on Λ-generalized continuous functions^{*} S.P. Missier, M.G. Rani, M. Caldas and S. Jafari

Abstract

In this paper, we introduce a new class of continuous functions as an application of Λ -generalized closed sets (namely Λ_g -closed set, Λ -g-closed set and $g\Lambda$ -closed set) namely Λ -generalized continuous functions (namely Λ_g -continuous, Λ -g-continuous and $g\Lambda$ -continuous) and study their properties in topological space.

1 Introduction and Preliminaries

Levine [7] introduced g-closed set. Maki [8] introduced the notion of Λ -sets in topological spaces. A subset A of a topological space (X, τ) is called a Λ -set if it coincides with its kernel (the intersection of all open supersets of A). In [1], Arenas et al. introduced the notions of λ -open sets, and λ -closed sets and presented fundamental results for these sets. They also introduced [1] λ - continuity, which is weaker than continuity. Recently, M. Caldas, S. Jafari and T. Noiri [3] introduced Λ -generalized closed sets in topological space. The aim of this paper is to introduce a weak form of continuous functions called Λ -generalized continuous functions. Moreover, the relationships and properties of Λ -generalized continuous functions are obtained.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. Let A be a subset of X. We denote the interior, the closure and the complement of a set A by Int(A), Cl(A) and $X \setminus A$ or A^c , respectively. A subset A of a space (X, τ) is

^{*2000} Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05.

Keywords and phrases: generalized closed sets, Λ -generalized closed sets, λ -open sets, Λ -closed sets, Λ -generalized continuous functions.

called λ -closed [1] if $A = L \cap D$, where L is a Λ -set and D is a closed set. The intersection of all λ -closed sets containing a subset A of X is called the λ -closure of A and is denoted by $Cl_{\lambda}(A)$. The complement of a λ -closed set is called λ -open. We denote the collection of all λ -open sets by $\lambda O(X, \tau)$.

Recall that a subset A of a topological space (X, τ) is called generalized closed (briefly g-closed) [7] if $Cl(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ) . B is a g-open set of (X, τ) if and only if B^c is g-closed.

Definition 1 A subset A of a topological space (X, τ) is called a Λ -generalized closed, briefly Λ_g -closed [3], (resp. Λ -g-closed, $g\Lambda$ -closed) if $Cl(A) \subseteq U$ (resp. $Cl_{\lambda}(A) \subset U$, $Cl_{\lambda}(A) \subset U$) whenever $A \subset U$ and U is λ -open (resp. U is λ -open, U is open) in (X, τ) .

Remark 1.1 From the above definitions, we have the following.

- (1) Λ_g -closed sets and λ -closed sets are independent concepts.
- (2) Λ -g-closed sets and g-closed sets are independent concepts.
- (3) λ -closed sets and g-closed sets are also independent concepts.

From the above definitions and remark 1.1, we have the following diagram.

 $\begin{array}{cccc} closed & \Rightarrow & \Lambda_g\text{-}closed & \Rightarrow & g\text{-}closed \\ & \Downarrow & & \Downarrow & & \Downarrow \\ & \lambda\text{-}closed & \Rightarrow & \Lambda\text{-}g\text{-}closed & \Rightarrow & g\Lambda\text{-}closed \end{array}$

Example 1.2 (i) Let $X = \{a, b, c\}$ with a topology $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Thus $\lambda O(X, \tau) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Take $A = \{a, c\}$. Observe that A is a g-closed set but it is not Λ -g-closed.

(ii) Let $X = \{a, b, c\}$ with a topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then, $A = \{b\}$ is a λ -closed set but it is not g-closed.

(iii) Let $X = \{a, b, c\}$ with a topology $\tau = \{\emptyset, \{a\}, X\}$. Then, $A = \{a, b\}$ is a Λ_g -closed set but it is not λ -closed.

Definition 2 A function $f : (X, \tau) \to (Y, \sigma)$ is called :

(1) g-continuous [7] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) .

(2) λ -continuous [1] if $f^{-1}(V)$ is λ -closed in (X, τ) for every closed set V of (Y, σ) .

2 Λ-generalized continuous functions

We introduce the following notions:

Definition 3 A function $f : (X, \tau) \to (Y, \sigma)$ is called:

(1) Λ_g -continuous if $f^{-1}(V)$ is Λ_g -closed in X, for every closed set in Y.

(2) Λ -g-continuous if $f^{-1}(V)$ is Λ -g-closed in X, for every closed set in Y.

