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Abstract. In this paper we introduce the concepts of neutro-
sophic upper and neutrosophic lower semi-continuous multifunc-
tions and study some of their basic properties.

1. introduction

There is no doubt that the theory of multifunctions plays an impor-
tant role in functional analysis and fixed point theory. It also has
a wide range of applications in economic theory, decision theory, non-
cooperative games, artificial intelligence, medicine and information sci-
ences. Inspired by the research works of F. Smarandache [[1],[2]], we
introduce and study the notions of neutrosophic upper and neutro-
sophic lower semi-continuous multifunctions in this paper. Further, we
present some characterizations and properties of such notions.

2. preliminaries

Throughout this paper, by (X, τ) or simply by X we will mean a topo-
logical space in the classical sense, and (Y, τ1) or simply Y will stand
for a neutrosophic topological space as defined by Salama [?].

Definition 2.1. [1] Let X be a non-empty fixed set. A neutrosophic
set A is an object having the form A =< x, µA(x), σA(x), γA(x) >,
where µA(x), σA(x) and γA(x) which represent the degree of mem-
ber ship function, the degree of indeterminacy, and the degree of non-
membership, respectively of each element x ∈ X to the set A.

Definition 2.2. [3] A neutrosophic topology on a nonempty set X is
a family τ of neutrosophic subsets of X which satisfies the following
three conditions:

(1) 0, 1 ∈ τ ,
(2) If g, h ∈ τ , their g ∧ h ∈ τ ,
(3) If fi ∈ τ for each i ∈ I, then ∨i∈Ifi ∈ τ .

The pair (X, τ) is called a neutrosophic topological space.

2000 Mathematics Subject Classification. 54C10, 54C35, 54D65, 54E18, 54E35.
Key words and phrases. Neutrosophic topological space, semi-continuous

multifunctions.
1



2 R. DHAVASEELAN, S. JAFARI, N. RAJESH AND F. SMARANDACHE

Definition 2.3. Members of τ are called neutrosophic open sets, de-
noted by NO(X), and complement of neutrosophic open sets are called
neutrosophic closed sets, where the complement of a neutrosophic set
A, denoted by Ac, is 1− A.

Neutrosophic sets in Y will be denoted by λ, γ, δ, ρ, etc., and although
subsets fo X will be denoted by A,B, U, V , etc. A neutrosophic point
in Y with support y ∈ Y and value α(0 < α ≤ 1) is denoted by yα.
A neutrosophic set λ in Y is said to be quasi-coincident (q-coincident)
with a neutrosophic set µ, denoted by λqµ, if and only if there exists
y ∈ Y such that λ(y) + µ(y) > 1. A neutrosophic set λ of Y is
called a neutrosophic neighbourhood of a fuzy point yα in Y if there
exists a neutrosophic open set µ in Y such that yα ∈ µ ≤ λ. The
intersection of all neutrosophic closed sets of Y containing λ is called
the neutrosophic closure of λ and is denoted by Cl(λ). The union of
all neutrosophic open sets contained in λ is called the neutrosophic
interior of λ and is denoted by Int(λ). The family of all open sets of
a topological space X is denoted by O(X) and O(X, x) denoted the
family {A ∈ O(X)|x ∈ A}, where x is a point of X.

Definition 2.4. Let (X, τ) be a topological space in the classical sense
and (Y, τ1) be an neutrosophic topological space. F : (X, τ)→ (Y, τ1) is
called a neutrosophic multifunction if and only if for each x ∈ X,F (x)
is a neutrosophic set in Y .

Definition 2.5. For a neutrosophic multifunction F : (X, τ)→ (Y, τ1),
the upper inverse F+(λ) and lower inverse F−(λ) of a neutrosophic set
λ in Y are defined as follows:
F+(λ) = {x ∈ X|F (x) ≤ λ} and F−(λ) = {x ∈ X|F (x)qλ}.
Lemma 2.6. For a neutrosophic multifunction F : (X, τ) → (Y, τ1),
we have F−(1− λ) = X − F+(λ), for any neutrosophic set λ in Y .

3. Neutrosophic semicontinuous multifunctions

Definition 3.1. A neutrosophic multifunction F : (X, τ) → (Y, τ1) is
said to be

(1) neutrosophic upper semicontinuous at a point x ∈ X if for each
λ ∈ NO(Y ) containing F (x) (therefore, F (x) ≤ λ), there exists
U ∈ O(X, x) such that F (U) ≤ λ (therefore U ⊂ F+(λ)).

