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Abstract

The aim of this paper is to consider compactness notions by utilizing �-sets, V -

sets, locally closed sets, locally open sets, �-closed sets and �-open sets. We are able

to completely characterize these variations of compactness, and also provide various

interesting examples that support our results.

1 Introduction and Preliminaries

In recent years certain types of subsets of a topological space have been considered and found

to be useful. Maki [6] introduced the notion of a �-set and a V -set in a topological space

and studied the associated closure operators. Ganster and Reilly [4] utilized locally closed

subsets to prove a new decomposition of continuity. In [1], Arenas, Dontchev and Ganster

considered �-sets to obtain some other decompositions of continuity. Since then, numerous

other authors have used these concepts in their work.

The purpose of our paper is to consider these and some related types of subsets of a topolog-

ical space and investigate the associated compactness notions. To be more precise, we now

de�ne explicitly the notions that we shall work with.

De�nition 1 For a subset A of a topological space (X; �), the kernel of A is de�ned as

kerA =
T
fU : U is open and A � Ug .
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De�nition 2 A subset A of a topological space (X; �) is called

(a) a �-set [6] , if A = kerA, i.e. if A is the intersection of open sets,

(b) a V -set [6] , if X n A is a �-set, i.e. if A is the union of closed sets,

(c) locally closed [2] , if A = U \ F where U is open and F is closed,

(d) locally open, if X n A is locally closed, i.e. A is the union of an open and a closed

set,

(e) �-closed [1] , if A = U \ F where U is a �-set and F is closed,

(f) �-open, if X n A is �-closed, i.e. the union of a V -set and an open set.

2 Strong Notions of Compactness

De�nition 3 Let A be a family of subsets of (X; �) such that
S
fA : A 2 Ag = X . The

space (X; �) is called A-compact if every cover of X by elements of A has a �nite subcover.

Of course, if A = � , then A-compactness concides with the usual compactness. If A denotes

the family of closed subsets of a space (X; �), then (X; �) is A-compact if and only if (X; �)

is strongly S-closed.

De�nition 4 A space (X; �) is called strongly S-closed [3] if every cover of X by closed sets

has a �nite subcover.

De�nition 5 A space (X; �) is called �-compact (resp. V -compact, LC-compact, LO-

compact, �C-compact, �O-compact) if every cover of (X; �) by �-sets (resp. V -sets, locally

closed sets, locally open sets, �-closed sets, �-open sets) has a �nite subcover.

It follows straight from the de�nition that each �C-compact space is both LC-compact and

�-compact, and that each �O-compact space is both LO-compact and V -compact.

We shall �rst consider �-compact spaces. Clearly every �-compact space has to be compact.

Observe that if (X; �) is T1, then each singleton is a �-set and therefore every �-compact T1

space has to be �nite.
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Theorem 2.1 For a space (X; �) the following are equivalent:

(1) (X; �) is �-compact,

(2) there exists a �nite subset fx1; :::; xkg � X such that X = kerfx1g [ ::: [ kerfxkg.

Proof. (1)) (2) : Since fkerfxg : x 2 Xg is a cover of X by �-sets, there exists a �nite

subset fx1; :::; xkg � X such that X = kerfx1g [ ::: [ kerfxkg .

(2)) (1) : Let O be a cover of X by �-sets. For each i 2 f1; :::; kg there exists Oi 2 O such

that xi 2 Oi. Clearly kerfxig � Oi and therefore X = O1[ :::[Ok, i.e. (X; �) is �-compact.

Our next result shows that the class of V -compact spaces coincides with the class of strongly

S-closed spaces.

Theorem 2.2 For a space (X; �) the following are equivalent:

(1) (X; �) is V -compact,

(2) (X; �) is strongly S-closed,

(3) (X; �) has a �nite dense subset.

Proof. (1)) (2) is obvious, and (2), (3) has been shown in [3].

