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Abstract

In this paper we define the concept of Ap-sets (resp. Vj-sets) of a topological space,
i.e., the intersection of b-open (resp. the union of b-closed) sets. We study the fun-
damental property of Ap-sets (resp. Vj-sets) and investigate the topologies defined by
these families of sets.

1 Introduction

In 1996, Andrijevié¢ [2] introduced a new class of generalized open sets called b-open sets into
the field of topology. This class is a subset of the class of semi-preopen sets [3], i.e. a subset
of a topological space which is contained in the closure of the interior of its closure. Also
the class of b-open sets is a superset of the class of semi-open sets [7], i.e. a set which is

contained in the closure of its interior, and the class of locally dense sets [5] or preopen sets
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[11], i.e. a set which is contained in the interior of its closure. Andrijevié¢ studied several
fundamental and interesting properties of b-open sets. Among others, he showed that a rare
b-open set is preopen [[2], Proposition 2.2]. Recall that a rare set [4] is a set with no interior
points. It is well-known that for a topological space X, every rare b-open set is semi-open if

and only if the interior of a dense subset is dense.

Throughout the present paper, the space (X, 7) always means a topological space on
which no separation axioms are assumed unless explicitly stated. Let A C X, then A is
said to be b-open [2] it A C Cl(Int(A)) U Int(Cl(A)), where Cl(A) and Int(A) denotes the
closure and the interior of A in (X, 7), respectively. The complement A° of a b-open set A
is called b-closed and the b-closure of a set A, denoted by Cl,(A), is the intersection of all
b-closed sets containing A. The b-interior of a set A denoted by Inty(A), is the union of all
b-open sets contained in A.

The family of all b-open (resp. b-closed) sets in (X, 7) will be denoted by BO(X, 7) (resp.
BC(X,1)).

PROPOSITION 1.1 (Andrijevié [2]) (a) The union of any family of b-open sets is b-open.

(b) The intersection of an open and a b-open set is a b-open set.

LEMMA 1.2 The b-closure Cly(A), is the set of all x € X such that O N A # ) for every
O € BO(X,z), where BO(X,z) ={U |z € U, U € BO(X,1)}.

It is the aim of this paper to introduce the concept of Ay-sets (resp. Vj-sets) which is
the intersection of b-open (resp. the union of b-closed) sets. We also investigate the notions
of generalized Ay-sets and generalized Vj-sets in a topological space (X, 7). Moreover, we
present a new topology 7% on (X, 7) by utilizing the notions of A-sets and Vj-sets. In this

connection, we examine some of the properties of this new topology.



2 Ap-sets and Vj-sets

DEFINITION 1 Let B be a subset of a topological space (X, 7). We define the subsets B
and B" as follows:

BM» =N{0/0 D B, O € BO(X,7)} and B = J{F/F C B, F° € BO(X,7)}.

PROPOSITION 2.1 Let A, B and {By: A € Q} be subsets of a topological space (X, 7). Then
the following properties are valid:
(a) B C B";
b) If A C B, then A% C B%;
c) (Bh) = B
d) [U By" = U By
AEQ AEQ
e) If A€ BO(X,7), then A = A%,
) (B = (%)
g) B C B;
)
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(h) If B € BC(X,7), then B = B%;
(
(
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PROOF. (a) Clear by Definition 1.

(b) Suppose that x ¢ B*. Then there exists a subset O € BO(X,7) such that O D B
with z & O. Since B D A, then x ¢ A% and thus A% C B%.

(¢) Follows from (a) and Definition 1.

(d) Suppose that there exists a point x such that = ¢ [ U B,)*. Then, there exists a
subset O € BO(X,7) such that U By, C Oand z ¢ O. Thus for each A €  we have

x ¢ B 1. This implies that x & /\LGJQ B *. Conversely, suppose that there exists a point z € X

such that 2 ¢ |J By*. Then by Definition 1, there exist subsets O, € BO(X, 1) (for each

AEQ
A € Q) such that = ¢ O,, By C O,. Let O = | O,. Then we have that x ¢ U O,,
AEQ AeQ
U Bx € O and O € BO(X, 7). This implies that = ¢ [ U ByJ*. Thus, the proof of (d) is
AEQ AEQ
completed.