(3) $g\Lambda$ -continuous if $f^{-1}(V)$ is $g\Lambda$ -closed in X, for every closed set in Y.

Example 2.1 Let $X = \{a, b, c, d\} = Y$, $\tau = \{\phi, X, \{b\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b = f(b), f(c) = c, f(d) = d. Then f is Λ_g -continuous, Λ -g-continuous and $g\Lambda$ -continuous.

Proposition 2.2 Every continuous function is Λ_g -continuous (resp. Λ -g-continuous, $g\Lambda$ -continuous).

Proof. By [3], every closed set is Λ_g -closed (resp Λ -g-closed, $g\Lambda$ -closed) and the proof follows.

Example 2.3 Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$ and $\sigma = \{\phi, Y, \{b\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = f(b) = b, f(c) = c, f(d) = d. Then f is Λ_g -continuous, Λ -g-continuous and $g\Lambda$ -continuous but not continuous.

Proposition 2.4 Every Λ_g -continuous function is g-continuous.

Proof. It follows from the fact that every Λ_g -closed set is g-closed set [3].

Example 2.5 The function f in Example 2.3 with $\tau = \{\phi, X, \{b\}, \{b, c\}, \{a, b\}, \{a, b, c\}\},$ $\sigma = \{\phi, Y, \{a\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ is g-continuous but not Λ_g -continuous since for the closed set $U = \{b, d\}$ in (Y, σ) , $f^{-1}(U) = \{a, b, d\}$ which is not Λ_g -closed in (X, τ) .

Proposition 2.6 Every λ -continuous function and Λ_g -continuous function are Λ -g-continuous function.

Proof. By [3], every λ -closed set is Λ -g-closed set and every Λ_g -closed set is Λ -g-closed set, the proof follows.

Example 2.7 Let (X, τ) and (Y, σ) be as in Example 2.3.

(i) Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(c) = c, f(b) = d = f(d). Then f is Λ -g-continuous but not λ -continuous since for the closed set $U = \{c, d\}$ in (Y, σ) , $f^{-1}(U) = \{b, c, d\}$ which is not λ -closed in (X, τ) .

(ii) Define a function $f : X \to Y$ by f(a) = b, f(b) = a, f(c) = d and f(d) = c. Then f is Λ g-continuous but not Λ_g -continuous since for the closed set $U = \{d\}$ in (Y, σ) , $f^{-1}(U) = \{c\}$ which is not Λ_g -closed in (X, τ) .

Remark 2.8 (1) Λ_q -continuous and λ -continuous are independent.

(2) Λ -g-continuous and g-continuous are independent.

(3) λ -continuous and g-continuous are independent.

Example 2.9 (i) The function f in Example 2.7(i) is Λ_g -continuous but not λ -continuous. (ii) Let (X, τ) and (Y, σ) be as in Example 2.5. Then f in Example 2.7(ii) is λ -continuous but not Λ_g -continuous.

(iii) f is λ -continuous but not g-continuous.

(iv) f is Λ -g-continuous but not g-continuous.

(v) Let (X, τ) and (Y, σ) be as in Example 2.5 and the function f be an identity function from X to Y. Then f is g-continuous but neither Λ -g-continuous nor λ -continuous.

We get the following diagram:

 $\begin{array}{ccc} continuous & \Rightarrow & \Lambda_g\text{-}continuous & \Rightarrow & g\text{-}continuous \\ \\ \Downarrow & \qquad \end{array}$

 λ -continuous $\Rightarrow \Lambda$ -g-continuous $\Rightarrow g\Lambda$ -continuous

3 Properties of Λ -generalized continuous functions

Theorem 3.1 If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ_g -continuous and X is T_1 then f is continuous.

Proof. Let f be Λ_g -continuous and X be T_1 . Assume that V is closed in Y. Hence $f^{-1}(V)$ is Λ_g -closed set in X. Since every Λ_g -closed is closed in a T_1 space X [3], then $f^{-1}(V)$ is closed set in X. This shows that f is continuous.

Corollary 3.2 If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ_g -continuous and X is T_1 then f is λ -continuous.

Theorem 3.3 If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ -g-continuous and X is T_0 then f is λ -continuous.

Proof. Let f be Λ -g-continuous and X be T_0 . Let V be closed in Y. $f^{-1}(V)$ is Λ -g-closed in X. Since Λ -g-closed is λ -closed in a T_0 space X [9], then $f^{-1}(V)$ is λ -closed in X. This shows that f is λ -continuous.