(3)) (1) : Let fV� : � 2 Ig be a cover of (X; �) by V -sets and let D = fx1; :::; xkg be a

�nite dense subset. For i = 1; :::; k pick �i 2 I such that xi 2 V�i . Since V�i is a V -set, we

have fxig � V�i for each i = 1; :::; k . It follows that X = V�1 [ ::: [ V�k and we are done.

For the following we shall consider for a given space (X; �) the family S = fA � X : A is

open or closed in (X; �)g. Clearly S is subbase for a topology � � on X, and the locally closed

sets of (X; �) form a base for � �. Moreover, it is easily checked that the topology generated

by the locally open sets of (X; �) coincides with � �. By Alexander's subbase theorem we

now have

Theorem 2.3 (X; � �) is compact if and only if (X; �) is LC-compact if and only if (X; �)

is LO-compact.
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Lemma 2.4 Let A be a family of subsets of a space (X; �) such that S � A. If (X; �) is

A-compact, then (X; �) is hereditarily compact and each closed subspace is strongly S-closed.

Proof. Let S � X and let fO� : � 2 Ig be an open cover of S. If O =
S
fO� : � 2 Ig

then O is open and X =
S
fO� : � 2 Ig [ fX n Og . Since (X; �) is A-compact, there

exist �1; :::; �k 2 I such that X = O�1 [ ::: [O�k [ (X nO) and so S � O�1 [ ::: [O�k .

Thus (X; �) is hereditarily compact. Now let F � X be closed. Then X =
S
ffxg : x 2

Fg [ fX n Fg and hence, since (X; �) is A-compact, there exist x1; :::; xk 2 F such that

X = fx1g [ ::: [ fxkg [ (X n F ) . Clearly, D = fx1; :::; xkg is a �nite dense subset of F and

thus F is strongly S-closed.

Remark 2.5 A comprehensive study of hereditarily compact spaces can be found in a paper

of A.H. Stone [7]. Among many other results he showed that a space (X; �) is hereditarily

compact if and only if there exists no strictly decreasing sequence of closed sets.

Theorem 2.6 For a space (X; �) the following are equivalent:

(1) (X; �) is �O-compact,

(2) (X; �) is LO-compact,

(3) (X; �) is LC-compact,

(4) (X; �) is hereditarily compact and each closed subspace is strongly S-closed.

Proof. (1)) (2) is obvious, since every locally open subset is also �-open.

(2), (3) has been pointed out in Theorem 2.3, and (3)) (4) follows from Lemma 2.4.

(4) ) (1): Let fAi : i 2 Ig be a cover of (X; �) by �-open sets, and for each i 2 I

let Ai = Vi [ Oi where Vi is a V -set and Oi is open. If O =
S
fOi : i 2 Ig then O

is open. Since (X; �) is hereditarily compact, there exist a �nite subset I1 � I such that

O =
S
fOi : i 2 I1g . Furthermore, since each closed subspace of (X; �) is strongly S-closed,

there exist x1; :::; xn 2 X such that X n O = fx1g [ ::: [ fxng . For each j = 1; :::; n pick

Aij such that xj 2 Aij . Then xj 2 Vij and thus fxjg � Vij � Aij . Consequently we have

that X =
S
fAi : i 2 I1g [ Ai1 [ ::: [ Ain proving that (X; �) is �O-compact.
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We shall now consider �C-compactness which is evidently the strongest compactness notion

that we discuss here. Given a space (X; �) we �rst observe that if Ax = kerfxg \ fxg for

some x 2 X, then Ax is �-closed. Now let O � X be open such that O \ Ax 6= ;. Since

O\fxg 6= ; , we have x 2 O and thus kerfxg � O. Hence O\Ax = O\kerfxg\fxg = Ax

showing that Ax is an indiscrete subspace.

Theorem 2.7 For a space (X; �) the following are equivalent:

(1) (X; �) is �C-compact,

(2) (X; �) is the �nite union of indiscrete spaces,

(3) the topology � is �nite.