(e) By Definition 1 and since A € BO(X,7), we have A% C A. By (a) we have that
At = A

(f) (BY%)e =N{F¢/F° 2 B¢, F° € BO(X, 1)} = (B)™.

(g) Clear by Definition 1.

(h) If B € BC(X, ), then B¢ € BO(X, 7). By (e) and (f): B® = (B¢)* = (B")°. Hence
B = B%,

(i) Suppose that there exists a point x such that z ¢ Bf”. Then, there exists A € )
AEQ

such that = ¢ B, Hence there exists O € BO(X,7) such that O D By and 2 ¢ O. Thus
v¢ [,\QQ B
() [ALEJQBA]V*’ = [((U B = [(N BHM 2 [N(BYM] =[N (B)]° = U BY

AEN AEQ AEQ AEQ AEN
(by (f) and (i)). O
REMARK 2.2 In general (B; N By)* # B N B2, as the following example shows.

EXAMPLE 2.3 Let X = {a,b,¢} and 7 = {0,{a}, X}. Let By = {b} and By = {c}. Then
we have (By () Bo)™ =0 but By N By = {a}.

DEFINITION 2 In a topological space (X, 7), a subset B is a Ay-set (resp. Vj-set) of (X, 7)
if B = B (resp. B = B"%). By A, (resp. V;), we denote the family of all Ay-sets (resp.
Vp-sets) of (X, ).

REMARK 2.4 By Proposition 2.1 (e) and (h) we have that:
(a) If B € BO(X,7), then B is a Aj-set.
(b) If B € BC(X, ), then B is a Vj-set.

THEOREM 2.5 (a) The subsets () and X are Ay-sets and Vj-sets.
(b) Every union of A,-sets (resp. Vj-sets) is a Ap-set (resp. Vj-set).
(c) Every intersection of Aj-sets (resp. Vi-sets) is a Ap-set (resp. Vj-set).

(d) A subset B is a Ay-set if and only if B¢ is a Vj-set.



PROOF. (a) and (d) are obvious.

(b) Let {Bx: A € Q} be a family of Aj-sets in a topological space (X, 7). Then by
Definition 2 and Proposition 2.1 (d), U By = U By = [ U By

(c) Let {By : A € Q} be a famlly of Ap- sets in (X, 7') Then by Proposition 2.1 (h)
and Definition 2 [ By]* C ﬂ B = )\QQ By. Hence by Proposition 2.1 (a) /\DQ By =

e
(N By )
AEQN

REMARK 2.6 By Theorem 2.5, A, (resp. V,) is a topology on X containing all b-open
(resp. b-closed) sets. Clearly (X, Ay) and (X,V,) are Alezandroff spaces [1], i.e. arbitrary

intersections of open sets are open.

A topological space (X, 7) is said to be b-T7 if for each pair of distinct points x and y of
X, there exist a b-open set U, containing x but not y and a b-open set U, containing y but
not z. It is obvious that (X, 7) is b-7} if and only if for each x € X, the singleton {z} is
b-closed.

THEOREM 2.7 For a topological space (X, T), the following properties are equivalent:
(a) (X,7) is b-Ty;

(b)Every subset of X is a Ap-set;

(c) Every subset of X is a Vj-set.

PROOF. It is obvious that (b) < (c).
(a) = (c): Let A be any subset of X. Since A = U{{x} |z € A}, A is the union of b-closed
sets, hence a Vj-set.
(c) = (a): Since by (c),we have that every singleton is an union of b-closed sets, i.e. it is
b-closed, then (X, 7) is an b-T} space. O

Recall that a subset A of a topological space (X, 7) is said to be generalized closed (briefly
g-closed) [8] if CI(A) C U whenever A C U and U € 7. A topological space (X, 7) is said
to be Ty if every g-closed subset of X is closed. Dunham [6] pointed out that (X,7) is T if

and only if for each x € X the singleton {x} is open or closed.



