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Abstract

M. Ganster and I.L. Reilly [2] introduced a new decomposition of continuity called
LC-continuity. In this paper, we introduce and investigate a generalization LC-
continuity called weakly LC-continuity.
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1 Introduction and Preliminaries

M. Ganster and I.L. Reilly in [2] introduced three types of continuity, that is, LC-irresoluteness,

LC-continuity and sub-LC- continuity based on a notion, namely locally closed sets, implic-

itly introduced in Kuratowski and Sierpinski's work [4]. They have further investigated

LC-continuity in [3]. In this paper, we introduce and investigate the class of LC-continuous

functions.

In what follows (X; �) and (Y; �) (or X and Y ) denote topological spaces. Let A be a subset

of X: We denote the interior, the closure and the complement of a set A by Int(A), Cl(A)

and XnA, respectively.

De�nition 1 A subset A of a topological space X is said to be locally closed [1] in X if it

is the intersection of an open subset of X and a closed subset of X. The complement of a

locally closed set is said to be locally open.
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The family of all locally closed sets of X containing a point x 2 X is denoted by LC(X; x).

The family of all locally closed (resp. locally open) sets of X is denoted by LC(X) (resp.

LO(X)). Similarly, we denoted by O(X; x) (resp. C(X; x)) the family of all open (resp.

closed) sets of X containing a point x 2 X.

Remark 1.1 The following properties are well-known.

(i) A subset A of X is locally closed if and only if its complement XnA is locally open, it is

the union of an open set and a closed set.

(ii) Every open (resp. closed) subset of X is locally closed.

(iii) The complement of a locally closed set need not be locally closed.

De�nition 2 [2] A function f : (X; �)! (Y; �) is said to be

(1) LC-continuous if f�1(V ) 2 LC(X; �) for each V 2 �.

(2) LC-irresolute if f�1(F ) 2 LC(X; �) for each F 2 LC(Y; �).

2 Some fundamental properties

We introduce the following notions.

De�nition 3 A point x 2 X is called a LC-cluster point of a subset A of X if U \ A 6= ;

for every U 2 LC(X; x). The set of all LC-cluster points of A is called the LC-closure of A

and is denoted by [A]LC. A subset A is said to be LC-closed if A = [A]LC.

The complement of a LC-closed set A is said to be LC-open.

Remark 2.1 For a subset A of a space X, [A]LC =
T
fV : A � V; V 2 LO(X)g.

Observe that as an example for De�nition 3, take X = fa; b; cg with topology � =

fX; ;; fag; fa; bgg. Then fa; cg is LC-closed but not locally closed.

De�nition 4 A function f : X ! Y is said to be weakly LC-continuous at x 2 X if for

each open set V of Y containing f(x), there exists a locally closed set U in X containing

x such that f(U) � V . If f is weakly LC-continuous at every point of X, then it is called

weakly LC-continuous on X.
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It should be noticed that:

continuity ) LC-irresolute ) LC-continuity ) weak LC-continuity by ([2], p. 421) and

Example 3 of [2]. Example 3 is an example of a weakly LC-continuous function which is not

LC-continuous.

Theorem 2.2 For a function f : X ! Y , the following are equivalent:

(1) f is weakly LC-continuous ;

(2) f([A]LC) � Cl(f(A)) for every subset A of X;

(3) [f�1(B)]LC � f�1(Cl(B)) for every subset B of Y ;

(4) f�1(F ) is LC-closed for every closed set F of Y ;

(5) f�1(V ) is LC-open for every open set V of Y .

Proof. (1)) (2): Let y 2 f([A]LC) and let V be any open set of Y containing y. Then,

there exists a point x 2 [A]LC such that f(x) = y 2 V . Since f is weakly LC-continuous,

there exists U 2 LC(X; x) such that f(U) � V . Since x 2 [A]LC , U \A 6= ; holds and hence

f(A) \ V 6= ;. Therefore we have y = f(x) 2 Cl(f(A)).

(2) ) (3): Let B be an arbitrary set containing of Y and let A = f�1(B). Then by (2),

we have f([A]LC) � Cl(f(A)) � Cl(B). This implies that [A]LC � f�1(Cl(B)). That is

[f�1(B)]LC � f�1(Cl(B)).