Proof. (1) ) (2) : For each x 2 X let Ax = kerfxg \ fxg. Then each Ax is �-closed

and X =
S
fAx : x 2 Xg . By assumption, there exist x1; x2; :::; xn 2 X such that

X = Ax1 [ ::: [ Axn . Thus (X; �) is the �nite union of indiscrete subspaces.

(2) ) (3) : Let X = A1 [ ::: [ An , where each Ai is indiscrete. If O � X is open, then

O =
S
fO\Ai : i = 1; :::; ng . Since each O\Ai is either empty or Ai, O is the �nite union

of some Ai's. It follows that the topology has to be �nite.

(3) ) (1) : If � is �nite there are only �nitely many �-sets and only �nitely many closed

sets, hence only �nitely many �-closed sets. Thus (X; �) is �C-compact.

We now provide an additional characterization of �C-compact spaces. First observe that a

straightforward application of Zorn's lemma shows that each indiscrete subspace of a space

(X; �) is contained in a maximal indiscrete subspace. Next recall the following interesting

result of Ginsburg and Sands [5].

Proposition 2.8 [5] Every in�nite topological space (X; �) has an in�nite subspace which is

homeomorphic to N endowed with one of the following �ve topologies: the discrete topology,

the indiscrete topology, the co�nite topology, the initial segment topology (see Example 3.3)

and the �nal segment topology (see Example 3.4). In addition, observe that the indiscrete

topology on an in�nite set is the only topology which is both compact and strongly S-closed.
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Proposition 2.9 Let (X; �) be an in�nite space where every in�nite subspace contains an

in�nite indiscrete subspace. Then (X; �) is the union of �nitely many indiscrete subspaces

and thus �C-compact.

Proof. We �rst show that there are only �nitely many maximal indiscrete subspaces.

Suppose that we have in�nitely many distinct maximal indiscrete subspaces fBn : n 2 Ng

. Then Bn \ Bm = ; whenever n 6= m . For each n 2 N pick xn 2 Bn . By assumption,

fxn : n 2 Ng has an indiscrete in�nite subspace C . Hence there must be distinct n;m 2 N

such that C \ Bn 6= ; and C \ Bm 6= ; . Since Bn and Bm are maximal indiscrete we have

C � Bn and C � Bm and so Bn \ Bm 6= ;, a contradiction. Thus there are only �nitely

many maximal indiscrete subspaces.

Now let A =
S
fB : B is maximal indiscreteg . We claim that X n A is �nite. Suppose

that X n A is in�nite. By assumption, there is an in�nite indiscrete subspace C � X n A .

Pick a maximal indiscrete subspace C1 such that C � C1 . Then C1 � A and so C \A 6= ; ,

a contradiction. Thus X nA is �nite and, of course, the �nite union of indiscrete subspaces.

Consequently, (X; �) is the �nite union of indiscrete subspaces.

Theorem 2.10 For a space (X; �) the following are equivalent:

(1) (X; �) is �C-compact,

(2) (X; �) is hereditarily compact and hereditarily strongly S-closed.

Proof. (1)) (2) : If (X; �) is �C-compact, then � is �nite by Theorem 2.7 and thus (X; �)

clearly is hereditarily compact and hereditarily strongly S-closed.

(2) ) (1) : If (X; �) is �nite we are done, so let (X; �) be in�nite. Let C be an in�nite

subspace of (X; �). Then C is also hereditarily compact and hereditarily strongly S-closed.

By Proposition 2.8, C must contain an in�nite indiscrete subspace. By Proposition 2.9,

(X; �) is �C-compact.
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3 Examples

The following diagram summarizes the relationships that either follow straightforward from

the de�nitions or have been obtained in section 2.

LO � compact
OO

��

strongly S � closed
OO

��
�C � compact

��

// LC � compact
OO

��

// V � compact

�� compact �O � compact // hereditarily compact

In the following examples we show that none of the implications can be reversed. Moreover,

no additional implications hold. To avoid trivialities, X will always denote an in�nite set.

Example 3.1 (The co�nite topology)

Let � be the co�nite topology on X. Then (X; �) is hereditarily compact. Since (X; �) is

T1, it is neither �-compact nor V -compact, and thus fails to be LC-compact.