Definition 4 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be: (i) Λ_g -irresolute if $f^{-1}(V)$ is Λ_g -closed in X for every Λ_g -closed set V in Y. (ii) Λ -g-irresolute if $f^{-1}(V)$ is Λ -g-closed in X for every Λ -g-closed set V in Y. (iii) $g\Lambda$ -irresolute if $f^{-1}(V)$ is $g\Lambda$ -closed in X for every $g\Lambda$ -closed set V in Y.

Recall that a function $f: (X, \tau) \to (Y, \sigma)$ is said to be λ -closed if f(F) is λ -closed in Y for every λ -closed set F of X.

Lemma 3.4 [3]. A function $f : (X, \tau) \to (Y, \sigma)$ is λ -closed if and only if for each subset B of Y and each $U \in \lambda O(X, \tau)$ containing $f^{-1}(B)$, there exists $V \in \lambda O(Y, \sigma)$ such that $B \subset V$ and $f^{-1}(V) \subset U$.

Theorem 3.5 Let $f : (X, \tau) \to (Y, \sigma)$ be a continuous λ -closed function. Then f is Λ_g irresolute.

Proof. Let B be Λ_g -closed in (Y, σ) and U a λ -open set of (X, τ) containing $f^{-1}(B)$. Since f is λ -closed, by Lemma 3.4 there exists a λ -open set V of (Y, σ) such that $B \subset V$ and $f^{-1}(V) \subset U$. Since B is Λ_g -closed in (Y, σ) , $Cl(B) \subset V$ and hence $f^{-1}(B) \subset f^{-1}(Cl(B)) \subset f^{-1}(V) \subset U$. Since f is continuous, $f^{-1}(Cl(B))$ is closed and hence $Cl(f^{-1}(B)) \subset U$. This shows that $f^{-1}(B)$ is Λ_g -closed in (X, τ) . Therefore f is Λ_g -irresolute.

Theorem 3.6 If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ_g -irresolute and Y is T_1 then f is Λ_g -continuous.

Proof. Let f be Λ_g -irresolute and Y be T_1 . Suppose V is Λ_g -closed in Y. Then $f^{-1}(V)$ is Λ_g -closed set in X. Since Y is T_1 , V is closed in Y. Thus f is Λ_g -continuous.

Theorem 3.7 If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ -g-irresolute and Y is T_0 then f is Λ -g-continuous.

Proof. Let f be Λ -g-irresolute, Y a T_0 space and V be Λ -g-closed in Y. Then $f^{-1}(V)$ is Λ -g-closed set in X. Since Y is T_0 , V is closed in Y. Thus f is Λ -g-continuous.

Theorem 3.8 If $f : (X, \tau) \to (Y, \sigma)$ is a λ -g-irresolute bijection and f is λ -open, then f is Λ -g-irresolute.

Proof. Let V be Λ -g-closed and let $f^{-1}(V) \subset U$, where $U \in \lambda O(X, \tau)$. Clearly, $V \subseteq f(U)$. Since $f(U) \in \lambda O(X, \tau)$ and since V is Λ -g-closed in Y, then $Cl_{\lambda}(V) \subset f(U)$ and thus $f^{-1}(Cl_{\lambda}(V)) \subset U$. Since f is λ -irresolute and $Cl_{\lambda}(V)$ is a λ -closed set, then $f^{-1}(Cl_{\lambda}(V))$ is λ -closed in X. Thus $Cl_{\lambda}(f^{-1}(V)) \subset Cl_{\lambda}(f^{-1}(Cl_{\lambda}(V))) = f^{-1}(Cl_{\lambda}(V)) \subset U$. Therefore, $Cl_{\lambda}(f^{-1}(V)) \subseteq U$. So, $f^{-1}(V)$ is Λ -g-closed and f is a Λ -g-irresolute bijection. **Definition 5** A topological space (X, τ) is called:

(1) a $T_g\Lambda$ -space if every $g\Lambda$ -closed is g-closed.

(2) a T_{Λ_g} -space if every Λ -g-closed is Λ_g -closed.

Recall that a function $f : (X, \tau) \to (Y, \sigma)$ is said to be *gc*-irresolute [2] if $f^{-1}(V)$ is *g*-closed in X for every *g*-closed set V in Y. It is clear that a function $f : (X, \tau) \to (Y, \sigma)$ is *gc*-irresolute if and only if $f^{-1}(V)$ is *g*-open in X for every *g*-open set V in Y.

