on Λ-generalized continuous functions*

S.P. Missier, M.G. Rani, M. Caldas and S. Jafari

Abstract

In this paper, we introduce a new class of continuous functions as an application of Λ-generalized closed sets (namely Λ_{g}-closed set, Λ - g-closed set and $g \Lambda$-closed set) namely Λ-generalized continuous functions (namely Λ_{g}-continuous, Λ - g-continuous and $g \Lambda$-continuous) and study their properties in topological space.

1 Introduction and Preliminaries

Levine [7] introduced g-closed set. Maki [8] introduced the notion of Λ-sets in topological spaces. A subset A of a topological space (X, τ) is called a Λ-set if it coincides with its kernel (the intersection of all open supersets of A). In [1], Arenas et al. introduced the notions of λ-open sets, and λ-closed sets and presented fundamental results for these sets. They also introduced [1] λ - continuity, which is weaker than continuity. Recently, M. Caldas, S. Jafari and T. Noiri [3] introduced Λ-generalized closed sets in topological space. The aim of this paper is to introduce a weak form of continuous functions called Λ-generalized continuous functions. Moreover, the relationships and properties of Λ-generalized continuous functions are obtained.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. Let A be a subset of X. We denote the interior, the closure and the complement of a set A by $\operatorname{Int}(A), C l(A)$ and $X \backslash A$ or A^{c}, respectively. A subset A of a space (X, τ) is

[^0]called λ-closed [1] if $A=L \cap D$, where L is a Λ-set and D is a closed set. The intersection of all λ-closed sets containing a subset A of X is called the λ-closure of A and is denoted by $C l_{\lambda}(A)$. The complement of a λ-closed set is called λ-open. We denote the collection of all λ-open sets by $\lambda O(X, \tau)$.

Recall that a subset A of a topological space (X, τ) is called generalized closed (briefly g-closed) [7] if $C l(A) \subset U$ whenever $A \subset U$ and U is open in $(X, \tau) . B$ is a g-open set of (X, τ) if and only if B^{c} is g-closed.

Definition 1 A subset A of a topological space (X, τ) is called a Λ-generalized closed, briefly Λ_{g}-closed [3], (resp. Λ-g-closed, $g \Lambda$-closed) if $C l(A) \subseteq U\left(\right.$ resp. $\left.C l_{\lambda}(A) \subset U, C l_{\lambda}(A) \subset U\right)$ whenever $A \subset U$ and U is λ-open (resp. U is λ-open, U is open) in (X, τ).

Remark 1.1 From the above definitions, we have the following.
(1) Λ_{g}-closed sets and λ-closed sets are independent concepts.
(2) Λ-g-closed sets and g-closed sets are independent concepts.
(3) λ-closed sets and g-closed sets are also independent concepts.

From the above definitions and remark 1.1, we have the following diagram.

$$
\begin{array}{ccccc}
\text { closed } & \Rightarrow & \Lambda_{g} \text {-closed } & \Rightarrow & g \text {-closed } \\
\Downarrow & & \Downarrow & & \Downarrow \\
\lambda \text {-closed } & \Rightarrow & \Lambda \text {-g-closed } & \Rightarrow & g \Lambda \text {-closed }
\end{array}
$$

Example 1.2 (i) Let $X=\{a, b, c\}$ with a topology $\tau=\{\emptyset,\{a\},\{a, b\}, X\}$. Thus $\lambda O(X, \tau)=$ $\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\},\{b, c\}, X\}$. Take $A=\{a, c\}$. Observe that A is a g-closed set but it is not Λ-g-closed.
(ii) Let $X=\{a, b, c\}$ with a topology $\tau=\{\emptyset,\{a\},\{b\},\{a, b\}, X\}$. Then, $A=\{b\}$ is a λ closed set but it is not g-closed.
(iii) Let $X=\{a, b, c\}$ with a topology $\tau=\{\emptyset,\{a\}, X\}$. Then, $A=\{a, b\}$ is a Λ_{g}-closed set but it is not λ-closed.

