point x € X if for each
A € NO(Y) with F(x)g\, there exists U € O(X,x) such that
UCF(\).

(3) neutrosophic upper semicontinuous (neutrosophic lower semi-
continuous) if it is neutrosophic upper semicontinuous (neutro-
sophic lower semicontinuous) at each point z € X.

Theorem 3.2. The following assertions are equivalent for a neutro-
sophic multifunction F : (X, 1) — (Y, 7):
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(1) F is neutrosophic upper semicontinuous;

(2) For each point x of X and each neutrosophic neighbourhood A
of F(x), FT()\) is a neighbourhood of x;

(3) For each point x of X and each neutrosophic neighbourhood A of
F(z), there ezists a neighbourhood U of x such that F(U) < A;

(4) Ft(X\) € O(X) for oeach A € NO(Y');

(5) F~(0) is a closed set in X for each neutrosophic closed set § of
Y

(6) CI(F~ (1)) € F~(Cl(p)) for each neutrosophic set p of Y.

Proof. (1)=(2) Let x € X and g be a neutrosophic neighbourhood
of F(x). Then there exists A € NO(Y) such that F(z) < A < pu,
By (1), there exists U € O(X,z) such that F(U) < A. Therefore
x €U C F*(u) and hence F'*(u) is a neighbourhood of x.

(2)=(3) Let z € X and X be a neutrosophic neighbourhood of F(x).
Put U = F*()X). Then by (2), U is neighbourhood of x and F(U) =
V F(z) <A\

zelU

(3)=(4) Let A € NO(Y), we want to show that F'*(\) € O(X). So
let © € F*(X\). Then there exists a neighbourhood G of = such that
F(G) < A. Therefore for some U € O(X,z),U C G and F(U) < A\
Therefore we get © € U C F'*(\) and hence FT(\) € O(X).

(4)=-(5) Let § be a neutrosophic closed set in Y. So, we have X\ F'~(9) =
Ft(1—-9) € O(X) and hence F~(0) is closed set in X.

(5)=(6) Let u be any neutrosophic set in Y. Since Cl(u) is neutro-
sophic closed set in Y, F~(Cl(p)) is closed set in X and F~(u) C
F~(Cl(n)). Therefore, we obtain C1(F~(u)) C F~(Cl(u)).

(6)=(1) Let x € X and A € NO(Y) with F'(z) < A. Now F~(1—-)) =
{z € X|F(x)q(1 —\)}. So, for z not belongs to F~(1 — \). Then, we
must have F(z)h(1 — A) and this is implies F(z) < 1—(1 —X) = A
which is true. Therefore z ¢ F~(1 — X) by (6), ¢ CI(F~(1— \)) and
there exists U € O(X,z) such that U N F~(1 — \) = (. Therefore,

we obtain F(U) = \/ F(xz) < A. This proves F is neutrosophic upper
zcU
semicontinuous. U

Theorem 3.3. The following statements are equivalent for a neutro-
sophic multifunction F : (X, 1) — (Y, 7):

(1) F is neutrosophic lower semicontinuous;

(2) For each A € NO(Y) and each x € F~()), there exists U €
O(X,x) such that U C F~()\);

(3) F=(\) € O(X) for every A € NO(Y).

(4) F*(9) is a closed set in X for every neutrosophic closed set ¢
of Y;

(5) CI(F* () € F(Cl(u)) for every neutrosophic set p of Y';

(6) F(CI(A)) < CUF(A)) for every subset A of X ;
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Proof. (1)=(2) Let A € NO(Y) and x € F~(\) with F(z)gA. Then by
(1), there exists U € O(X, z) such that U C F~(A).

(2)=(3) Let A € NO(Y) adn z € F~()A). Then by (2), there exists
U € O(X,z) such that U C F~(\). Therefore, we have z € U C
ClInt(U) C ClInt(F~(\)) and hence F~(\) € O(X).

(3)=(4) Let § be a neutrosophic closed in Y. So we have X\F*(J) =
F~(1—-9) € O(X) and hence F(0) is closed set in X.