Theorem 3.9 If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ_g -irresolute and closed, then f is gc-irresolute.

Proof. It follows immediately from ([4], Proposition 2).

Theorem 3.10 If a function $f : (X, \tau) \to (Y, \sigma)$ is $g\Lambda$ -irresolute and X is a $T_g\Lambda$ -space, then f is gc-irresolute.

Proof. Let f be $g\Lambda$ -irresolute and V a g-closed set in X. Then V is $g\Lambda$ -closed in Y. Since f is $g\Lambda$ -irresolute, $f^{-1}(V)$ is $g\Lambda$ -closed in X. But X is a $T_g\Lambda$ -space. Therefore $f^{-1}(V)$ is g-closed in X and this implies that f is gc-irresolute.

Remark 3.11 The condition that X is a $T_g\Lambda$ -space cannot be omitted in above theorem as shown in the following example.

Example 3.12 Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$ and $\sigma = \{\phi, Y, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Note that (X, τ) is not a $T_g\Lambda$ -space. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the function defined as follows f(a) = b, f(b) = a, f(c) = d and f(d) = c. Then fis $g\Lambda$ -irresolute but not gc-irresolute, since $f^{-1}(\{d\}) = \{c\}$ is not g-closed in (X, τ) .

Theorem 3.13 If a function function $f : (X, \tau) \to (Y, \sigma)$ is Λ -g-irresolute and X is a T_{Λ_q} -space then f is Λ_g -irresolute.

Proof. Let B be any Λ_g -closed set in Y. Then B is Λ -g-closed in Y. Since, f is Λ -g-irresolute, then $f^{-1}(B)$ is Λ -g-closed in X. But X is T_{Λ_g} -space. Therefore $f^{-1}(B)$ is Λ_g -closed in X which implies that f is Λ_g -irresolute.

Remark 3.14 The condition that X is a T_{Λ_g} -space can not be omitted in Theorem 3.13 as it is shown in our next example.

Example 3.15 Let f be as in Example 3.12. Then f is Λ -g-irresolute but not Λ_g -irresolute, where X is not T_{Λ_q} -space. $f^{-1}(\{d\}) = \{c\}$ is not Λ_g -closed in (X, τ) .

We recall that the space X is called a λ -space [1] if the set of all λ -open subsets form a topology on X. Clearly a space X is a λ - space if and only if the intersection of two λ -open sets is λ -open. An example of a λ -space is a $T_{\frac{1}{2}}$ -space, where a space X is called $T_{\frac{1}{2}}$ [5] if every singleton is open or closed.

Theorem 3.16 If $f_i : (X, \tau_i) \to (Y, \sigma_i) (i \in I)$ is a family of functions, where X is a λ -space and Y is any topological space, then every f_i is Λ -g-continuous.

Proof. It follows from ([9], Theorem 2.4).

Theorem 3.17 (i) If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ -g-continuous then $f(Cl_{\lambda}(A)) \subset Cl_{\lambda}(f(A))$ for every A of X.

(ii) If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ -g-irresolute then for every subset A of X, $f(Cl_{\Lambda-g}(A)) \subset Cl_{\lambda}(f(A))$ (where $Cl_{\Lambda-g}(A)$ is the intersection of the smallest Λ -g-closed set containing A.)

Proof. (i) It follows from the fact that every λ -continuous is Λ_q -continuous.

(ii) If $A \subset X$, then consider $Cl_{\lambda}(f(A))$ which is λ -closed in Y. Thus by Definition 4, $f^{-1}Cl_{\lambda}(f(A))$ is Λ -g-closed in X. Furthermore, $A \subset f^{-1}(f(A)) \subset f^{-1}(Cl_{\lambda}(f(A)))$. Therefore $Cl_{\Lambda-g}(A) \subset f^{-1}(Cl_{\lambda}(f(A)))$ and consequently, $f(Cl_{\Lambda-g}(A)) \subset f(f^{-1}(Cl_{\lambda}(f(A)))) \subset Cl_{\lambda}(f(A))$.

Theorem 3.18 If a map $f : X \to Y$ is Λ_g -irresolute, then it is Λ_g -continuous but not conversely.

Proof. Since every closed set is Λ_g -closed, it is proved that f is Λ_g -continuous. The converse need not be true as it is seen from the following example.