(3) ) (4): Let F be any closed set of Y . By (3), we have [f�1(F )]LC � f�1(Cl(F )) =

f�1(F ). By Remark 2.1, [f�1(F )]LC � f�1(F ) and hence [f�1(F )]LC = f�1(F ). Therefore,

f�1(F ) is LC-closed.

(4)) (5): Let V be any open set of Y . We have f�1(XnV ) = Xnf�1(V ) and by (4), f�1(V )

is LC-open.

(5) ) (1): Let x 2 X and V 2 O(Y; f(x)). By (5), x 2 f�1(V ) and f�1(V ) LC-open.

Therefore, Xnf�1(V ) is LC-closed and x =2 [Xnf�1(V )]. Hence there exists U 2 LC(X; x)

such that U \ (Xnf�1(V )) = ;; hence U � f�1(V ). Therefore, we obtain f(U) � V . This

shows that f is weakly LC-continuous.

De�nition 5 Let (X; �) be a topological space. Since LC(X) is closed under a �nite inter-

section, LC(X) is a base of some topology for X. We denote it by �LC.
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Theorem 2.3 A function f : (X; �) ! (Y; �) is weakly LC-continuous if and only if f :

(X; �LC)! (Y; �) is continuous.

Proof. Necessity. Let V 2 � and x 2 f�1(V ). Then there exists Ux 2 LC(X; x) such

that f(Ux) � V . Hence we obtain
S
fUx : x 2 f�1(V )g = f�1(V ) 2 �LC . Therefore,

f : (X; �LC)! (Y; �) is continuous.

Su�ciency. Let x 2 X and V 2 O(Y; f(x)). Then x 2 f�1(V ) 2 �LC and there exists

U 2 LC(X; x) such that x 2 U � f�1(V ); hence f(U) � V . This shows that f is weakly

LC-continuous.

De�nition 6 Let A be a subset of X. A mapping r : X ! A is called a weakly LC-

continuous retraction if r is weakly LC-continuous and the restriction r jA is the identity

mapping on A.

Theorem 2.4 Let A be a subset of X and r : X ! A be a weakly LC-continuous retraction.

If X is Hausdor�, then A is a LC-closed set of X.

Proof. Suppose that A is not LC-closed. Then, there exists a point x in X such that

x 2 [A]LC but x 62 A. It follows that r(x) 6= x because r is weakly LC-continuous retraction.

Since X is Hausdor� there exists disjoint open sets U and V in X such that x 2 U and

r(x) 2 V . Now let W be an arbitrary locally closed set containing x. Then W \ U is a

locally closed set containing x. Since x 2 [A]LC , we have (W \U)\A 6= �. Therefore, there

exists a point y in W \U \A. Since y 2 A, we have r(y) = y 2 U and hence r(y) 62 V . This

implies that r(W ) 6� V because y 2 W . This is contrary to the weakly LC-continuity of r.

Consequently, A is a LC-closed set of X.

De�nition 7 the LC-frontier of a subset A of a space X denoted by LC-fr(A), is given by

LC-fr(A) = [A]LC \ [XnA]LC.

Theorem 2.5 The set of all points x 2 X at which f : (X; �) ! (Y; �) is not weakly

LC-continuous is identical with the union of the LC-frontiers of the inverse images of open

subsets of Y containing f(x).
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Proof. Necessity. Suppose that f is not weakly LC-continuous at a point x of X. Then,

there exists an open set V � Y containing f(x) such that f(U) is not a subset of V for

every U 2 LC(X; x). Hence we have U \ (X n f�1(V )) 6= ; for every U 2 LC(X; x). It

follows that x 2 [X n f�1(V )]LC . We also have x 2 f�1(V ) � [f�1(V )]LC . This means that

x 2 LC-fr(f�1(V )).

Su�ciency. Suppose that x 2 LC-fr(f�1(V )) for some V 2 O(Y; f(x)) Now, we assume that

f is weakly LC-continuous at x 2 X. Then there exists U 2 LC(X; x) such that f(U) � V .

Therefore, we have x 2 U � f�1(V ). Thus x =2 [X n f�1(V )]LC . This is a contradiction.

This means that f is not weakly LC-continuous at x.