(4)=(5) Let p be any neutrosophic set in Y. Since Cl(u) is neutro-
sophic closed set in Y, then by (4), we have F™(Cl(u)) is closed set
in X and F*(u) € FT(Cl(n)). Therefore, we obtain CI(F*(u)) C
FH(Cl(p)).

(5)=(6) Let A be any subset of X. By (5), Cl(A) C C1F*(F(A)) C
FH(CI(F(A))). Therefore we obtain Cl(A) C F+(Cl1F(A)). This im-
plies that F'(Cl(A)) < C1F(A).

(6)=(5) Let px be any neutrosophic set in Y. By (6), F(ClFT(u)) <
CI(F(F* (1)) and hence CI(F* (1)) € F*(CI(F(F* (1)) € F*(Cl(u).
Therefore CI(F (1)) C F(Cl(p)).

(5)=(1) Let x € X and A € NO(Y') with F(z)g\. Now, F*(1 —\) =
{z € X|F(x) <1-=M\}. So, for z not belongs to F*(1—\), then we have
F(z) ¢ 1— X and this implies that F(z)gA. Therefore, z ¢ F*(1—\).
Since 1— A is neutrosophic closed set in Y, by (5), x ¢ CI(F*(1—\)) and
there exists U € O(X, x) such that ) = UNFT(1-\) = UN(X\F~(N)).
Therefore, we obtain U C F'~ (). This proves F is neutrosophic lower
semicontinuous. U

Definition 3.4. For a given neutrosophic multifunction F : (X, 1) —
(Y, 1), a neutrosophic multifunction C1(F') : (X, 1) — (Y, 1) is defined
as (C1F)(z) = C1F(x) for each x € X.

We use Cl F' and the following Lemma to obtain a characterization of
lower neutrosophic semicontinuous multifunction.

Lemma 3.5. If F': (X,7) — (Y, 71) is a neutrosophic multifunction,
then (C1F)~(\) = F~(A) for each A € NO(Y').

Proof. Let A € NO(Y) and x € (C1 F')~(A). This means that (Cl F')(x)gA.
Since A € NO(Y), we have F(z)g\ and hence x € F~(\). There-
fore (C1F)~(A\) € F~(A) — — — (x). Conversely, let x € F~(\) since
A € NO(Y) then F(x)gh C (Cl1F)(x)gA and hence x € (C1F)~(\).
Therefore F~(A) C (C1F)~(A\) — — — —(**). From (%) and (%), we
get (C1LF)=(\) = F~(A). O

Theorem 3.6. A neutrosophic multifunction F : (X, 1) — (Y, 71) is
neutrosophic lower semicontinuous if and only if C1F : (X, 7) — (Y, 1)
s neutrosophic lower semicontinuous.

Proof. Suppose F'is neutrosophic lower semicontinuous. Let A € NO(Y)
and F(x)g\. This means that x € F~(\). Then there exists U €
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O(X, x) such that U C F~()\). Therefore, we have x € U C Int(U) C
Int £~ (A) and hence F~(\) € O(X). Then by Lemma 3.5, we have U C
F~(A\) = (CIF)~(\) and (CL1F)~(\) € O(X), and hence (Cl1F)(x)gA.
Therefore Cl F' is fuzy lower semicontinuous. Conversely, suppose Cl F’
is neutrosophic lower semicontinuous. If for each A € NO(Y) with
(CLF)(z)g\ and = € (C1F)~(\) then there exists U € O(X,z) such
that U C (C1F)~(A). By Lemma 3.5 and Theorem 3.3 (3), we have
UC(ClLF~(\) = F~(\) and FF~(\) € O(X). Therefore F' is neutro-

sophic lower semicontinuous. U
Definition 3.7. Given a family {F; : (X,7) — (Y,0) : i € I} of
neutrosophic multifunctions, we define the union '\/[Fi and the inter-
(S
section A Fj as follows: VvV F;: (X, 1) — (Y,0), (V Fi)(z) = V Fi(x)
iel iel iel iel
and N F; - (X,7) = (Y,0), (A F)(x) = A Fi(z).
iel iel iel

Theorem 3.8. If F; : X — Y are neutrosophic upper semi-continuous

multifunctions for i = 1,2,....n, then C/IFi 1S a neutrosophic upper
i€

semi-continuous multifunction.

