Upper and Lower Rarely α -continuous Multifunctions * Maximilian Ganster and Saeid Jafari

Abstract

Recently the notion of rarely α -continuous functions has been introduced and investigated by Jafari [1]. This paper is devoted to the study of upper (and lower) rarely α -continuous multifunctions.

1 Introduction

Let A be a subset of a topological space (X, τ) . We will denote the interior and the closure of A by int A and cl A, respectively. A is called α -open [2] if $A \subseteq int(cl(int A))$. The complement of an α -open set will be called an α -closed set. The α -interior of A is defined as the union of all α -open sets contained in A and is denoted by α -int A. It is well known that α -int $A = A \cap int(cl(int A))$. The collection of all α -open sets is denoted by $\alpha(X)$ and we set $\alpha(X, x) = \{ U : x \in U \text{ and } U \in \alpha(X) \}$. A rare set is a codense set, i.e. its interior is empty. Finally, A is called regular open if A = int(cl A).

Definition 1 A function $f: X \to Y$ is said to be *rarely* α -continuous [1] (briefly r. α .c.) if for each $x \in X$ and each open set $V \subseteq Y$ containing f(x), there exist a rare set R_V and a $U \in \alpha(X, x)$ such that $f(U) \subseteq V \cup R_V$. (Clearly we may assume that $V \cap R_V$ is empty.)

Definition 2 A function $f : X \to Y$ is said to be *weakly* α -continuous [3] (briefly w. α .c.) if for each $x \in X$ and each open set $V \subseteq Y$ containing f(x), there exists a $U \in \alpha(X, x)$ such that $f(U) \subseteq cl V$.

^{*1991} Math. Subject Classification — 54C08, 54C60;

Key words and phrases — Rarely α -continuous multifunctions, semi-open, α -open

2 Rarely α -continuous multifunctions

We will follow the notations in [6]. As usual, if $F : X \to Y$ is a multifunction, the upper and lower inverses of a set $V \subseteq Y$ will be denoted by $F^+(V)$ and $F^-(V)$, respectively. We have $F^+(V) = \{x \in X : F(x) \subseteq V\}$ and $F^-(V) = \{x \in X : F(x) \cap V \neq \emptyset\}$.

Definition 3 (1) The multifunction $F : X \to Y$ is called *upper rarely* α -continuous (briefly u.r. α .c.) if for each $x \in X$ and each open set $V \subseteq Y$ with $F(x) \subseteq V$, there exist a rare set R_V disjoint from V and $U \in \alpha(X, x)$ such that $F(U) \subseteq V \cup R_V$.

(2) The multifunction $F: X \to Y$ is called *lower rarely* α -continuous (briefly l.r. α .c.) if for each $x \in X$ and each open set $V \subseteq Y$ with $F(x) \cap V \neq \emptyset$, there exist a rare set R_V disjoint from V and $U \in \alpha(X, x)$ such that $F(y) \cap (V \cup R_V) \neq \emptyset$ for each $y \in U$.

For the definitions of the following abbreviations we refer the reader to [4], [5], [6] and [7]. We clearly have the implications :

- 1) u.w.c. \Rightarrow u.r.c. \Rightarrow u.r. α .c.
- 2) u.w.c. \Rightarrow u.w. α .c. \Rightarrow u.r. α .c.
- 3) l.w.c. \Rightarrow l.r.c. \Rightarrow l.r. α .c.
- 4) l.w.c. \Rightarrow l.w. α .c. \Rightarrow l.r. α .c.

3 Some properties of rarely α -continuous multifunctions

Theorem 3.1 For a multifunction $F: X \to Y$ the following are equivalent :

(1) F is u.r. α .c. at $x \in X$,

(2) For each open set $V \subseteq Y$ with $F(x) \subseteq V$ there exists a rare set R_V disjoint from V such that $x \in \alpha$ -int $(F^+(V \cup R_V))$,

(3) For each open set $V \subseteq Y$ with $F(x) \subseteq V$ there exists a rare set R_V with $\operatorname{cl} V \cap R_V = \emptyset$ such that $x \in \alpha \operatorname{-int}(F^+(\operatorname{cl} V \cup R_V))$,

(4) For each regular open set $V \subseteq Y$ with $F(x) \subseteq V$ there exists a rare set R_V disjoint from V such that $x \in \alpha$ -int $(F^+(V \cup R_V))$, (5) For each open set $V \subseteq Y$ with $F(x) \subseteq V$ there exists $U \in \alpha(X, x)$ such that $F(U) \cap (Y \setminus V)$ has empty interior,

(6) For each open set $V \subseteq Y$ with $F(x) \subseteq V$ there exists $U \in \alpha(X, x)$ such that int $F(U) \subseteq \operatorname{cl}(V)$.