THEOREM 2.8 For a topological space (X, 1), the following properties hold:
(a) (X, Ap) and (X,V,) are Ty,
(b) If (X, 7) is b-T1, then both (X, Ay) and (X,V}) are discrete spaces.

PRrROOF. (a) Let z € X. Then {x} is either preclosed or open and hence {z} is either
b-open or b-closed. If {x} is b-open, {z} € Ay. If {z} is b-closed in (X, 7), then X \ {z}
is b-open and hence X \ {z} € Ap. Therefore {z} is closed in (X, A;). Hence (X, Ap) and
(X, V) are T, spaces.

(b) This follows from Theorem 2.7. O

3 G.\)-sets and g.V)-sets

In this section, by using the Aj-operator and Vj-operator, we introduce the classes of gener-
alized Ap-sets (= g.Ap-sets) and generalized Vj-sets (= g.Vj-sets) as an analogy of the sets
introduced by Maki [9].

DEFINITION 3 In a topological space (X, 7), a subset B is called a g.Ap-set of (X, 1) if
B C F whenever B C F and F is b-closed.

DEFINITION 4 In a topological space (X, 7), a subset B is called a g.Vj-set of (X, 1) if B
is a g.Ap-set of (X, 7).

REMARK 3.1 We shall see, however, that we obtain nothing new according to the following

results.

PROPOSITION 3.2 For a subset B of a topological space (X, 7), the following properties
hold:

(a) B is a g.Ap-set if and only if B is a A,-set,

(b) B is a g.Vj-set if and only if B is a Vj-set.



PrROOF. (a) Every Ay-set is a g.Ay-set. Now, let B be a g.Ay-set. Suppose that x €
Ay(B) \ B. It follows from theorems 2.24 and 2.27 of [10] that for each z € X, the singleton
{z} is preopen or preclosed. If {z} is preopen, then {z} is b-open and hence X \ {z} is
b-closed. Since B C X \ {2}, we have B* C X \ {z} which is a contradiction. If {z} is
preclosed, X \ {z} is b-open and B C X \ {z}. Therefore, we have B* C X \ {z}. This is
a contradiction. Hence B = B and B is a Aj-set.

(b) This is proved in a similar way. O

4 The associated topology 7

In this section , we define a closure operator C** and the associated topology 7% on the

topological spaces (X, 7) by using the family of Ay-sets .

DEFINITION 5 For any subset B of a topological space (X, 7), define
CY(B)=N{U: B CU,UeAy} and Int"*(B) = U{F : B2 F, FeV,}.

PROPOSITION 4.1 For any subset B of a topological space (X, 1),
(a) B C C™(B).

(b) CY(B) = (Int'(B))".

(c) CP(0) = 0.

(d) Let {By : A\eQ} be a family of (X, 7). Then J C*(B,) = C*(U By).
(©) CM(C™(B)) = CM(B),
(f) If A C B then C*(A) C C*(B).

(g) If Bis a Ay-set then C*(B) = B.

(h) If B is a Vj-set then Int'*(B) = B.

)
f)

g)
h)
Proof. (a), (b) and (c): Clear.
(d) Suppose that there exists a point z such that x ¢ C*(|J By). Then, there exists a
AeQd
subset UeAy such that J By C U and z ¢ U. Thus, for each A\eQ) we have z ¢ C**(B,).

A2
This implies that z ¢ (J C*(B,).
Aef2



Conversely we suppose that there exists a point xeX such that x ¢ U C%(B,). Then,
there exist subsets UyeA, for all Ae€2, such that x ¢ U, , By C Uy. Let U = U U,. From this
and Proposition 2.1(c) we have that x ¢ U , U By C U and UeA;. Thus, :;\E; Ch(U By).
(e) Suppose that there exists a point zeX suc/\ligthat x ¢ C*(B). Then there exists Aaﬁubset
Uely, such that * ¢ U and U D B. Since UeA, we have C*(B) C U. Thus we have
x ¢ C*(C*(B)). Therefore C*(C*(B)) C C*(B). The converse containment relation is
clear by (a).