Example 3.19 Let $X = Y = \{a, b, c, d\}, \sigma = \{\phi, X, \{b\}, \{d\}, \{b, d\}\}, \tau = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \}.$ Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = d = f(d), f(b) = b and f(c) = c. Then f is Λ_q -continuous but not Λ_q -irresolute.

Theorem 3.20 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a T_1 space. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is Λ_g -continuous function where $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are Λ_g -continuous.

Proof. Let F be any closed set in Z. Since g is Λ_g -continuous, $g^{-1}(F)$ is Λ_g -closed in Y. But Y is a T_1 -space and so $g^{-1}(F)$ is closed in Y. Since f is Λ_g -continuous, $f^{-1}(g^{-1}(F))$ is Λ_g -closed in X. Hence, $g \circ f$ is Λ_g -continuous.

Theorem 3.21 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a T_1 space. (1) The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is λ -continuous function where $f : (X, \tau) \to (Y, \sigma)$ is λ -continuous and $g : (Y, \sigma) \to (Z, \eta)$ is Λ_g -continuous.

(2) The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is g-continuous function where $f : (X, \tau) \to (Y, \sigma)$ is g-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is Λ_g -continuous.

(3) The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is Λ -g-continuous function where $f : (X, \tau) \to (Y, \sigma)$ is Λ -g-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is Λ_g -continuous.

Proof. Similar to the proof of Theorem 3.20.

Theorem 3.22 Let (X, τ) and (Z, η) be any topological spaces and (Y, σ) be a T_0 space. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is λ -continuous function where $f : (X, \tau) \to (Y, \sigma)$ is λ -irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is Λ -g-continuous.

Proof. Let V be any closed set in Z. Since g is Λ -g-continuous, $g^{-1}(V)$ is Λ -g-closed in Y. But Y is a T_0 -space and so $g^{-1}(V)$ is λ -closed in Y. Since f is λ -irresolute, $f^{-1}(g^{-1}(V))$ is λ -closed in X. Hence, $g \circ f$ is λ -continuous.

Theorem 3.23 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a $T_g\Lambda$ space. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is g-continuous function where $f : (X, \tau) \to (Y, \sigma)$ is g-c-irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is g Λ -continuous.

Proof. This follows from the definitions.

Theorem 3.24 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a T_{Λ_g} space. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is Λ_g -continuous function, where $f : (X, \tau) \to (Y, \sigma)$ is Λ_g -irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is Λ -g-continuous.

Proof. This follows from definitions.

Recall that a space X is called locally indiscrete if and only if every open set is closed if and only if every λ -open set of X is open in X.

Finally, we get the following diagram:

where S_1 is a locally indiscrete space.

References

- [1] F.G. Arenas, J. Dontchev and M. Ganster, On λ -sets and the dual of generalized continuity, Questions Answers Gen. Topology, **15** (1997), 3-13.
- [2] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous Maps in topological spaces, Mem. Fac. Kochi Univ., 12 (1991), 5.
- [3] M. Caldas, S. Jafari and T. Noiri, On Λ-generalized closed sets in topological spaces, Acta Math. Hungar., 118(4) (2008), 337-343.
- M. Caldas, Further results on generalized open mappings in topological spaces, Bull. Cal. Math. Soc. 88 (1996), 37-42.
- [5] W. Dunham, $T_{\frac{1}{2}}$ -spaces, Kyungpook Math. J., 17 (1977), 161-169.
- [6] E. Ekici, S. Jafari, M. Caldas and T. Noiri, Weakly λ-continuous functions, Novi Sad J.Math, Vol. 38, No.2, (2008), 47-56.

- [7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat.Palermo, 19(2), (1970), 89-96.
- [8] H.Maki Generalized Λ-sets and the associated closure operator, The Special Issue in Commemoration Of Prof.Kazusada IKED'S Retirement, 1 Oct.(1986),139-146.
- [9] S. Pious Missier and M.G. Rani, On $\Lambda\lambda$ -sets in topological spaces,(submitted).

Addresses :

S. Pious Missier Post Graduate and Research Department of Mathematics V. O. Chidambaram College Thoothukudi 628 008 Tamil Nadu, INDIA. email: spmissier@yahoo.com

M. G. Rani Post Graduate and Research Department of Mathematics V. O. Chidambaram College Thoothukudi 628 008 Tamil Nadu, INDIA. email: kanchidev@gmail.com

M. Caldas Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ, BRASIL. e-mail: gmamccs@vm.uff.br

S. Jafari College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, DENMARK. e-mail: jafari@stofanet.dk