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Abstract: Based on the preprint survey paper ([25]), we will give a
fundamental relation among the basic concepts of division by zero calculus,
derivatives and Laurent’s expansion as a direct extension of the preprint ([28])
which gave the generalization of the division by zero calculus to differentiable
functions. In particular, we will find a new viewpoint and applications to the
Laurent expansion, in particular, to residures in the Laurent expansion.
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1 Division by zero calculus
In order to state the new results in a self-contained way, we will recall the
simple background on the division by zero calculus for differentiable functions
based on ([28]). For the basic references on the division by zero and the
division by zero calculus, see the references cited in the reference.
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For a function y = f(x) which is n order differentiable at x = a, we will
define the value of the function, for n > 0

f(x)

(x− a)n

at the point x = a by the value

f (n)(a)

n!
.

For the important case of n = 1,

f(x)

x− a
|x=a = f ′(a). (1.1)

In particular, the values of the functions y = 1/x and y = 0/x at the origin
x = 0 are zero. We write them as 1/0 = 0 and 0/0 = 0, respectively.
Of course, the definitions of 1/0 = 0 and 0/0 = 0 are not usual ones in the
sense: 0 · x = b and x = b/0. Our division by zero is given in this sense and
is not given by the usual sense.

In addition, when the function f(x) is not differentiable, by many mean-
ings of zero, we should define as

f(x)

x− a
|x=a = 0,

for example, since 0 represents impossibility. In particular, the value of the
function |x|/x at x = 0 is zero. The value of the function x/|x| at x = 0 is
also zero in our sense.

We will give its naturality of the definition.
Indeed, we consider the function F (x) = f(x)−f(a) and by the definition,

we have
F (x)

x− a
|x=a = F ′(a) = f ′(a).

Meanwhile, by the definition, we have

lim
x→a

F (x)

x− a
= lim

x→a

f(x)− f(a)

x− a
= f ′(a). (1.2)

For many applications, see the references cited in the reference.
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The identity (1.1) may be regarded as an interpretation of the differential
coefficient f ′(a) by the concept of the division by zero. Here, we do not use
the concept of limitings.

Note that f ′(a) represents the principal variation of order x − a of the
function f(x) at x = a which is defined independently of f(a) in (1.2). This
is a basic meaning of the division by zero calculus f(x)

x−a
|x=a.

Following this idea, we can accept the formula, naturally, for also n = 0
for the general formula.

In the expression (1.1), the value f ′(a) in the right hand side is represented
by the point a, meanwhile the expression

f(x)

x− a
|x=a (1.3)

in the left hand side, is represented by the dummy variable x− a that repre-
sents the property of the function around the point x = a with the sense of
the division

f(x)

x− a
.

For x ̸= a, it represents the usual division.
Of course, by our definition

f(x)

x− a
|x=a =

f(x)− f(a)

x− a
|x=a, (1.4)

however, here f(a) may be replaced by any constant. This fact looks like
showing that the function

1

x− a

is zero at x = a in a sense. Of course, this result is derived immediately from
the definition of the division by zero calculus.

When we apply the relation (1.1) to the elementary formulas for differ-
entiable functions, we can imagine some deep results. For example, in the
simple formula

(u+ v)′ = u′ + v′,

we have the result

u(x) + v(x)

x− a
|x=a =

u(x)

x− a
|x=a +

v(x)

x− a
|x=a,
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that is not trivial in our definition.
In the following well-known formulas, we have some deep meanings on

the division by zero calculus.

(uv)′ = u′v + uv′,(u
v

)′
=

u′v − uv′

v2

and the famous laws
dy

dt
=

dy

dx

dx

dt

and
dy

dx
· dx
dy

= 1.

Note also the logarithm derivative, for u, v > 0

(log(uv))′ =
u′
u

+
v′
v

and for u > 0

(uv)′ = uv

(
v′ log u+ v

u′

u

)
.

For the second order derivatives, we have the familiar formulas:

(uv)′′ = u′′v + 2u′v′ + uv′′,

d2f(g(t))

dt2
= f ′′(g(t))g′(t) + f ′(g(t))g′′(t),(
1

f

)′′

=
2(f ′)2 − ff ′′

f 3

and
d2x

dy2
= −d2y

dx2

(
dy

dx

)−3

.

The representation of the higher order differential coefficients f (n)(a) is
very simple and, for example, for the Taylor expansion we have the beautiful
representation

f(a) =
∞∑
n=0

f(x)

(x− a)n
|x=a · (x− a)n.

4



Further

f(x)

(x− a)2
|x=a =

f ′′(a)

2

= lim
x→0

f(a+ x) + f(a− x)− 2f(a)

2x2
.

2 Differential coeffcients and residures
We note the basic relation for analytic functions f(z) for the analytic exten-
sion of f(x) to complex variable z

f(x)

(x− a)n
|x=a =

f (n)(a)

n!
= Res.ζ=a

{
f(ζ)

(ζ − a)n+1

}
.

We therefore see the basic identities among the division by zero calculus,
differential coefficients and residues in the case of analytic functions. Among
these basic concepts, the differential coefficients are studied deeply and so,
from the results of the differential coefficient properties, we can derive another
results for the division by zero calculus and residures. In this viewpoint, in
particular, from the differential coefficient properties stated as in the above,
we can derive the correspondent properties.

For example, for the product case, we have

Res.ξ=x
(fg)(ξ)

(ξ − x)2

= Res.ξ=x
f(ξ)

(ξ − x)2
g(x) + f(x)Res.ξ=x

g(ξ)

(ξ − x)2
.

For the rational case
Res.ξ=x

(f/g)(ξ)

(ξ − x)2

=
Res.ξ=x

f(ξ)
(ξ−x)2

g(x)− f(x)Res.ξ=x
g(ξ)

(ξ−x)2

g(x)2
.

For the inverse function x = f−1(y) for the function y = f(x),

Res.ξ=x
f(ξ)

(ξ − x)2
Res.η=y

f−1(η)

(η − y)2
= 1.
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For the second order derivatives, we have, for x = g(t)

Res.τ=t
f(g(τ))

(τ − t)3
= Res.ξ=x

f(ξ)

(ξ − x)3
Res.τ=t

g(τ)

(τ − t)2

+Res.ξ=x
f(ξ)

(ξ − x)2
Res.τ=t

g(τ)

(τ − t)3

and
Res.ξ=x

(1/f)(ξ)

(ξ − x)3

=
2
(
Res.ξ=x

f(ξ)
(ξ−x)2

)2

f(x)− f(x)Res.ξ=x
f(ξ)

(ξ−x)3

f(x)3
.

From the formula
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
,

we obtain

Res.τ=t
f(x(τ), y(τ))

(τ − t)2
= Res.ξ=x

f(ξ, y(t))

(ξ − x)2
Res.τ=t

x(τ)

(τ − t)2

+Res.η=y
f(x(t), η)

(η − y)2
Res.τ=t

y(τ)

(τ − t)2
.

For the implicit function theorem for the function y = f(x) of F (x, y) = 0
satisfying F (x, f(x)) = 0

f ′(x) = −Fx(x, y)

Fy(x, y)
,

we obtain

Res.ξ=x
f(ξ)

(ξ − x)2
= −Res.ξ=x

F (ξ, y)

(ξ − x)2

(
Res.η=y

F (x, η)

(η − y)2

)−1

.

For the formula

f ′′(x) = −Fxx + 2Fxyf
′ + Fyy(f

′)2

Fy

,

we have the correspondent formula.
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