Proof. Let A be a neutrosophic open set of Y. We will show that

(A\T}IFi)JF(A) ={r € X : \7}IFZ(x) C A} is open in X. Let z €
1€ 1S

(z‘\szi)Jr(A)' Then Fi(z) C A fori = 1,2,...,n. Since F; : X — Y
is neutrosophic upper semi-continuous multifunction for i = 1,2, ...,n,
then there exists an open set U, containing x such that for all z € U,,
Fy(z) CA. Let U = ig U,. Then U C (ijﬂ)*(A). Thus, (i\ZE)*(A)
is open and hence i\ZFZ- is a neutrosophic upper semi-continuous mul-
tifunction. O

Lemma 3.9. Let {A;}ic; be a family of neutrosophic sets in a neu-
trosophic topological space X. Then a neutrosophic point x is quasi-
coincident with VA; if and only if there exists an i € I such that
rqA;, -

Theorem 3.10. If F; : X — Y are neutrosophic lower semi-continuous
multifunctions for i = 1,2,...,n, then .\7}1 F; is a neutrosophic lower

1€
semi-continuous multifunction.
Proof. Let A be a neutrosophic open set of Y. We will show that

(A\T}IFi)*(A) ={r € X : (\n/IF,)(a:)qA} is open in X. Let z €
(S 1€

(A\T}I F;))7(A). Then (A\T;IFZ-)(m)qA and hence Fjy(r)qA for an iy. Since
1€ 1€

F; : X — Y is neutrosophic lower semi-continuous multifunction, there
exists an open set U, containing = such that for all z € U, Fj(z)qA.
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Then (‘\T}IE)(z)qA and hence U C (\7;[ F;)7(A). Thus, (\7}1 F)7(A) is
1€ 1€ S

n . . . . .
open and hence V F; is a neutrosophic lower semi-continuous multi-
iel

function. O

Theorem 3.11. Let F : (X, 7) — (Y,0) be a neutrosophic multifunc-
tion and {U; : i € I} be an open cover for X. Then the following are
equivalent:

(1) F; = Fly, is a neutrosophic lower semi-continuous multifunction
foralliel,
(2) F is neutrosophic lower semi-continuous.

Proof. (1) = (2): Let € X and A be a neutrosophic open set in
Y with 2 € F~(A). Since {U; : ¢ € I} is an open cover for X, then
x € Uy for an iy € I. We have F(z) = Fjp(z) and hence x € Fj;(A).
Since Fjy,o is neutrosophic lower semi-continuous, there exists an open
set B = G' N Uy in Uj such that x € B and F~(A) NU;, = Fiy,(A) D
B = G N Uy, where GG is open in X. We have x € B = GNU;y C
Fp.o(Ad) = F7(A)NUypy C F~(A). Hence, F is neutrosophic lower
semi-continuous.

(2) = (1): Let z € X and = € U;. Let A be a neutrosophic open set in
Y with Fj(x)gA. Since F' is lower semi-continuous and F(z) = Fi(x),
there exists an open set U containing z such that U C F~(A). Take
B =U;NU. Then B is open in U; containing x. We have B C F7i(A).
Thus F; is a neutrosophic lower semi-continuous. O

Theorem 3.12. Let F': (X,7) — (Y,0) be a neutrosophic multifunc-
tion and {U; : i € I} be an open cover for X. Then the following are
equivalent:

(1) F; = Fly, is a neutrosophic upper semi-continuous multifunction
foralliel,
(2) F is neutrosophic upper semi-continuous.