(f) Clear.
(g) By (a) and Definition 5, the proof is clear.
(h) By Definition 5, by (g) and (b). O

Then we have the following :
THEOREM 4.2 C* is a Kuratowski closure operator on X.

DEFINITION 6 Let 7 be the topology on X generated by C* in the usual manner, i.e.,
™ ={B: B C X,CM(B°) = B}.

We define a family p*, by p* = {B: B C X,C™(B) = B}

By Definition 6, p* = {B : B C X, Bt }.

PROPOSITION 4.3 Let (X, 7) be a topological space. Then |,
(a) ™™ ={B: B C X, Int"*(B) = B}.

(b) Ay = p™

(c) V =74

(d) If BC(X 7) = 7% then every Ay-set of (X, 7) is b-open (i.e., BO(X,7) = A).
(e) If every Ap-set of (X, 7) is b-open (i.e., A, € BO(X, 7)), then

™ ={B:BCX,B=B"%}.

(f) If every Ay-set of (X, 1) is b-closed (i.e., A, € BC(X, 7)), then BO(X, 1) = 7.

Proof. (a) By Definition 6 and Proposition 4.1(b) we have,
if A C X then Aer™ if and only if CM(A°) = A if and only if (Int"*(A))® = A, if and
only if Int"»(A) = A if and only if, Ae{B : B C X, Int"*(B) = B}.

8



(b) Let B be a subset of X. By Proposition 2.1(e) BO(X,7) C A, and C*(B) = N{U |
BcUUeN}cNU|BCcCUUe BO(X,r)} = BM. Therefore, we have C*(B) C B.
Now suppose that z ¢ C*(B). There exists U € Ay, such that B C U and = ¢ U. Since
UeMy, U=UM={V|UCV € BO(X,7)} and hence there exists V € BO(X, ) such
that U C V and z ¢ V. Thus, z ¢ V and B C V € BO(X, 7). This shows that z ¢ B%.
Therefore, BA C C*(B) and hence BY = C(B) for any subset B of X. By the definitions
of Ay and p™*, we obtain Ay = p™.

(c) Let B € 7%. Then C*(B¢) = B¢ and B¢ € p. By (b), B® € A, and B¢ = (B°)%.
Therefore, by Proposition 2.1(f) B¢ = (B%)¢ and B = B". This shows that B € Vj.
Consequently, we obtain 7% C V4. Quite similarly, we obtain 7% > V; and hence V, = 7.
(d) Let B be any Ay-set i.e., BeA,. By (b), Bep™ thus, B . From the assumption we
have B°¢BC(X, 1) and hence BeBO(X, ).

(e) Let A C X and Aer™. Then by Definitions 5 and 6

A= CM(A) =N{U : U D A%, UeMy} = N{U : U D A%, UeBO(X, 7)} = (A",

Using Proposition 2.1(f) we have A = A% | ie., Ae{B: B C X, B = B%}.

Conversely ,if Ae{B : B 2 X, B = B"} then by Proposition 3.2(b)) A is a g.Vj-set. Thus
AeVy,. By using (c) Aer™.

(f) Let A C X and Aer™ . Then

A= (CM(A%)) = (N{U : A CU,UeMy}) = U{U: U C AU € Ay}

Conversely, if AeBO(X, 1) then by (b) AeA, . By assumption AeBC(X, 7). By using (c)
Aer™, O

PROPOSITION 4.4 If BO(X,7) = 7", then (X, 7%) is a discrete space.

Proof. Suppose that {z} is not b-open in (X, 7). Then {z} is b-closed in (X, 7). Thus
{x}er™ by Proposition 4.3 (c). Suppose that {x} is b-open in (X, 7), then {z}¢BO(X,7) =

7% Therefore, every singleton {x} is 7**-open and hence every subset of X is 7%v-open. O
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