Proof. (1) \Rightarrow (2) : Let V be an open subset of Y such that $F(x) \subseteq V$. By hypothesis there exist a rare set R_V disjoint from V and $U \in \alpha(X, x)$ such that $F(U) \subseteq V \cup R_V$. Hence $x \in U \subseteq (F^+(V \cup R_V))$. It follows that $x \in \alpha$ -int $(F^+(V \cup R_V))$.

 $(2) \Rightarrow (3)$: Let V be an open subset of Y such that $F(x) \subseteq V$. Then there exists a rare set R_V disjoint from V such that $x \in \alpha$ -int $(F^+(V \cup R_V))$. Let $S_V = R_V \cap (Y \setminus cl V)$. Then S_V is disjoint from cl V. Since $V \cup R_V \subseteq cl V \cup S_V$, we have $x \in \alpha$ -int $(F^+(cl V \cup S_V))$.

 $(3) \Rightarrow (4)$: Let V be a regular open subset of Y such that $F(x) \subseteq V$, and let R_V be a rare set with cl $V \cap R_V = \emptyset$ and $x \in \alpha$ -int $(F^+(\text{cl } V \cup R_V))$. If $S_V = R_V \cup (\text{cl } V \setminus V)$ then S_V is a rare set disjoint from V satisfying $x \in \alpha$ -int $(F^+(V \cup S_V))$.

(4) \Rightarrow (5) : Let V be an open subset of Y with $F(x) \subseteq V$ and let $W = \operatorname{int}(\operatorname{cl} V)$. Then W is regular open and $V \subseteq W$. By assumption there exists a rare set R_V disjoint from W such that $x \in \alpha \operatorname{-int}(F^+(W \cup R_V))$. If $U = \alpha \operatorname{-int}(F^+(W \cup R_V))$ then $U \in \alpha(X, x)$ and $F(U) \subseteq W \cup R_V$. We now have $\operatorname{int}(F(U) \cap (Y \setminus V)) = \operatorname{int}F(U) \cap \operatorname{int}(Y \setminus V) \subseteq \operatorname{int}(\operatorname{cl} V \cup R_V) \cap (Y \setminus \operatorname{cl} V) = \emptyset$.

 $(5) \Rightarrow (6)$: This is obvious.

 $(6) \Rightarrow (1)$: Let V be an open subset of Y with $F(x) \subseteq V$. There exists $U \in \alpha(X, x)$ such that int $F(U) \subseteq \operatorname{cl} V$. Now, $N = (\operatorname{cl} V) \setminus V$ is nowhere dense and $M = (\operatorname{cl} F(U) \setminus \operatorname{int} F(U)) \cap (Y \setminus V)$ is a rare set, so $R_V = M \cup N$ is also a rare set disjoint from V and we have $F(U) \subseteq V \cup R_V$. Hence F is u.r. α .c. at $x \in X$. \Box

Our next result provides a characterization of $l.r.\alpha.c.$ multifunctions. Its proof is very similar to the proof of Theorem 3.1 (1) - (4), so we will omit it.

Theorem 3.2 For a multifunction $F: X \to Y$ the following are equivalent :

(1) F is l.r. α .c. at $x \in X$,

(2) For each open set $V \subseteq Y$ with $F(x) \cap V \neq \emptyset$ there exists a rare set R_V disjoint from V such that $x \in \alpha$ -int $(F^-(V \cup R_V))$,

(3) For each open set $V \subseteq Y$ with $F(x) \cap V \neq \emptyset$ there exists a rare set R_V with $\operatorname{cl} V \cap R_V = \emptyset$ such that $x \in \alpha \operatorname{-int}(F^-(\operatorname{cl} V \cup R_V))$,

(4) For each regular open set $V \subseteq Y$ with $F(x) \cap V \neq \emptyset$ there exists a rare set R_V disjoint from V such that $x \in \alpha$ -int $(F^-(V \cup R_V))$.

Corollary 3.3 ([1], Theorem 3.1)

For a function $f: X \to Y$ the following are equivalent :

(1) f is r. α .c. at $x \in X$,

(2) For each open set $V \subseteq Y$ containing f(x) there exists a rare set R_V disjoint from V such that $x \in \alpha$ -int $(f^{-1}(V \cup R_V))$,

(3) For each open set $V \subseteq Y$ containing f(x) there exists a rare set R_V with cl $V \cap R_V = \emptyset$ such that $x \in \alpha$ -int $(f^{-1}(cl \ V \cup R_V))$,

(4) For each regular open set $V \subseteq Y$ containing f(x) there exists a rare set R_V disjoint from V such that $x \in \alpha$ -int $(f^{-1}(V \cup R_V))$,

(5) For each open set $V \subseteq Y$ containing f(x) there exists $U \in \alpha(X, x)$ such that $f(U) \cap (Y \setminus V)$ has empty interior,

(6) For each open set $V \subseteq Y$ containing f(x) there exists $U \in \alpha(X, x)$ such that int $f(U) \subseteq \operatorname{cl}(V)$.