Proof. Tt is similar to that of Theorem 3.11. O

Remark 3.13. A subset A of a topological space (X, T) can be consid-
ered as a neutrosophic set with characteristic function defined by

1 fze A

Alz) = { 0 ifa¢ A
Let (Y, 0) be a neutrosophic topological space. The neutrosophic sets of
the form A x B with A € 7 and B € o form a basis for the product

neutrosophic topology T X o on X XY, where for any (z,y) € X XY,
(A x B)(z,y) = min{A(z), B(y)}.

Definition 3.14. For a neutrosophic multifunction F : (X,7) —
(Y, o), the neutrosophic graph multifunction Gp : X — X xY of
F is defined by Gp(x) = x1 X F(x) for every x € X.
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Theorem 3.15. If the neutrosophic graph multifunction G of a neu-
trosophic multifunction F : (X, 1) — (Y, 0) is neutrosophic lower semi-
continuous, then F is neutrosophic lower semi-continuous.

Proof. Suppose that G is neutrosophic lower semi-continuous and
x € X. Let A be a neutrosophic open set in Y such that F(x)gA.
Then there exists y € Y such that (F(x))(y) + A(y) > 1. Then
(Gr(2)) (@, y) +HX X A)(z,y) = (F())(y)+Aly) > 1. Hence, Gp(z)g(X x
A). Since G is neutrosophic lower semi-continuous, there exists an
open set B in X such that z € B and Gp(b)q(X x A) for all b € B. Let
there exists by € B such that F(by)gA. Then for ally € Y, (F(by))(y)+
A(y) < 1. For any (a,c) € X x Y, we have (Gr(by))(a,c) C (F(by))(c)
and (X x A)(a,c) C A(c). Since for all y € Y, (F(bo))(y) + A(y) < 1,
(Gp(by))(a,c) + (X x A)(a,c) < 1. Thus, Gr(by)g(X x A), where
by € B. This is a contradiction since Gr(b)q(X x A) for all b € B.
Hence, F' is neutrosophic lower semi-continuous. U

Theorem 3.16. If the neutrosophic graph multifunction G of a neu-
trosophic multifunction F : X — Y is neutrosophic upper semi-continuous,
then F' is neutrosophic upper semi-continuous.

Proof. Suppose that G is neutrosophic upper semi-continuous and
let z € X. Let A be neutrosophic open in Y with F(z) C A. Then
Gr(z) C X xA. Since G is neutrosophic upper semi-continuous, there
exists an open set B containing = such that Gp(B) C X x A. For any
be BandyeY, wehave (F(b))(y) = (Gp(b))(b,y) C (X x A)(b,y) =
A(y). Then (F(b))(y) C A(y) for all y € Y. Thus, F(b) C A for any
b € B. Hence, F' is neutrosophic upper semi-continuous. O

Theorem 3.17. Let F : (X,7) — (Y,0) be a neutrosophic multifunc-
tion. Then the following are equivalent:

(1) F is neutrosophic lower semi-continuous,

(2) For any v € X and any net (x;);e; converging to x in X and
each neutrosophic open set B in'Y with x € F~(B), the net
(x;)ier is eventually in F~(B).

Proof. (1) = (2): Let (x;) be a net converging to z in X and B be any
neutrosophic open set in Y with x € F~(B). Since F is neutrosophic
lower semi-continuous, there exists an open set A C X containing x
such that A C F~(B). Since z; — x, there exists an index ig € I such
that x; € A for every i > ig. We have x; € A C F~(B) for all i > 1.
Hence, (z;)ics is eventually in F'~(B).

(2) = (1): Suppose that F is not neutrosophic lower semi-continuous.
There exists a point x and a neutrosophic open set A with =z € F~(A)
such that B ¢ F~(A) for any open set B C X containing x. Let
x; € B and z; ¢ F~(A) for each open set B C X containing x. Then
the neighborhood net (z;) converges to z but (z;);cs is not eventually
in £~ (A). This is a contradiction. O
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Theorem 3.18. Let F': (X,7) — (Y,0) be a neutrosophic multifunc-
tion. Then the following are equivalent:

(1) F is neutrosophic upper semi-continuous,

(2) For any z € X and any net (x;) converging to x in X and any
neutrosophic open set B in'Y with x € F*(B), the net (x;) is
eventually in F*(B).