Definition 2 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called:
(1) g-continuous [7] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ).
(2) λ-continuous [1] if $f^{-1}(V)$ is λ-closed in (X, τ) for every closed set V of (Y, σ).

2Λ-generalized continuous functions

We introduce the following notions:

Definition 3 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called:
(1) Λ_{g}-continuous if $f^{-1}(V)$ is Λ_{g}-closed in X, for every closed set in Y.
(2) Λ - g-continuous if $f^{-1}(V)$ is Λ-g-closed in X, for every closed set in Y.
(3) $g \Lambda$-continuous if $f^{-1}(V)$ is $g \Lambda$-closed in X, for every closed set in Y.

Example 2.1 Let $X=\{a, b, c, d\}=Y, \tau=\{\phi, X,\{b\},\{b, c\},\{a, b\},\{a, b, c\}\}$ and $\sigma=$ $\{\phi, Y,\{a\},\{b, c\},\{a, b, c\},\{b, c, d\}\}$. Define the function $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=b=$ $f(b), f(c)=c, f(d)=d$. Then f is Λ_{g}-continuous, Λ - g-continuous and $g \Lambda$-continuous.

Proposition 2.2 Every continuous function is Λ_{g}-continuous (resp. Λ - g-continuous, $g \Lambda$ continuous).

Proof. By [3], every closed set is Λ_{g}-closed (resp Λ - g-closed, $g \Lambda$-closed) and the proof follows.

Example 2.3 Let $X=Y=\{a, b, c, d\}, \tau=\{\phi, X,\{a\},\{b, c\},\{a, b, c\},\{b, c, d\}\}$ and $\sigma=$ $\{\phi, Y,\{b\},\{b, c\},\{a, b\},\{a, b, c\}\}$. Define the function $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=f(b)=b$, $f(c)=c, f(d)=d$. Then f is Λ_{g}-continuous, Λ - g-continuous and $g \Lambda$-continuous but not continuous.

Proposition 2.4 Every Λ_{g}-continuous function is g-continuous.
Proof. It follows from the fact that every Λ_{g}-closed set is g-closed set [3].

Example 2.5 The function f in Example 2.3 with $\tau=\{\phi, X,\{b\},\{b, c\},\{a, b\},\{a, b, c\}\}$, $\sigma=\{\phi, Y,\{a\},\{a, c\},\{a, b\},\{a, b, c\}\}$ is g-continuous but not Λ_{g}-continuous since for the closed set $U=\{b, d\}$ in $(Y, \sigma), f^{-1}(U)=\{a, b, d\}$ which is not Λ_{g}-closed in (X, τ).

Proposition 2.6 Every λ-continuous function and Λ_{g}-continuous function are Λ - g-continuous function.

Proof. By [3], every λ-closed set is Λ - g-closed set and every Λ_{g}-closed set is Λ - g-closed set, the proof follows.

Example 2.7 Let (X, τ) and (Y, σ) be as in Example 2.3.
(i) Define a function $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=a, f(c)=c, f(b)=d=f(d)$. Then f is Λ-g-continuous but not λ-continuous since for the closed set $U=\{c, d\}$ in (Y, σ), $f^{-1}(U)=\{b, c, d\}$ which is not λ-closed in (X, τ).
(ii) Define a function $f: X \rightarrow Y$ by $f(a)=b, f(b)=a, f(c)=d$ and $f(d)=c$. Then f is Λ -g-continuous but not Λ_{g}-continuous since for the closed set $U=\{d\}$ in $(Y, \sigma), f^{-1}(U)=\{c\}$ which is not Λ_{g}-closed in (X, τ).

Remark 2.8 (1) Λ_{g}-continuous and λ-continuous are independent.
(2) Λ-g-continuous and g-continuous are independent.
(3) λ-continuous and g-continuous are independent.

Example 2.9 (i) The function f in Example 2.7(i) is Λ_{g}-continuous but not λ-continuous. (ii) Let (X, τ) and (Y, σ) be as in Example 2.5. Then f in Example 2.7(ii) is λ-continuous but not Λ_{g}-continuous.
(iii) f is λ-continuous but not g-continuous.
(iv) f is Λ-g-continuous but not g-continuous.
(v) Let (X, τ) and (Y, σ) be as in Example 2.5 and the function f be an identity function from X to Y. Then f is g-continuous but neither Λ - g-continuous nor λ-continuous.