Theorem 3.4 If $F : X \to Y$ is an u.r. α .c. multifunction then for any open set $U \subseteq X$ containing x and any open set $V \subseteq Y$ with $F(x) \subseteq V$ there exists a rare set R_V disjoint from V and a nonempty open set $W \subseteq U$ such that $F(W) \subseteq V \cup R_V$.

Proof. Let $V \subseteq Y$ be open with $F(x) \subseteq V$, and let $U \subseteq X$ be an open set containing x. By Theorem 3.1, there exists $G \in \alpha(X, x)$ such that $F(G) \cap (Y \setminus V)$ has empty interior and is therefore a rare set, say R_V . In addition, R_V is disjoint from V. Then $U \cap G$ is an α -open set containing x. If $W = \operatorname{int}(U \cap G)$ then W is a nonempty open set contained in U. Consequently, $F(W) \subseteq F(G) \subseteq V \cup (F(G) \cap (Y \setminus V)) \subseteq V \cup R_V$. \Box

Corollary 3.5 If $f: X \to Y$ is a r. α .c. function then for any open set $U \subseteq X$ containing x and any open set $V \subseteq Y$ containing f(x) there exist a rare set R_V disjoint from V and a nonempty open set $W \subseteq U$ such that $f(W) \subseteq V \cup R_V$.

Recall that a subset A of a topological space X is called *semi-open* if $A \subseteq cl$ (int A). We will call a multifunction $F: X \to Y$ always semi-open if the image of each α -open set is semi-open.

Theorem 3.6 If $F : X \to Y$ is an always semi-open, u.r. α .c. multifunction then F is also u.w. α .c.

Proof. Let $x \in X$ and $V \subseteq Y$ be an open set with $F(x) \subseteq V$. Since F is u.r. α .c. there exists a rare set R_V disjoint from V and $U \in \alpha(X, x)$ such that $F(U) \subseteq V \cup R_V$. We have $F(U) \cap (Y \setminus \operatorname{cl} V) \subseteq R_V$ and so $\operatorname{cl}(\operatorname{int} F(U)) \cap (Y \setminus \operatorname{cl} V) = \emptyset$. Since F is always semi-open, F(U) is semi-open and hence $F(U) \subseteq \operatorname{cl} V$, i.e. F is u.w. α .c. \Box

Recall that a function $f: X \to Y$ r. α -open [1] if the image of each α -open set is open.

Corollary 3.7 ([1], Theorem 3.8) If $f: X \to Y$ is r. α -open and r. α .c., then f is w. α .c.

In conclusion, we shall present two more results whose proofs are easy and left to the reader.

Definition 4 For a multifunction $F: X \to Y$, the graph multifunction $G_F: X \to X \times Y$ is defined as follows: $G_F(x) = \{(x, y) : y \in F(x)\}$ for each $x \in X$.

Theorem 3.8 If $F : X \to Y$ is an u.r. α .c. multifunction such that F(x) is compact for each $x \in X$ then G_F is u.r. α .c.

Theorem 3.9 Let $\{U_i : i \in I\}$ be an open cover of X. A multifunction $F : X \to Y$ is u.r. α .c. if and only if the multifunctions $F|_{U_i} : U_i \to Y$ are u.r. α .c. for each $i \in I$.

References

- [1] S. Jafari, Rare α -continuity, submitted.
- [2] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961 970.
- [3] T. Noiri, Weakly α -continuous functions, Internat. J. Math. Math. Sci. 10(3) (1987), 483 490.
- [4] V. Popa, Some properties of rarely continuous multifunctions, Conf. Nat. Geom. Topologie 1988, Univ. Al. I. Cuza. Iasi (1989), 269 - 274.
- [5] V. Popa, On some weakened forms of continuity for multifunctions, Mat. Vesnik 36 (1984), 339 - 350.
- [6] V. Popa and T. Noiri, On upper and lower weakly α -continuous multifunctions, under preparation.
- [7] R.E. Smithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc. 70 (1978), 383 - 390.

Adresses :

Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, AUSTRIA.

College of Vestsjaelland, Herrestraede 11, 4200 Slagelse, DENMARK.