De�nition 8 A �lter base B is said to be LC-convergent to a point x 2 X if for any locally

closed set A containing x, there exists B1 2 B such that B1 � A.

Theorem 2.6 A function f : X ! Y is weakly LC-continuous if and only if for each point

x 2 X and each �lter base B on X LC-converging to x, the �lter base f(B) is convergent

to f(x).

Proof. Suppose that f is weakly LC-continuous. Let x 2 X and B be any �lter base

LC-converging to x. Since f is weakly LC-continuous, for each open set V � Y containing

f(x), there exists a locally closed set U in X containing x such that f(U) � V . Since

B is LC-converging to x, then there exists B1 2 B such that B1 2 U . This implies that

f(B1) � V . It follows that f(B1) is convergent to f(x).

Conversely, let x 2 X and V be any open set containing f(x). Suppose that B = LC(X; x).

Then it follows that B is a �lter base LC-converging to x. Hence there exists U in B such

that f(U) � V , as we wished to prove.

De�nition 9 A space X is said to be LC-separate if for every pair of distinct points x and

y in X, there exist locally closed sets B1 and B2 containing x and y, respectively, such that

B1 \B2 = ;.

Let X = fa; bg with � = fX; ;; fagg. (X; �) is LC-separate but not separate.
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Theorem 2.7 If f : X ! Y is a weakly LC-continuous injection and Y is Hausdor�, then

X is LC-separate.

Proof. Let x and y be distinct points of X. Then f(x) 6= f(y). Since Y is Hausdor�,

there exist disjoint open sets V and W in Y containing f(x) and f(y), respectively. Since

f is weakly LC-continuous, there exist locally closed sets U1 and U2 containing x and y,

respectively, such that f(U1) � V and f(U2) � W . It follows that U1 \ U2 = ;: This shows

clearly that X is LC-separate.

Theorem 2.8 If f; g : X ! Y are weakly LC-continuous functions and Y is Hausdor�,

then A = fx 2 X : f(x) = g(x)g is LC-closed in X.

Proof. Suppose that x =2 A. Then f(x) 6= g(x). Since Y is Hausdor�, there exist

V 2 O(Y; f(x)) and W 2 O(Y; g(x)) such that V \ W = ;: Since f and g are weakly

LC-continuous, there exist U 2 LC(X; x) and G 2 LC(X; x) such that f(U) � V and

f(G) � W . Set D = U \G, so D 2 LC(X; x). Hence we have f(D) \ g(D) � V \W = ;.

This shows clearly that x =2 [A]LC . It follows that [A]LC � A, that is A is LC-closed in X.

De�nition 10 For a function f : X ! Y , the graph G(f) = f(x; f(x)) : x 2 Xg is said to

be LC-closed if for each (x; y) 2 (X � Y )nG(f), there exist U 2 LC(X; x) and V 2 O(Y; y)

such that (U � V ) \G(f) = ;:

Lemma 2.9 A function f : X ! Y has a LC-closed graph G(f) if for each (x; y) 2

(X � Y )nG(f), there exist U 2 LC(X; x) and V 2 O(Y; y) such that f(U) \ V = ;:

Proof. It is an immediate consequence of De�nition 10 and the fact that for any subsets

U � X and V � Y , (U � V ) \G(f) = ; if and only if f(U) \ V = ;:

Theorem 2.10 If f : X ! Y is weakly LC-continuous and Y is Hausdor�, then G(f) is

LC-closed in X � Y:
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Proof. Let (x; y) 2 (X � Y )nG(f): It follows that f(x) 6= y: Since Y is Hausdor�, there

exist disjoint open sets V and W in Y containing f(x) and y, respectively. Since f is weakly

LC-continuous, there exists U 2 LC(X; x) such that f(U) � V: Therefore f(U) \W = ;

and G(f) is LC-closed in X � Y .

De�nition 11 Let A be a subset of X, then we say that A is LC-compact relative to X if

every cover of A by locally closed sets of X has a �nite subcover. A space X is said to be

LC-compact if X is LC-compact in X.

Theorem 2.11 If f : X ! Y is a weakly LC-continuous function and A is LC-compact

relative to X; then f(A) is compact relative to Y .