We get the following diagram:

```
continuous }=>\quad\mp@subsup{\Lambda}{g}{}\mathrm{ -continuous }=>g\mathrm{ -continuous
    \Downarrow
                                    \Downarrow
                                    \Downarrow
\lambda-continuous }=>|\Lambda\mathrm{ -g-continuous }=>g\\mathrm{ -continuous
```


3 Properties of Λ-generalized continuous functions

Theorem 3.1 If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ_{g}-continuous and X is T_{1} then f is continuous.

Proof. Let f be Λ_{g}-continuous and X be T_{1}. Assume that V is closed in Y. Hence $f^{-1}(V)$ is Λ_{g}-closed set in X. Since every Λ_{g}-closed is closed in a T_{1} space X [3], then $f^{-1}(V)$ is closed set in X. This shows that f is continuous.

Corollary 3.2 If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ_{g}-continuous and X is T_{1} then f is λ-continuous.

Theorem 3.3 If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ - g-continuous and X is T_{0} then f is λ-continuous.

Proof. Let f be Λ - g-continuous and X be T_{0}. Let V be closed in $Y . f^{-1}(V)$ is Λ - g-closed in X. Since Λ - g-closed is λ-closed in a T_{0} space $X[9]$, then $f^{-1}(V)$ is λ-closed in X. This shows that f is λ-continuous.

Definition 4 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be:
(i) Λ_{g}-irresolute if $f^{-1}(V)$ is Λ_{g}-closed in X for every Λ_{g}-closed set V in Y.
(ii) Λ-g-irresolute if $f^{-1}(V)$ is Λ-g-closed in X for every Λ - g-closed set V in Y.
(iii) $g \Lambda$-irresolute if $f^{-1}(V)$ is $g \Lambda$-closed in X for every $g \Lambda$-closed set V in Y.

Recall that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be λ-closed if $f(F)$ is λ-closed in Y for every λ-closed set F of X.

Lemma 3.4 [3]. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is λ-closed if and only if for each subset B of Y and each $U \in \lambda O(X, \tau)$ containing $f^{-1}(B)$, there exists $V \in \lambda O(Y, \sigma)$ such that $B \subset V$ and $f^{-1}(V) \subset U$.

Theorem 3.5 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a continuous λ-closed function. Then f is $\Lambda_{g^{-}}$ irresolute.

Proof. Let B be Λ_{g}-closed in (Y, σ) and U a λ-open set of (X, τ) containing $f^{-1}(B)$. Since f is λ-closed, by Lemma 3.4 there exists a λ-open set V of (Y, σ) such that $B \subset V$ and $f^{-1}(V) \subset U$. Since B is $\Lambda_{g^{-}}$-closed in $(Y, \sigma), C l(B) \subset V$ and hence $f^{-1}(B) \subset f^{-1}(C l(B)) \subset$ $f^{-1}(V) \subset U$. Since f is continuous, $f^{-1}(C l(B))$ is closed and hence $C l\left(f^{-1}(B)\right) \subset U$. This shows that $f^{-1}(B)$ is Λ_{g}-closed in (X, τ). Therefore f is Λ_{g}-irresolute.

Theorem 3.6 If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ_{g}-irresolute and Y is T_{1} then f is Λ_{g}-continuous.

Proof. Let f be Λ_{g}-irresolute and Y be T_{1}. Suppose V is Λ_{g}-closed in Y. Then $f^{-1}(V)$ is Λ_{g}-closed set in X. Since Y is T_{1}, V is closed in Y. Thus f is Λ_{g}-continuous.

Theorem 3.7 If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ - g-irresolute and Y is T_{0} then f is -g-continuous.

Proof. Let f be Λ - g-irresolute, Y a T_{0} space and V be $\Lambda-g$-closed in Y. Then $f^{-1}(V)$ is $\Lambda-g$-closed set in X. Since Y is T_{0}, V is closed in Y. Thus f is $\Lambda-g$-continuous.