(2) neutrosophic lower semicontinuous at a point x ∈ X if for each
λ ∈ NO(Y ) with F (x)qλ, there exists U ∈ O(X, x) such that
U ⊆ F−(λ).

(3) neutrosophic upper semicontinuous (neutrosophic lower semi-
continuous) if it is neutrosophic upper semicontinuous (neutro-
sophic lower semicontinuous) at each point x ∈ X.

Theorem 3.2. The following assertions are equivalent for a neutro-
sophic multifunction F : (X, τ)→ (Y, τ1):
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(1) F is neutrosophic upper semicontinuous;
(2) For each point x of X and each neutrosophic neighbourhood λ

of F (x), F+(λ) is a neighbourhood of x;
(3) For each point x of X and each neutrosophic neighbourhood λ of

F (x), there exists a neighbourhood U of x such that F (U) ≤ λ;
(4) F+(λ) ∈ O(X) for oeach λ ∈ NO(Y );
(5) F−(δ) is a closed set in X for each neutrosophic closed set δ of

Y ;
(6) Cl(F−(µ)) ⊆ F−(Cl(µ)) for each neutrosophic set µ of Y .

Proof. (1)⇒(2) Let x ∈ X and µ be a neutrosophic neighbourhood
of F (x). Then there exists λ ∈ NO(Y ) such that F (x) ≤ λ ≤ µ,
By (1), there exists U ∈ O(X, x) such that F (U) ≤ λ. Therefore
x ∈ U ⊆ F+(µ) and hence F+(µ) is a neighbourhood of x.
(2)⇒(3) Let x ∈ X and λ be a neutrosophic neighbourhood of F (x).
Put U = F+(λ). Then by (2), U is neighbourhood of x and F (U) =∨
x∈U

F (x) ≤ λ.

(3)⇒(4) Let λ ∈ NO(Y ), we want to show that F+(λ) ∈ O(X). So
let x ∈ F+(λ). Then there exists a neighbourhood G of x such that
F (G) ≤ λ. Therefore for some U ∈ O(X, x), U ⊆ G and F (U) ≤ λ.
Therefore we get x ∈ U ⊆ F+(λ) and hence F+(λ) ∈ O(X).
(4)⇒(5) Let δ be a neutrosophic closed set in Y . So, we haveX\F−(δ) =
F+(1− δ) ∈ O(X) and hence F−(δ) is closed set in X.
(5)⇒(6) Let µ be any neutrosophic set in Y . Since Cl(µ) is neutro-
sophic closed set in Y , F−(Cl(µ)) is closed set in X and F−(µ) ⊆
F−(Cl(µ)). Therefore, we obtain Cl(F−(µ)) ⊆ F−(Cl(µ)).
(6)⇒(1) Let x ∈ X and λ ∈ NO(Y ) with F (x) ≤ λ. Now F−(1−λ) =
{x ∈ X|F (x)q(1− λ)}. So, for x not belongs to F−(1− λ). Then, we
must have F (x)~(1 − λ) and this is implies F (x) ≤ 1 − (1 − λ) = λ
which is true. Therefore x /∈ F−(1− λ) by (6), x /∈ Cl(F−(1− λ)) and
there exists U ∈ O(X, x) such that U ∩ F−(1 − λ) = ∅. Therefore,
we obtain F (U) =

∨
x∈U

F (x) ≤ λ. This proves F is neutrosophic upper

semicontinuous. �

Theorem 3.3. The following statements are equivalent for a neutro-
sophic multifunction F : (X, τ)→ (Y, τ1):

(1) F is neutrosophic lower semicontinuous;
(2) For each λ ∈ NO(Y ) and each x ∈ F−(λ), there exists U ∈

O(X, x) such that U ⊆ F−(λ);
(3) F−(λ) ∈ O(X) for every λ ∈ NO(Y ).
(4) F+(δ) is a closed set in X for every neutrosophic closed set δ