Proof. Suppose that f : X ! Y is weakly LC-continuous and let A be LC-compact

relative to X. Let fV� : � 2 rg be an open cover of f(A): For each point x 2 A, there

exists �(x) 2 r such that f(x) 2 V�(x): Since f is weakly LC-continuous, there exists

Ux 2 LC(X; x) such that f(Ux) � V�(x): The family fUx : x 2 Ag is a cover of A by locally

closed sets of X and hence there exists a �nite set A0 of A such that A � [x2A0
Ux: Therefore,

we obtain f(A) � [x2A0
V�(x): This shows that f(A) is compact in Y .

De�nition 12 A space X is said to be LC-connected if X can not be expressed as the union

of two nonempty LC-open sets.

Observe that the Sierpinski space is connected but it is not LC-connected.

Theorem 2.12 If f : X ! Y is a weakly LC-continuous function and X is LC-connected,

then Y is connected.

Proof. Suppose that Y is not connected. Then there exist nonempty open sets V and

W such that V \ W = ; and V [ W = Y . It follows that f�1(V ) \ f�1(W ) = ; and

f�1(V ) [ f�1(W ) = X. By weakly LC-continuity of f , it follows from Theorem 2.1 that

f�1(V ) and f�1(W ) are nonempty LC-open sets in X. This shows that X is not LC-

connected. But this is a contradiction. Hence Y is connected.
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De�nition 13 The intersection of all locally closed sets containing a set A is called the

LC�-closure of A and is denoted by [A]�LC. This is, for any A � X; [A]�LC = \fF 2 LC(X) :

A � Fg.

Remark 2.13 If B is a locally closed set in a space X, then [B]�LC = B. The converse is

false. If X denote the real line with the co�nite topology and if B = f 1
n
: n 2 Ng. Then

[B]�LC = B. But B is not locally closed. However, the converse is true if the space X is an

Alexandor� space. A space is said to be Alexandor� if the intersection of any open sets of

X is open in X.

De�nition 14 Let p be a point of X and N be a subset of X. N is called a LC-neighborhood

of p in X if there exists a locally open set O of X such that p 2 O � N .

Lemma 2.14 Let A be a subset of X. Then, p 2 [A]�LC if and only if for any LC-

neighborhood Np of p in X, A \Np 6= �.

Proof. Necessity. Suppose that p 2 [A]�LC . If there exists a LC- neighborhood N of the

point p in X such that N \ A = �, then by de�nition, there exists a locally open set Op

such that p 2 Op � N . Therefore, we have Op \ A = �, so that A � XnOp . Since XnOp is

locally closed, then [A]�LC � XnOp . As p 62 [A]�LC which is contrary to the hypothesis.

Su�ciency. If p 62 [A]�LC , then by de�nition of [A]�LC , there exists a locally closed set F of X

such that A � F and p 62 F . Therefore, we have p 2 XnF such that XnF is a locally open

set. Hence XnF is a LC-neighborhood of p in X, but (XnF ) \ A = �. This is contrary to

the hypothesis.

De�nition 15 A function f : X ! Y is said to be LC�-continuous if the inverse image of

every closed in Y is locally closed in X.

Theorem 2.15 Let f : X ! Y be a function.

(i) The following statements are equivalent:

(a) f is LC�-continuous.

(b) The inverse image of each open set of Y is locally open in X.
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(ii) If f is LC�-continuous, then f([A]�LC) � Cl(f(A)) for every A � X.

(iii) The following statements are equivalent:

(a) For each point x 2 X and each open set V of Y containing f(x), there exists a locally

open set U in X containing x such that f(U) � V .

(b) f([A]�LC) � Cl(f(A)) for every A � X.

(iv) For the following statements (a) ) (b) ) (c), and they are equivalent if X is Alexan-

dor�.

(a) f is LC�-continuous.

(b) f([A]�LC) � Cl(f(A)) for every A � X.

(c) [f�1(B)]�LC) � f�1(Cl(B)) for every B � Y .

Proof. (i) The equivalence is proved by de�nitions.

(ii) Since A � f�1(Cl(f(A))), it is obtained that f([A]�LC) � Cl(f(A)) by using assumptions.