Proof. The proof is similar to that of Theorem 3.17. U

Theorem 3.19. The set of all points of X at which a neutrosophic
multifunction F . (X,7) — (Y,0) is not neutrosophic upper semi-
continuous s identical with the union of the frontier of the upper in-
verse image of neutrosophic open sets containing F(x).

Proof. Suppose F' is not neutrosophic upper semi-continuous at x € X.
Then there exists a neutrosophic open set A in Y containing F'(x) such
that A N (X\F*(B)) # 0 for every open set A containing z. We
have © € CUX\F*(B)) = X\Int(F*(B)) and = € FT(B). Thus,
x € Fr(Ft(B)). Conversely, let B be a neutrosophic open set in Y’
containing F(x) with € Fr(F*(B)). Suppose that F is neutrosophic
upper semi-continuous at x. There exists an open set A containing x
such that A C F"(B). We have x € Int(F*(B)). This is a contradic-
tion. Thus, F' is not neutrosophic upper semi-continuous at x. U

Theorem 3.20. The set of all points of X at which a neutrosophic
multifunction F : (X,7) — (Y,0) is not neutrosophic lower semi-
continuous 1s identical with the union of the frontier of the lower inverse
image of neutrosophic closed sets which are quasi-coincident with F(z).

Proof. 1t is similar to that of Theorem 3.19. O

Definition 3.21. A neutrosophic set A of a neutrosophic topological
space Y is said to be neutrosophic compact relative to'Y if every cover
{Aa}aca of X by neutrosophic open sets of Y has a finite subcover

{Aitiey of A

Definition 3.22. A neutrosophic set A of a neutrosophic topological
space Y is said to be neutrosophic Lindelof relative to'Y if every cover
{Aataca of X by neutrosophic open sets of Y has a countable subcover

{/\n}nEN Of )‘

Definition 3.23. A neutrosophic topological space Y is said to be neu-
trosophic compact if xy (characteristic function of Y') is neutrosophic
compact relative to 'Y .

Definition 3.24. A neutrosophic topological spaceY 1is said to be neu-
trosophic Lindelof if xy (characteristic function of Y') is neutrosophic
Lindelof relative to Y .
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Definition 3.25. A neutrosophic multifunction F : (X, 7) — (Y, 1) is
said to be punctually neutrosophic compact (resp. punctually neutro-
sophic Lindelof) if for each x € X, F(x) is neutrosophic compact (resp.
neutrosophic Lindelof).

Theorem 3.26. Let the neutrosophic multifunction F : (X, 7) —
(Y, 71) be a neutrosophic upper semicontinuous and F is punctually
neutrosophic compact. If A is compact relative to X, then F(A) is
neutrosophic compact relative to 'Y .

Proof. Let {\,|ac € A} be any cover of F(Z) by neutrosophic copen
sets of Y. We claim that F(A) is neutrosophic compact relative to
Y. For each x € A, there exists a finite subset A(z) of A such that
F(z) < U{Au]a € A(z)}. Put AM(z) = U{A\,]a € A(z)}. Then F(z) <
A(z) € NO(Y) and there exists U(z) € O(X,z) such that F(U(x)) <
A(z). Since {U(x)|z € A} is an open cover of A there exists a finite
number of A, say, x1, s, ..,x, such that A C U{U(x;)|i = 1,2,..,n}.

Therefore we obtain F(A) < F(Q1 Ulz;)) < ,Ql F(U(x)) < ,L_’Dlx(m <

61( U As). This shows that F'(A) is neutrosophic compact relative
=1 a€A(z;)

toY. O

Theorem 3.27. Let the neutrosophic multifunction F : (X,7) —
(Y, 71) be a neutrosophic upper semicontinuous and F is punctually
neutrosophic Lindelof. If A is Lindelof relative to X, then F(A) is
neutrosophic Lindelof relative to Y .

Proof. The proof is similar to that of Theorem 3.26 U
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