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Abstract

M. Ganster and I.L. Reilly [2] introduced a new decomposition of continuity called
LC-continuity. In this paper, we introduce and investigate a generalization LC-
continuity called weakly LC-continuity.
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1 Introduction and Preliminaries

M. Ganster and I.L. Reilly in [2] introduced three types of continuity, that is, LC-irresoluteness,
LC-continuity and sub-LC'- continuity based on a notion, namely locally closed sets, implic-
itly introduced in Kuratowski and Sierpinski’s work [4]. They have further investigated
LC-continuity in [3]. In this paper, we introduce and investigate the class of LC-continuous
functions.

In what follows (X, 7) and (Y, 0) (or X and Y') denote topological spaces. Let A be a subset
of X. We denote the interior, the closure and the complement of a set A by Int(A), CI(A)
and X\ A, respectively.

Definition 1 A subset A of a topological space X is said to be locally closed [1] in X if it
is the intersection of an open subset of X and a closed subset of X. The complement of a

locally closed set is said to be locally open.



The family of all locally closed sets of X containing a point v € X is denoted by LC (X, ).
The family of all locally closed (resp. locally open) sets of X is denoted by LC(X) (resp.
LO(X)). Similarly, we denoted by O(X,x) (resp. C(X,x)) the family of all open (resp.
closed) sets of X containing a point x € X.

Remark 1.1 The following properties are well-known.

(i) A subset A of X is locally closed if and only if its complement X\ A is locally open, it is
the union of an open set and a closed set.

(ii) Every open (resp. closed) subset of X is locally closed.

(11i) The complement of a locally closed set need not be locally closed.

Definition 2 /2] A function f: (X,7) — (Y, 0) is said to be
(1) LC-continuous if f~*(V) € LC(X, 1) for each V € 0.
(2) LC-irresolute if f~1(F) € LC(X, ) for each F € LC(Y,0).

2 Some fundamental properties

We introduce the following notions.

Definition 3 A point © € X is called a LC-cluster point of a subset A of X if UNA #
for every U € LC(X,x). The set of all LC-cluster points of A is called the LC-closure of A
and is denoted by [AlLc. A subset A is said to be LC-closed if A = [A]rc.

The complement of a LC-closed set A is said to be LC-open.

Remark 2.1 For a subset A of a space X, [Al,c =N{V : ACV,V € LO(X)}.

Observe that as an example for Definition 3, take X = {a,b,c} with topology 7 =
{X,0,{a},{a,b}}. Then {a,c} is LC-closed but not locally closed.

Definition 4 A function f : X — Y is said to be weakly LC-continuous at x € X if for
each open set V of Y containing f(x), there exists a locally closed set U in X containing
x such that f(U) C V. If [ is weakly LC-continuous at every point of X, then it is called

weakly LC -continuous on X.



It should be noticed that:
continuity = LC-irresolute = LC-continuity = weak LC-continuity by ([2], p. 421) and
Example 3 of [2]. Example 3 is an example of a weakly LC-continuous function which is not

LC-continuous.

Theorem 2.2 For a function f : X — Y, the following are equivalent:
(1) f is weakly LC-continuous ;

(2) f([AlLc) C CU(f(A)) for every subset A of X;

(3) [f Y(B)lrc C fHCU(B)) for every subset B of Y ;

(4) fY(F) is LC-closed for every closed set F' of Y;

(5) f~1(V) is LC-open for every open set V of Y.

Proof. (1) = (2): Let y € f([A]rc) and let V' be any open set of Y containing 3. Then,
there exists a point x € [A|Lc such that f(z) =y € V. Since f is weakly LC-continuous,
there exists U € LC(X, z) such that f(U) C V. Since x € [A]rc, UN A # () holds and hence
f(A) NV £ ). Therefore we have y = f(x) € CI(f(A)).

(2) = (3): Let B be an arbitrary set containing of ¥ and let A = f~'(B). Then by (2),
we have f([A]rc) C CI(f(A)) C CI(B). This implies that [A],c C f~(CI(B)). That is
[/ (B)]ec € f7HCUBY)).

(3) = (4): Let F be any closed set of Y. By (3), we have [f~(F)|.c C f~'(CI(F)) =
J7YF). By Remark 2.1, [f 7 (F)]rc D f~Y(F) and hence [f~'(F)|rc = f~'(F). Therefore,
J7YF) is LC-closed.