(iii) (a) ) (b): Let y 2 f([A]�LC) and let V any open neighborhood of y. Then, there ex-

ists a point x 2 X and a locally open set U such that f(x) = y, x 2 U , x 2 [A]�LC and

f(U) � V . Since x 2 [A]�LC , U \ A 6= ; holds and hence f(A) \ V 6= ;. Therefore we have

y = f(x) 2 Cl(f(A)).

(b) ) (a): Let x 2 X and V be any open set containing f(x). Let A = f�1(Y nV ), then

x =2 A. Since f([A]�LC) � Cl(f(A)) � (Y nV ), it is shown that [A]�LC = A. Then, since

x =2 [A]�LC , there exists a locally open set U containing x such that U \ A = ; and hence

f(U) � f(XnA) � V .

(iv) (a)) (b): Let A be any subset of X. Let y =2 Cl(f(A)). Then there exist V 2 O(Y; y)

such that V \ f(A) = ;; hence A \ f�1(V ) = ;. By (i), f�1(V ) 2 LO(X) and A �

Xnf�1(V ) 2 LC(X). Therefore, we have [A]�LC � Xnf�1(V ) and hence [A]�LC \f
�1(V ) = ;.

We obtain f([A]�LC) \ V = ; and y =2 f([A]�LC). Hence f([A]
�

LC) � Cl(f(A)).

(b) ) (c): Let B be any subset of Y . By (b) f([f�1(B)]�LC) � Cl(B) and [f�1(B)]�LC) �

f�1(Cl(B)).

Let X be Alexandor� and we prove that (c) ) (a). Let F be any closed set of Y .

By (c), [f�1(B)]�LC) � f�1(Cl(F )) = f�1(F ) and hence [f�1(B)]�LC) = f�1(F ). Since X
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is Alexandor�, [f�1(B)]�LC) 2 LC(X) and f�1(F ) is locally closed. Therefore, f is LC�-

continuous.

Theorem 2.16 If f : X ! Y be a function, and let g : X ! X � Y be the graph function

of f , de�ned by g(x) = f(x; f(x))g for every x 2 X. If g is LC�-continuous, then f is

LC�-continuous.

Proof. Let U be an open set in Y , Then X � U is an open set in X � Y . Since g is

LC�-continuous, it follows of Theorem 2.13(i) that f�1(U) = g�1(X � U) is a locally open

set in X. Thus f is LC�-continuous.

Theorem 2.17 Let fXi : i 2 Ig be any family of topological spaces. If f : X !
Q
Xi is a

LC�-continuous function, then Pri � f : X ! Xi is LC
�-continuous for each i 2 I, where

Pri is the projection of
Q
Xj onto Xi.

Proof. We shall consider a �xed i 2 I. Suppose Ui is an arbitrary open set in Xi . Then

Pr�1
i (Ui) is open in

Q
Xi. Since f is LC�-continuous, f�1(Pr�1

i (Ui)) = (Pri � f)
�1(Ui) is

locally open in X: Therefore Pri � f is LC�-continuous.

De�nition 16 A space X is said to be:

(i) L-connected if X can not be expressed as the union of two disjoint nonempty locally open

sets.

(ii) L-normal if each pair of non-empty disjoint closed sets can be separated by disjoint locally

open sets.

Theorem 2.18 If f : X ! Y is a LC�-continuous surjection and X is L-connected, then

Y is connected.

Proof. Suppose that Y is not connected. Then there exist nonempty open sets V and

W such that V \ W = ; and V [ W = Y . It follows that f�1(V ) \ f�1(W ) = ; and

f�1(V ) [ f�1(W ) = X. By LC�-continuity of f , it follows that f�1(V ) and f�1(W ) are

nonempty locally open sets in X. This shows that X is not L-connected. But this is a

contradiction. Hence Y is connected.
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Theorem 2.19 If f : X ! Y is a LC�-continuous, closed injection and Y is normal, then

X is L-normal.

Proof. Let F1 and F2 be disjoint closed subsets of X: Since f is closed and injective, f(F1)

and f(F2) are disjoint closed subsets of Y: Since Y is normal, f(F1) and f(F2) are separated

by disjoint open sets V1 and V2 respectively. Hence Fi � f�1(Vi); f
�1(Vi) 2 LO(X) for

i = 1; 2 and f�1(V1) \ f�1(V2) = ; and thus X is L-normal.
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