Theorem 3.8 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a λ-g-irresolute bijection and f is λ-open, then f is Λ-g-irresolute.

Proof. Let V be Λ - g-closed and let $f^{-1}(V) \subset U$, where $U \in \lambda O(X, \tau)$. Clearly, $V \subseteq f(U)$. Since $f(U) \in \lambda O(X, \tau)$ and since V is Λ - g-closed in Y, then $C l_{\lambda}(V) \subset f(U)$ and thus $f^{-1}\left(C l_{\lambda}(V)\right) \subset U$. Since f is λ-irresolute and $C l_{\lambda}(V)$ is a λ-closed set, then $f^{-1}\left(C l_{\lambda}(V)\right)$ is λ-closed in X. Thus $C l_{\lambda}\left(f^{-1}(V)\right) \subset C l_{\lambda}\left(f^{-1}\left(C l_{\lambda}(V)\right)\right)=f^{-1}\left(C l_{\lambda}(V)\right) \subset U$. Therefore, $C l_{\lambda}\left(f^{-1}(V)\right) \subseteq U$. So, $f^{-1}(V)$ is Λ - g-closed and f is a Λ - g-irresolute bijection.

Definition 5 A topological space (X, τ) is called:
(1) a $T_{g} \Lambda$-space if every $g \Lambda$-closed is g-closed.
(2) a $T_{\Lambda_{g}}$-space if every Λ-g-closed is Λ_{g}-closed.

Recall that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be $g c$-irresolute [2] if $f^{-1}(V)$ is g-closed in X for every g-closed set V in Y. It is clear that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $g c$-irresolute if and only if $f^{-1}(V)$ is g-open in X for every g-open set V in Y.

Theorem 3.9 If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ_{g}-irresolute and closed, then f is gcirresolute.

Proof. It follows immediately from ([4], Proposition 2).
Theorem 3.10 If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $g \Lambda$-irresolute and X is a $T_{g} \Lambda$-space, then f is gc-irresolute.

Proof. Let f be $g \Lambda$-irresolute and V a g-closed set in X. Then V is $g \Lambda$-closed in Y. Since f is $g \Lambda$-irresolute, $f^{-1}(V)$ is $g \Lambda$-closed in X. But X is a $T_{g} \Lambda$-space. Therefore $f^{-1}(V)$ is g-closed in X and this implies that f is $g c$-irresolute.

Remark 3.11 The condition that X is a $T_{g} \Lambda$-space cannot be omitted in above theorem as shown in the following example.

Example 3.12 Let $X=\{a, b, c, d\}, \tau=\{\phi, X,\{a\},\{b, c\},\{a, b, c\},\{b, c, d\}\}$ and $\sigma=\{\phi, Y,\{b\},\{a, b\},\{b, c\},\{a, b, c\}\}$. Note that (X, τ) is not a $T_{g} \Lambda$-space. Let $f:(X, \tau) \rightarrow$ (Y, σ) be the function defined as follows $f(a)=b, f(b)=a, f(c)=d$ and $f(d)=c$. Then f is $g \Lambda$-irresolute but not gc-irresolute, since $f^{-1}(\{d\})=\{c\}$ is not g-closed in (X, τ).

Theorem 3.13 If a function function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ-g-irresolute and X is a $T_{\Lambda_{g}}$-space then f is Λ_{g}-irresolute.

Proof. Let B be any Λ_{g}-closed set in Y. Then B is Λ - g-closed in Y. Since, f is Λ -g-irresolute, then $f^{-1}(B)$ is Λ - g-closed in X. But X is $T_{\Lambda_{g}}$-space. Therefore, $f^{-1}(B)$ is Λ_{g}-closed in X which implies that f is Λ_{g}-irresolute.

Remark 3.14 The condition that X is a $T_{\Lambda_{g}}$-space can not be omitted in Theorem 3.13 as it is shown in our next example.

Example 3.15 Let f be as in Example 3.12. Then f is Λ - g-irresolute but not Λ_{g}-irresolute, where X is not $T_{\Lambda_{g}}$-space. $f^{-1}(\{d\})=\{c\}$ is not Λ_{g}-closed in (X, τ).