(4) = (5): Let V be any open set of Y. We have f~1(X\V) = X\ f~}(V) and by (4), f~}(V)
is LC-open.

(5) = (1): Let z € X and V € O(Y, f(x)). By (5), z € f~(V) and f~(V) LC-open.
Therefore, X\ f~1(V) is LC-closed and x ¢ [X\ f~'(V)]. Hence there exists U € LC(X, z)
such that U N (X\f~1(V)) = 0; hence U C f~1(V). Therefore, we obtain f(U) C V. This

shows that f is weakly LC-continuous.

Definition 5 Let (X, 1) be a topological space. Since LC(X) is closed under a finite inter-
section, LC(X) is a base of some topology for X. We denote it by T1¢.
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Theorem 2.3 A function f : (X,7) — (Y,0) is weakly LC-continuous if and only if f :

(X, 10) — (Y, 0) is continuous.

Proof. Necessity. Let V € o and z € f~1(V). Then there exists U, € LC(X,z) such
that f(U,) C V. Hence we obtain U{U, : z € f~1(V)} = f~%V) € 7rc. Therefore,
f (X, 1) = (Y, 0) is continuous.

Sufficiency. Let € X and V € O(Y, f(z)). Then z € f (V) € 7rc and there exists
U € LC(X,x) such that x € U C f~'(V); hence f(U) C V. This shows that f is weakly

LC-continuous.

Definition 6 Let A be a subset of X. A mapping r : X — A is called a weakly LC-
continuous retraction if r is weakly LC-continuous and the restriction r |4 is the identity

mapping on A.

Theorem 2.4 Let A be a subset of X andr : X — A be a weakly LC-continuous retraction.
If X is Hausdorff, then A is a LC-closed set of X.

Proof. Suppose that A is not LC-closed. Then, there exists a point x in X such that
z € [A]Lc but ¢ A. 1t follows that r(x) # = because r is weakly LC-continuous retraction.
Since X is Hausdorff there exists disjoint open sets U and V in X such that x € U and
r(z) € V. Now let W be an arbitrary locally closed set containing x. Then W N U is a
locally closed set containing z. Since x € [A]rc, we have (W NU) N A # ¢. Therefore, there
exists a point y in W NU N A. Since y € A, we have r(y) =y € U and hence r(y) ¢ V. This
implies that #(W) ¢ V because y € W. This is contrary to the weakly LC-continuity of r.
Consequently, A is a LC-closed set of X.

Definition 7 the LC-frontier of a subset A of a space X denoted by LC-fr(A), is given by
LC-fr(A) = [Ale N [X\A] e

Theorem 2.5 The set of all points v € X at which f : (X,7) — (Y,0) is not weakly
LC'-continuous 1s identical with the union of the LC-frontiers of the inverse images of open

subsets of Y containing f(x).



Proof. Necessity. Suppose that f is not weakly LC-continuous at a point x of X. Then,
there exists an open set V' C Y containing f(z) such that f(U) is not a subset of V for
every U € LC(X,x). Hence we have U N (X \ f~'(V)) # 0 for every U € LC(X,z). It
follows that z € [X \ f~"(V)]rc. We also have z € f~'(V) C [f~'(V)]Lc. This means that
x € LC-fr(f~'(V)).

Sufficiency. Suppose that x € LC-fr(f~*(V)) for some V € O(Y, f(z)) Now, we assume that
f is weakly LC-continuous at z € X. Then there exists U € LC (X, z) such that f(U) C V.
Therefore, we have z € U C f~ (V). Thus z ¢ [X \ f ' (V)]rc . This is a contradiction.

This means that f is not weakly LC'-continuous at x.

Definition 8 A filter base B is said to be LC-convergent to a point x € X if for any locally
closed set A containing x, there exists By € B such that By C A.

Theorem 2.6 A function f: X — Y is weakly LC-continuous if and only if for each point
x € X and each filter base B on X LC-converging to x, the filter base f(B) is convergent

to f(x).

Proof. Suppose that f is weakly LC-continuous. Let x € X and B be any filter base
LC-converging to x. Since f is weakly LC-continuous, for each open set V' C Y containing
f(z), there exists a locally closed set U in X containing x such that f(U) C V. Since
B is LC-converging to x, then there exists B; € B such that By € U. This implies that
f(By) C V. It follows that f(B;) is convergent to f(z).