Example 3.2 (The point-generated topology)

Let p 2 X and let � = f;g [ fO � X : p 2 Og . We have kerfpg = fpg and

kerfxg = fx; pg whenever x 6= p, and so (X; �) fails to be �-compact. Since fpg = X and

fxg = fxg whenever x 6= p , (X; �) is strongly S-closed and thus V -compact. The subspace

X nfpg is closed and discrete, and thus (X; �) cannot be hereditarily compact. Hence (X; �)

fails to be LC-compact by Theorem 2.6.

Example 3.3 (The initial segment topology on a limit ordinal)

Let X = f� 2 Ord : � < �g where � denotes some (in�nite) limit ordinal, and let

� = f;g [ f[0; �) : � < �g . Since f�g = [�; �) we have that (X; �) is even hereditarily

strongly S-closed and so, in particular, V -compact. Since (X; �) fails to be compact, it is

neither �-compact nor, by Theorem 2.6, LC-compact.
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Example 3.4 (The �nal segment topology on an ordinal)

Let X = f� 2 Ord : � < �g where � denotes some (in�nite) ordinal, and let � =

fXg [ f[�; �) : � < �g . By Remark 2.5 we conclude that (X; �) is hereditarily compact.

Since kerf0g = X , (X; �) is also �-compact. Since f�g = [0; �] for � < �, (X; �) fails

to be strongly S-closed (= V -compact) whenever � is a limit ordinal. In that case, (X; �)

cannot be LC-compact by Theorem 2.6.

In particular, let � = ! + 1, where ! denotes the set of �nite ordinals. Since f!g = X,

we have that (X; �) is strongly S-closed. Observe also that each proper closed subspace is

�nite and thus strongly S-closed. By Theorem 2.6, (X; �) is LC-compact but fails to be

�C-compact by Theorem 2.7.

Example 3.5 (Another example of an LC-compact space)

Let �1 be the co�nite topology on X and let �2 be the point-generated topology on X with

respect to a point p 2 X. Let � = �1 \ �2. Then (X; �) is clearly hereditarily compact and

strongly S-closed. Since each proper closed subspace is �nite and thus strongly S-closed,

(X; �) is LC-compact by Theorem 2.6. Observe that kerfpg = fpg and kerfxg = fx; pg

whenever x 6= p . Thus (X; �) fails to be �-compact and hence also cannot be �C-compact.

Example 3.6 (A �-compact, strongly S-closed space that is not LC-compact)

Let p; q 2 X such that p 6= q. Let �1 = f;g[fO � X : p 2 Og and let �2 = fXg[fO � X :

q =2 Og. If � = �1 \ �2, then (X; �) is strongly S-closed, since (X; �1) is strongly S-closed.

Since kerfqg = X, (X; �) is �-compact. Clearly fxg = fx; qg for x 6= p, and thus X n fpg

is a closed subspace that is not strongly S-closed. Hence (X; �) fails to be LC-compact by

Theorem 2.6.

Example 3.7 (A hereditarily compact, strongly S-closed space that is not LC-compact)

Let X = N. It is well known that there exists a family A = fAi : i 2 Ig of distinct

in�nite subsets of N, where Ai \ Aj is at most �nite whenever i 6= j, and where I has the

cardinality of the reals. In [7], page 914, a topology �1 is de�ned by de�ning the closed sets

to be X and all sets of the form E [ Ai1 [ ::: [ Aik where E is �nite. It is pointed out in
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[7] that (X; �1) is T1 and hereditarily compact. Now pick a point p 2 X and j 2 I such that

p =2 Aj. Let �2 = f;g[fO � X : p 2 Og and let � = �1\ �2. Clearly (X; �) is hereditarily

compact and strongly S-closed. Observe also that fxg is closed in (X; �) whenever x 6= p .

Hence Aj is a closed T1 subspace and thus cannot be strongly S-closed. By Theorem 2.6,

(X; �) fails to be LC-compact.
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