We recall that the space X is called a λ-space [1] if the set of all λ-open subsets form a topology on X. Clearly a space X is a λ - space if and only if the intersection of two λ-open sets is λ-open. An example of a λ-space is a $T_{\frac{1}{2}}$-space, where a space X is called $T_{\frac{1}{2}}$ [5] if every singleton is open or closed .

Theorem 3.16 If $f_{i}:\left(X, \tau_{i}\right) \rightarrow\left(Y, \sigma_{i}\right)(i \in I)$ is a family of functions, where X is a λ-space and Y is any topological space, then every f_{i} is Λ - g-continuous.

Proof. It follows from ([9], Theorem 2.4).
Theorem 3.17 (i) If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ-g-continuous then $f\left(C l_{\lambda}(A)\right) \subset$ $C l_{\lambda}(f(A))$ for every A of X.
(ii) If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ - g-irresolute then for every subset A of X, $f\left(C l_{\Lambda-g}(A)\right) \subset C l_{\lambda}(f(A))$ (where $C l_{\Lambda-g}(A)$ is the intersection of the smallest Λ - g-closed set containing A.)

Proof. (i) It follows from the fact that every λ-continuous is Λ_{g}-continuous.
(ii) If $A \subset X$, then consider $C l_{\lambda}(f(A))$ which is λ-closed in Y. Thus by Definition 4, $f^{-1} C l_{\lambda}(f(A))$ is Λ - g-closed in X. Furthermore, $A \subset f^{-1}(f(A)) \subset f^{-1}\left(C l_{\lambda}(f(A))\right)$. Therefore $C l_{\Lambda-g}(A) \subset f^{-1}\left(C l_{\lambda}(f(A))\right)$ and consequently, $f\left(C l_{\Lambda-g}(A)\right) \subset f\left(f^{-1}\left(C l_{\lambda}(f(A))\right)\right) \subset$ $C l_{\lambda}(f(A))$.

Theorem 3.18 If a map $f: X \rightarrow Y$ is Λ_{g}-irresolute, then it is Λ_{g}-continuous but not conversely.

Proof. Since every closed set is Λ_{g}-closed, it is proved that f is Λ_{g}-continuous. The converse need not be true as it is seen from the following example.

Example 3.19 Let $X=Y=\{a, b, c, d\}, \sigma=\{\phi, X,\{b\},\{d\},\{b, d\}\}, \tau=\{\phi, Y,\{a\},\{b\},\{a, b\}$,$\} .$
Define a function $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=d=f(d), f(b)=b$ and $f(c)=c$. Then f is Λ_{g}-continuous but not Λ_{g}-irresolute.

Theorem 3.20 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a T_{1} space. The composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is Λ_{g}-continuous function where $f:(X, \tau) \rightarrow(Y, \sigma)$ and $g:(Y, \sigma) \rightarrow(Z, \eta)$ are Λ_{g}-continuous.

Proof. Let F be any closed set in Z. Since g is Λ_{g}-continuous, $g^{-1}(F)$ is Λ_{g}-closed in Y. But Y is a T_{1}-space and so $g^{-1}(F)$ is closed in Y. Since f is Λ_{g}-continuous, $f^{-1}\left(g^{-1}(F)\right)$ is Λ_{g}-closed in X. Hence, $g \circ f$ is Λ_{g}-continuous.

Theorem 3.21 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a T_{1} space.
(1) The composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is λ-continuous function where $f:(X, \tau) \rightarrow(Y, \sigma)$ is λ-continuous and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is Λ_{g}-continuous.
(2) The composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is g-continuous function where $f:(X, \tau) \rightarrow(Y, \sigma)$ is g-continuous and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is Λ_{g}-continuous.
(3) The composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is Λ-g-continuous function where $f:(X, \tau) \rightarrow$ (Y, σ) is Λ-g-continuous and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is Λ_{g}-continuous.

Proof. Similar to the proof of Theorem 3.20.
Theorem 3.22 Let (X, τ) and (Z, η) be any topological spaces and (Y, σ) be a T_{0} space. The composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is λ-continuous function where $f:(X, \tau) \rightarrow(Y, \sigma)$ is λ-irresolute and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is Λ - g-continuous.