Conversely, let x € X and V be any open set containing f(x). Suppose that B = LC(X, z).
Then it follows that B is a filter base LC-converging to . Hence there exists U in B such
that f(U) C V, as we wished to prove.

Definition 9 A space X is said to be LC-separate if for every pair of distinct points x and
y in X, there exist locally closed sets By and By containing x and y, respectively, such that

B1 N B2 - @
Let X = {a,b} with 7 = {X,0,{a}}. (X, 7) is LC-separate but not separate.
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Theorem 2.7 If f : X — Y is a weakly LC-continuous injection and Y is Hausdorff, then
X is LC-separate.

Proof. Let x and y be distinct points of X. Then f(z) # f(y). Since YV is Hausdorff,
there exist disjoint open sets V' and W in Y containing f(z) and f(y), respectively. Since
f is weakly LC-continuous, there exist locally closed sets U; and U, containing x and y,
respectively, such that f(U;) C V and f(Us) C W. It follows that U; N Uy = @. This shows
clearly that X is LC-separate.

Theorem 2.8 If f,g : X = Y are weakly LC-continuous functions and Y 1is Hausdorff,
then A={x € X : f(z) = g(x)} is LC-closed in X.

Proof. Suppose that © ¢ A. Then f(x) # g(z). Since Y is Hausdorff, there exist
V e O, f(z)) and W € O(Y,g(x)) such that V N W = (). Since f and g are weakly
LC-continuous, there exist U € LC(X,z) and G € LC(X,z) such that f(U) C V and
f(G) CcW. Set D=UNG, so D€ LC(X,xz). Hence we have f(D)Ng(D) CVNW = 0.
This shows clearly that x ¢ [A].c. It follows that [A],c C A, that is A is LC-closed in X.

Definition 10 For a function f: X — Y, the graph G(f) = {(z, f(x)) : x € X} is said to
be LC-closed if for each (x,y) € (X x Y)\G(f), there exist U € LC(X,z) and V € O(Y,y)
such that (U x V)N G(f) = 0.

Lemma 2.9 A function f : X — Y has a LC-closed graph G(f) if for each (x,y) €
(X x Y)\G(f), there exist U € LC(X,x) and V € O(Y,y) such that f(U)NV = 0.

Proof. It is an immediate consequence of Definition 10 and the fact that for any subsets

UCcXandV CY, (UxV)NG(f)=0if and only if f(U)NV = 0.

Theorem 2.10 If f : X — Y is weakly LC-continuous and Y is Hausdorff, then G(f) is
LC'-closed in X x Y.



Proof. Let (x,y) € (X x Y)\G(f). It follows that f(x) # y. Since YV is Hausdorff, there
exist disjoint open sets V and W in Y containing f(z) and y, respectively. Since f is weakly
LC-continuous, there exists U € LC(X,x) such that f(U) C V. Therefore f(U)NW =0
and G(f) is LC-closed in X x Y.

Definition 11 Let A be a subset of X, then we say that A is LC-compact relative to X if
every cover of A by locally closed sets of X has a finite subcover. A space X 1is said to be

LC-compact if X s LC-compact in X.

Theorem 2.11 If f : X — Y is a weakly LC-continuous function and A is LC-compact
relative to X, then f(A) is compact relative to Y.

Proof. Suppose that f : X — Y is weakly LC-continuous and let A be LC-compact
relative to X. Let {V, : @ € V} be an open cover of f(A). For each point x € A, there
exists a(x) € V such that f(z) € Vy. Since f is weakly LC-continuous, there exists
U, € LC(X,x) such that f(U) C Vo). The family {U, : © € A} is a cover of A by locally
closed sets of X and hence there exists a finite set Ay of A such that A C U,ec4,U,. Therefore,
we obtain f(A) C Upca,Va(e). This shows that f(A) is compact in Y.

Definition 12 A space X is said to be LC-connected if X can not be expressed as the union

of two nonempty LC'-open sets.
Observe that the Sierpinski space is connected but it is not LC-connected.

Theorem 2.12 If f : X — Y s a weakly LC-continuous function and X is LC'-connected,

then Y is connected.