of Y ;
(5) Cl(F+(µ)) ⊆ F+(Cl(µ)) for every neutrosophic set µ of Y ;
(6) F (Cl(A)) ≤ Cl(F (A)) for every subset A of X;
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Proof. (1)⇒(2) Let λ ∈ NO(Y ) and x ∈ F−(λ) with F (x)qλ. Then by
(1), there exists U ∈ O(X, x) such that U ⊆ F−(λ).
(2)⇒(3) Let λ ∈ NO(Y ) adn x ∈ F−(λ). Then by (2), there exists
U ∈ O(X, x) such that U ⊆ F−(λ). Therefore, we have x ∈ U ⊆
Cl Int(U) ⊆ Cl Int(F−(λ)) and hence F−(λ) ∈ O(X).
(3)⇒(4) Let δ be a neutrosophic closed in Y . So we have X\F+(δ) =
F−(1− δ) ∈ O(X) and hence F+(δ) is closed set in X.
(4)⇒(5) Let µ be any neutrosophic set in Y . Since Cl(µ) is neutro-
sophic closed set in Y , then by (4), we have F+(Cl(µ)) is closed set
in X and F+(µ) ⊆ F+(Cl(µ)). Therefore, we obtain Cl(F+(µ)) ⊆
F+(Cl(µ)).
(5)⇒(6) Let A be any subset of X. By (5), Cl(A) ⊆ ClF+(F (A)) ⊆
F+(Cl(F (A))). Therefore we obtain Cl(A) ⊆ F+(ClF (A)). This im-
plies that F (Cl(A)) ≤ ClF (A).
(6)⇒(5) Let µ be any neutrosophic set in Y . By (6), F (ClF+(µ)) ≤
Cl(F (F+(µ))) and hence Cl(F+(µ)) ⊆ F+(Cl(F (F+(µ)))) ⊆ F+(Cl(µ)).
Therefore Cl(F+(µ)) ⊆ F+(Cl(µ)).
(5)⇒(1) Let x ∈ X and λ ∈ NO(Y ) with F (x)qλ. Now, F+(1− λ) =
{x ∈ X|F (x) ≤ 1−λ}. So, for x not belongs to F+(1−λ), then we have
F (x) � 1− λ and this implies that F (x)qλ. Therefore, x /∈ F+(1− λ).
Since 1−λ is neutrosophic closed set in Y , by (5), x /∈ Cl(F+(1−λ)) and
there exists U ∈ O(X, x) such that ∅ = U∩F+(1−λ) = U∩(X\F−(λ)).
Therefore, we obtain U ⊆ F−(λ). This proves F is neutrosophic lower
semicontinuous. �

Definition 3.4. For a given neutrosophic multifunction F : (X, τ)→
(Y, τ1), a neutrosophic multifunction Cl(F ) : (X, τ)→ (Y, τ1) is defined
as (ClF )(x) = ClF (x) for each x ∈ X.

We use ClF and the following Lemma to obtain a characterization of
lower neutrosophic semicontinuous multifunction.

Lemma 3.5. If F : (X, τ) → (Y, τ1) is a neutrosophic multifunction,
then (ClF )−(λ) = F−(λ) for each λ ∈ NO(Y ).

Proof. Let λ ∈ NO(Y ) and x ∈ (ClF )−(λ). This means that (ClF )(x)qλ.
Since λ ∈ NO(Y ), we have F (x)qλ and hence x ∈ F−(λ). There-
fore (ClF )−(λ) ⊆ F−(λ) − − − (∗). Conversely, let x ∈ F−(λ) since
λ ∈ NO(Y ) then F (x)qλ ⊆ (ClF )(x)qλ and hence x ∈ (ClF )−(λ).
Therefore F−(λ) ⊆ (ClF )−(λ) − − − −(∗∗). From (∗) and (∗∗), we
get (ClF )−(λ) = F−(λ). �

Theorem 3.6. A neutrosophic multifunction F : (X, τ) → (Y, τ1) is
neutrosophic lower semicontinuous if and only if ClF : (X, τ)→ (Y, τ1)
is neutrosophic lower semicontinuous.

Proof. Suppose F is neutrosophic lower semicontinuous. Let λ ∈ NO(Y )
and F (x)qλ. This means that x ∈ F−(λ). Then there exists U ∈
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O(X, x) such that U ⊆ F−(λ). Therefore, we have x ∈ U ⊆ Int(U) ⊆
IntF−(λ) and hence F−(λ) ∈ O(X). Then by Lemma 3.5, we have U ⊆
F−(λ) = (ClF )−(λ) and (ClF )−(λ) ∈ O(X), and hence (ClF )(x)qλ.
Therefore ClF is fuzy lower semicontinuous. Conversely, suppose ClF
is neutrosophic lower semicontinuous. If for each λ ∈ NO(Y ) with
(ClF )(x)qλ and x ∈ (ClF )−(λ) then there exists U ∈ O(X, x) such
that U ⊆ (ClF )−(λ). By Lemma 3.5 and Theorem 3.3 (3), we have
U ⊆ (ClF−(λ)) = F−(λ) and F−(λ) ∈ O(X). Therefore F is neutro-
sophic lower semicontinuous. �

Definition 3.7. Given a family {Fi : (X, τ) → (Y, σ) : i ∈ I} of
neutrosophic multifunctions, we define the union ∨

i∈I
Fi and the inter-

section ∧
i∈I
Fi as follows: ∨

i∈I
Fi : (X, τ)→ (Y, σ), ( ∨

i∈I
Fi)(x) = ∨

i∈I
Fi(x)

and ∧
i∈I
Fi : (X, τ)→ (Y, σ), ( ∧

i∈I
Fi)(x) = ∧

i∈I
Fi(x).