Proof. Let V be any closed set in Z. Since g is Λ - g-continuous, $g^{-1}(V)$ is $\Lambda-g$-closed in Y. But Y is a T_{0}-space and so $g^{-1}(V)$ is λ-closed in Y. Since f is λ-irresolute, $f^{-1}\left(g^{-1}(V)\right)$ is λ-closed in X. Hence, $g \circ f$ is λ-continuous.

Theorem 3.23 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a $T_{g} \Lambda$ space. The composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is g-continuous function where $f:(X, \tau) \rightarrow(Y, \sigma)$ is $g c$-irresolute and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is $g \Lambda$-continuous.

Proof. This follows from the definitions.

Theorem 3.24 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a $T_{\Lambda_{g}}$ space. The composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is Λ_{g}-continuous function, where $f:(X, \tau) \rightarrow(Y, \sigma)$ is Λ_{g}-irresolute and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is Λ - g-continuous.

Proof. This follows from definitions.

Recall that a space X is called locally indiscrete if and only if every open set is closed if and only if every λ-open set of X is open in X.

Finally, we get the following diagram:

$$
\text { continuous } \Rightarrow \Lambda_{g} \text {-continuous } \Rightarrow g \text {-continuous }
$$

$$
\begin{array}{ccc}
S_{1} \Uparrow & T_{\Lambda_{g}} \Uparrow & T_{g} \Uparrow \\
\lambda \text {-continuous } \Rightarrow
\end{array} \Rightarrow \begin{gathered}
\text { - } g \text {-continuous }
\end{gathered} \Rightarrow \begin{aligned}
& g \Lambda \text {-continuous }
\end{aligned}
$$

where S_{1} is a locally indiscrete space.

References

[1] F.G. Arenas, J. Dontchev and M. Ganster, On λ-sets and the dual of generalized continuity, Questions Answers Gen. Topology, 15 (1997), 3-13.
[2] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous Maps in topological spaces, Mem. Fac. Kochi Univ., 12 (1991), 5.
[3] M. Caldas, S. Jafari and T. Noiri, On Λ-generalized closed sets in topological spaces, Acta Math. Hungar., 118(4) (2008), 337-343.
[4] M. Caldas, Further results on generalized open mappings in topological spaces, Bull. Cal. Math. Soc. 88 (1996), 37-42.
[5] W. Dunham, $T_{\frac{1}{2}}$-spaces, Kyungpook Math. J., 17 (1977), 161-169.
[6] E. Ekici, S. Jafari, M. Caldas and T. Noiri, Weakly λ-continuous functions, Novi Sad J.Math, Vol. 38, No.2, (2008), 47-56.
[7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat.Palermo, 19(2), (1970), 89-96.
[8] H.Maki Generalized Λ-sets and the associated closure operator, The Special Issue in Commemoration Of Prof.Kazusada IKED'S Retirement, 1 Oct.(1986),139-146.
[9] S. Pious Missier and M.G. Rani, On $\Lambda \lambda$-sets in toplogical spaces,(submitted).

Addresses :

S. Pious Missier

Post Graduate and Research Department of Mathematics
V. O. Chidambaram College

Thoothukudi 628008
Tamil Nadu, INDIA.
email: spmissier@yahoo.com
M. G. Rani

Post Graduate and Research Department of Mathematics
V. O. Chidambaram College

Thoothukudi 628008
Tamil Nadu, INDIA.
email: kanchidev@gmail.com
M. Caldas

Departamento de Matematica Aplicada,
Universidade Federal Fluminense,
Rua Mario Santos Braga, s/n
24020-140, Niteroi, RJ, BRASIL.
e-mail: gmamccs@vm.uff.br
S. Jafari

College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, DENMARK.
e-mail: jafari@stofanet.dk

[^0]: *2000 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05.
 Keywords and phrases: generalized closed sets, Λ-generalized closed sets, λ-open sets, Λ-closed sets, Λ generalized continuous functions.