Proof. Suppose that Y is not connected. Then there exist nonempty open sets V' and
W such that VNW = @ and VUW = Y. Tt follows that f~(V)n f~*(W) = @ and
YVYu f7H W) = X. By weakly LC-continuity of f, it follows from Theorem 2.1 that
Y V) and f~Y(W) are nonempty LC-open sets in X. This shows that X is not LC-

connected. But this is a contradiction. Hence Y is connected.



Definition 13 The intersection of all locally closed sets containing a set A is called the
LC*-closure of A and is denoted by [A]} . This is, for any A C X, [Alfo = N{F € LC(X) :
A C F}.

Remark 2.13 If B is a locally closed set in a space X, then B} = B. The converse is
false. If X denote the real line with the cofinite topology and if B = {% :n € N}. Then
[B]; = B. But B is not locally closed. However, the converse is true if the space X is an
Alexandorff space. A space is said to be Alexandorff if the intersection of any open sets of

X s open in X.

Definition 14 Let p be a point of X and N be a subset of X. N is called a LC-neighborhood
of p in X if there exists a locally open set O of X such that p e O C N.

Lemma 2.14 Let A be a subset of X. Then, p € [Alio if and only if for any LC-
neighborhood Ny, of p in X, AN N, # ¢.

Proof. Necessity. Suppose that p € [A]} . If there exists a LC- neighborhood N of the
point p in X such that N N A = ¢, then by definition, there exists a locally open set O,
such that p € O, C N. Therefore, we have O, N A = ¢, so that A C X\O, . Since X\O, is
locally closed, then [A]}~ C X\O, . As p € [A]}; which is contrary to the hypothesis.
Sufficiency. If p &€ [A]} -, then by definition of [A]} -, there exists a locally closed set F' of X
such that A C F and p ¢ F. Therefore, we have p € X\ F such that X\ F is a locally open
set. Hence X\F is a LC-neighborhood of p in X, but (X\F) N A = ¢. This is contrary to
the hypothesis.

Definition 15 A function f : X — Y s said to be LC*-continuous if the inverse image of

every closed in'Y is locally closed in X.

Theorem 2.15 Let f: X — Y be a function.

(i) The following statements are equivalent:

(a) f is LC*-continuous.

(b) The inverse image of each open set of Y is locally open in X.
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(i1) If f is LC*-continuous, then f([A];-) C CU(f(A)) for every A C X.

(11i) The following statements are equivalent:

(a) For each point x € X and each open set V' of Y containing f(x), there exists a locally
open set U in X containing x such that f(U) C V.

(b) f([Alrc) € CUJ(A)) for every A C X.

(iv) For the following statements (a) = (b) = (¢), and they are equivalent if X is Alezan-
dorff.

(a) f is LC*-continuous.

(b) J([Alzc) € CUJ(A)) for every A C X.

(¢) [[7H(B)]ie) € fTHCUB)) for every B C Y.

Proof. (i) The equivalence is proved by definitions.
(ii) Since A C f~H(CI(f(A))), it is obtained that f([A];) C Cl(f(A)) by using assumptions.
(iii) (a) = (b): Let y € f([A]}¢) and let V any open neighborhood of y. Then, there ex-
ists a point x € X and a locally open set U such that f(z) =y, x € U, z € [A]}~ and
f(U) Cc V. Since z € [A]}, UN A # (0 holds and hence f(A) NV # (). Therefore we have
y = f(x) € CU(f(A)).
(b) = (a): Let z € X and V be any open set containing f(z). Let A = f~1(Y\V), then
x ¢ A. Since f([A]}) C CI(f(A4)) C (Y\V), it is shown that [A];- = A. Then, since
x ¢ [A]; ., there exists a locally open set U containing x such that U N A = () and hence
HU) C f(X\A) C V.
(iv) (a) = (b): Let A be any subset of X. Let y ¢ Cl(f(A)) Then there exist V € O(Y, y)
such that V' N f(A) = 0; hence An f~1(V) = 0. By (i), f (V) € LO(X) and A C
X\f7YV) € LC(X). Therefore, we have [A];, C X\f 1(V) and hence [A]; N f~H(V) = 0.
We obtain f([A];c) NV =0 and y ¢ f([A]}c). Hence f([A]1c) C CU(f(A)).
(b) = (c): Let B be any subset of Y. By (b) f([f (B)]ic) C CUB) and [fY(B)];c) C
f7HCUB)).