Theorem 3.8. If Fi : X → Y are neutrosophic upper semi-continuous

multifunctions for i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic upper

semi-continuous multifunction.

Proof. Let A be a neutrosophic open set of Y . We will show that

(
n
∨
i∈I
Fi)

+(A) = {x ∈ X :
n
∨
i∈I
Fi(x) ⊂ A} is open in X. Let x ∈

(
n
∨
i∈I
Fi)

+(A). Then Fi(x) ⊂ A for i = 1, 2, ..., n. Since Fi : X → Y

is neutrosophic upper semi-continuous multifunction for i = 1, 2, ..., n,
then there exists an open set Ux containing x such that for all z ∈ Ux,
Fi(z) ⊂ A. Let U =

n
∪
i∈I
Ux. Then U ⊂ (

n
∨
i∈I
Fi)

+(A). Thus, (
n
∨
i∈I
Fi)

+(A)

is open and hence
n
∨
i∈I
Fi is a neutrosophic upper semi-continuous mul-

tifunction. �

Lemma 3.9. Let {Ai}i∈I be a family of neutrosophic sets in a neu-
trosophic topological space X. Then a neutrosophic point x is quasi-
coincident with ∨Ai if and only if there exists an i0 ∈ I such that
xqAi0.

Theorem 3.10. If Fi : X → Y are neutrosophic lower semi-continuous

multifunctions for i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic lower

semi-continuous multifunction.

Proof. Let A be a neutrosophic open set of Y . We will show that

(
n
∨
i∈I
Fi)
−(A) = {x ∈ X : (

n
∨
i∈I
Fi)(x)qA} is open in X. Let x ∈

(
n
∨
i∈I
Fi)
−(A). Then (

n
∨
i∈I
Fi)(x)qA and hence Fi0(x)qA for an i0. Since

Fi : X → Y is neutrosophic lower semi-continuous multifunction, there
exists an open set Ux containing x such that for all z ∈ U , Fi0(z)qA.
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Then (
n
∨
i∈I
Fi)(z)qA and hence U ⊂ (

n
∨
i∈I
Fi)
−(A). Thus, (

n
∨
i∈I
Fi)
−(A) is

open and hence
n
∨
i∈I
Fi is a neutrosophic lower semi-continuous multi-

function. �

Theorem 3.11. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunc-
tion and {Ui : i ∈ I} be an open cover for X. Then the following are
equivalent:

(1) Fi = F|Ui
is a neutrosophic lower semi-continuous multifunction

for all i ∈ I,
(2) F is neutrosophic lower semi-continuous.

Proof. (1) ⇒ (2): Let x ∈ X and A be a neutrosophic open set in
Y with x ∈ F−(A). Since {Ui : i ∈ I} is an open cover for X, then
x ∈ Ui0 for an i0 ∈ I. We have F (x) = Fi0(x) and hence x ∈ F−i0 (A).
Since F|Ui0 is neutrosophic lower semi-continuous, there exists an open
set B = G ∩ Ui0 in Ui0 such that x ∈ B and F−(A) ∩ Ui0 = F|Ui

(A) ⊃
B = G ∩ Ui0, where G is open in X. We have x ∈ B = G ∩ Ui0 ⊂
F−|Ui0

(A) = F−(A) ∩ Ui0 ⊂ F−(A). Hence, F is neutrosophic lower
semi-continuous.
(2)⇒ (1): Let x ∈ X and x ∈ Ui. Let A be a neutrosophic open set in
Y with Fi(x)qA. Since F is lower semi-continuous and F (x) = Fi(x),
there exists an open set U containing x such that U ⊂ F−(A). Take
B = Ui∩U . Then B is open in Ui containing x. We have B ⊂ F−i(A).
Thus Fi is a neutrosophic lower semi-continuous. �

Theorem 3.12. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunc-
tion and {Ui : i ∈ I} be an open cover for X. Then the following are
equivalent:

(1) Fi = F|Ui
is a neutrosophic upper semi-continuous multifunction

for all i ∈ I,
(2) F is neutrosophic upper semi-continuous.