Let X be Alexandorff and we prove that (¢) = (a). Let F' be any closed set of Y.
By (o). [f ' (B)]ic) € f7HCUE)) = f7H(F) and hence [f~(B)]1¢) = f71(F). Since X
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is Alexandorff, [f~'(B)];.) € LC(X) and f~'(F) is locally closed. Therefore, f is LC*-

continuous.

Theorem 2.16 If f: X — Y be a function, and let g : X — X X Y be the graph function
of f, defined by g(x) = {(x, f(x))} for every x € X. If g is LC*-continuous, then f is

LC*-continuous.

Proof. Let U be an open set in Y, Then X x U is an open set in X x Y. Since ¢ is
LC*-continuous, it follows of Theorem 2.13(i) that f~'(U) = ¢~ '(X x U) is a locally open
set in X. Thus f is LC*-continuous.

Theorem 2.17 Let {X; : i € I} be any family of topological spaces. If f : X — [1X; is a
LC*-continuous function, then Pr;o f : X — X; is LC*-continuous for each 1 € I, where
Pr; is the projection of [ X; onto X;.

Proof. We shall consider a fixed ¢ € I. Suppose U; is an arbitrary open set in X; . Then
Pr;1(U;) is open in [[ X;. Since f is LC*-continuous, f~'(Pr; ' (U;)) = (Prio f)"Y(U) is

2

locally open in X. Therefore Pr; o f is LC*-continuous.

Definition 16 A space X is said to be:

(i) L-connected if X can not be expressed as the union of two disjoint nonempty locally open
sets.

(i1) L-normal if each pair of non-empty disjoint closed sets can be separated by disjoint locally

open sets.

Theorem 2.18 If f : X — Y s a LC™*-continuous surjection and X is L-connected, then

Y is connected.

Proof. Suppose that Y is not connected. Then there exist nonempty open sets V' and
W such that VNW = @ and VUW = Y. Tt follows that f~(V)n f~1(W) = @ and
YVYu f7H (W) = X. By LC*-continuity of f, it follows that f=*(V) and f='(WW) are
nonempty locally open sets in X. This shows that X is not L-connected. But this is a

contradiction. Hence Y is connected.
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Theorem 2.19 If f : X — Y s a LC*-continuous, closed injection and Y is normal, then

X is L-normal.

Proof. Let F} and F, be disjoint closed subsets of X. Since f is closed and injective, f(F})
and f(F3) are disjoint closed subsets of Y. Since Y is normal, f(F}) and f(F3) are separated
by disjoint open sets V; and Vy respectively. Hence F; C f='(V;), f~' (Vi) € LO(X) for
i=1,2and f~'(V;) N f~'(Vz) = 0 and thus X is L-normal.

References
[1] N. Bourbaki, General Topology, part 1, Addison-Wesley, Reading Mass 1966.

[2] M. Ganster and I.L. Reilly, Locally closed sets and LC-continuous functions, Internat.
J. Math. Math. Sci., 12(1989), 417-424.

[3] M. Ganster and L.L. Reilly, A decomposition of continuity, Acta Math. Hungar.,
56(1990), 299-301.

[4] C. Kuratoski and W. Sierpinski, Sur les differences de deux ensembles fermes, Tohoku
Math. J., 20 (1921), 22-25.

Addresses :

M. Caldas
Departamento de Matematica Aplicada,
Universidade Federal Fluminense,

Rua Mario Santos Braga, s/n
24020-140, Niteroi, RJ Brasil.

e-mail: gmamccs@vm.uff.br

Maximilian Ganster
Department of Mathematics,
Graz University of Technology,
Steyrergasse 30,

A-8010 Graz, AUSTRIA.

e-mail: ganster@weyl.math.tu-graz.ac.at

S. Jafari

College of Vestsjaelland South,
Herrestraede 11,

4200 Slagelse , DENMARK.

e-mail: jafari@stofanet.dk

11



T. Noiri

2949-1 Shiokita-cho, Hinagu
Yatsushiro-Shi, Kumamoto-Ken
869-5142 JAPAN

E-mail: t.noiri@nifty.com

12