Proof. It is similar to that of Theorem 3.11. �

Remark 3.13. A subset A of a topological space (X, τ) can be consid-
ered as a neutrosophic set with characteristic function defined by

A(x) =

{
1 if x ∈ A
0 if x /∈ A.

Let (Y, σ) be a neutrosophic topological space. The neutrosophic sets of
the form A × B with A ∈ τ and B ∈ σ form a basis for the product
neutrosophic topology τ × σ on X × Y , where for any (x, y) ∈ X × Y ,
(A×B)(x, y) = min{A(x), B(y)}.
Definition 3.14. For a neutrosophic multifunction F : (X, τ) →
(Y, σ), the neutrosophic graph multifunction GF : X → X × Y of
F is defined by GF (x) = x1 × F (x) for every x ∈ X.
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Theorem 3.15. If the neutrosophic graph multifunction GF of a neu-
trosophic multifunction F : (X, τ)→ (Y, σ) is neutrosophic lower semi-
continuous, then F is neutrosophic lower semi-continuous.

Proof. Suppose that GF is neutrosophic lower semi-continuous and
x ∈ X. Let A be a neutrosophic open set in Y such that F (x)qA.
Then there exists y ∈ Y such that (F (x))(y) + A(y) > 1. Then
(GF (x))(x, y)+(X×A)(x, y) = (F (x))(y)+A(y) > 1. Hence, GF (x)q(X×
A). Since GF is neutrosophic lower semi-continuous, there exists an
open set B in X such that x ∈ B and GF (b)q(X×A) for all b ∈ B. Let
there exists b0 ∈ B such that F (b0)qA. Then for all y ∈ Y , (F (b0))(y)+
A(y) < 1. For any (a, c) ∈ X × Y , we have (GF (b0))(a, c) ⊂ (F (b0))(c)
and (X × A)(a, c) ⊂ A(c). Since for all y ∈ Y , (F (b0))(y) + A(y) < 1,
(GF (b0))(a, c) + (X × A)(a, c) < 1. Thus, GF (b0)q(X × A), where
b0 ∈ B. This is a contradiction since GF (b)q(X × A) for all b ∈ B.
Hence, F is neutrosophic lower semi-continuous. �

Theorem 3.16. If the neutrosophic graph multifunction GF of a neu-
trosophic multifunction F : X → Y is neutrosophic upper semi-continuous,
then F is neutrosophic upper semi-continuous.

Proof. Suppose that GF is neutrosophic upper semi-continuous and
let x ∈ X. Let A be neutrosophic open in Y with F (x) ⊂ A. Then
GF (x) ⊂ X×A. Since GF is neutrosophic upper semi-continuous, there
exists an open set B containing x such that GF (B) ⊂ X ×A. For any
b ∈ B and y ∈ Y , we have (F (b))(y) = (GF (b))(b, y) ⊂ (X×A)(b, y) =
A(y). Then (F (b))(y) ⊂ A(y) for all y ∈ Y . Thus, F (b) ⊂ A for any
b ∈ B. Hence, F is neutrosophic upper semi-continuous. �

Theorem 3.17. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunc-
tion. Then the following are equivalent:

(1) F is neutrosophic lower semi-continuous,
(2) For any x ∈ X and any net (xi)i∈I converging to x in X and

each neutrosophic open set B in Y with x ∈ F−(B), the net
(xi)i∈I is eventually in F−(B).

Proof. (1)⇒ (2): Let (xi) be a net converging to x in X and B be any
neutrosophic open set in Y with x ∈ F−(B). Since F is neutrosophic
lower semi-continuous, there exists an open set A ⊂ X containing x
such that A ⊂ F−(B). Since xi → x, there exists an index i0 ∈ I such
that xi ∈ A for every i ≥ i0. We have xi ∈ A ⊂ F−(B) for all i ≥ i0.
Hence, (xi)i∈I is eventually in F−(B).
(2)⇒ (1): Suppose that F is not neutrosophic lower semi-continuous.
There exists a point x and a neutrosophic open set A with x ∈ F−(A)
such that B * F−(A) for any open set B ⊂ X containing x. Let
xi ∈ B and xi /∈ F−(A) for each open set B ⊂ X containing x. Then
the neighborhood net (xi) converges to x but (xi)i∈I is not eventually
in F−(A). This is a contradiction. �
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Theorem 3.18. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunc-
tion. Then the following are equivalent:

(1) F is neutrosophic upper semi-continuous,
(2) For any x ∈ X and any net (xi) converging to x in X and any

neutrosophic open set B in Y with x ∈ F+(B), the net (xi) is
eventually in F+(B).

Proof. The proof is similar to that of Theorem 3.17. �

Theorem 3.19. The set of all points of X at which a neutrosophic
multifunction F : (X, τ) → (Y, σ) is not neutrosophic upper semi-
continuous is identical with the union of the frontier of the upper in-
verse image of neutrosophic open sets containing F (x).

Proof. Suppose F is not neutrosophic upper semi-continuous at x ∈ X.
Then there exists a neutrosophic open set A in Y containing F (x) such
that A ∩ (X\F+(B)) 6= ∅ for every open set A containing x. We
have x ∈ Cl(X\F+(B)) = X\ Int(F+(B)) and x ∈ F+(B). Thus,
x ∈ Fr(F+(B)). Conversely, let B be a neutrosophic open set in Y
containing F (x) with x ∈ Fr(F+(B)). Suppose that F is neutrosophic
upper semi-continuous at x. There exists an open set A containing x
such that A ⊂ F+(B). We have x ∈ Int(F+(B)). This is a contradic-
tion. Thus, F is not neutrosophic upper semi-continuous at x. �

Theorem 3.20. The set of all points of X at which a neutrosophic
multifunction F : (X, τ) → (Y, σ) is not neutrosophic lower semi-
continuous is identical with the union of the frontier of the lower inverse
image of neutrosophic closed sets which are quasi-coincident with F (x).

Proof. It is similar to that of Theorem 3.19. �

Definition 3.21. A neutrosophic set λ of a neutrosophic topological
space Y is said to be neutrosophic compact relative to Y if every cover
{λα}α∈∆ of λ by neutrosophic open sets of Y has a finite subcover
{λi}ni=1 of λ.

Definition 3.22. A neutrosophic set λ of a neutrosophic topological
space Y is said to be neutrosophic Lindelof relative to Y if every cover
{λα}α∈∆ of λ by neutrosophic open sets of Y has a countable subcover
{λn}n∈N of λ.

Definition 3.23. A neutrosophic topological space Y is said to be neu-
trosophic compact if χY (characteristic function of Y ) is neutrosophic
compact relative to Y .

Definition 3.24. A neutrosophic topological space Y is said to be neu-
trosophic Lindelof if χY (characteristic function of Y ) is neutrosophic
Lindelof relative to Y .
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Definition 3.25. A neutrosophic multifunction F : (X, τ)→ (Y, τ1) is
said to be punctually neutrosophic compact (resp. punctually neutro-
sophic Lindelof) if for each x ∈ X,F (x) is neutrosophic compact (resp.
neutrosophic Lindelof).

Theorem 3.26. Let the neutrosophic multifunction F : (X, τ) →
(Y, τ1) be a neutrosophic upper semicontinuous and F is punctually
neutrosophic compact. If A is compact relative to X, then F (A) is
neutrosophic compact relative to Y .

Proof. Let {λα|α ∈ ∆} be any cover of F (Z) by neutrosophic copen
sets of Y . We claim that F (A) is neutrosophic compact relative to
Y . For each x ∈ A, there exists a finite subset ∆(x) of ∆ such that
F (x) ≤ ∪{λα|α ∈ ∆(x)}. Put λ(x) = ∪{λα|α ∈ ∆(x)}. Then F (x) ≤
λ(x) ∈ NO(Y ) and there exists U(x) ∈ O(X, x) such that F (U(x)) ≤
λ(x). Since {U(x)|x ∈ A} is an open cover of A there exists a finite
number of A, say, x1, x2, .., xn such that A ⊆ ∪{U(xi)|i = 1, 2, .., n}.
Therefore we obtain F (A) ≤ F (

n
∪
i=1

U(xi)) ≤
n
∪
i=1

F (U(xi)) ≤
n
∪
i=1

λ(xi) ≤
n
∪
i=1

( ∪
α∈∆(xi)

λα). This shows that F (A) is neutrosophic compact relative

to Y . �

Theorem 3.27. Let the neutrosophic multifunction F : (X, τ) →
(Y, τ1) be a neutrosophic upper semicontinuous and F is punctually
neutrosophic Lindelof. If A is Lindelof relative to X, then F (A) is
neutrosophic Lindelof relative to Y .

Proof. The proof is similar to that of Theorem 3.26 �
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