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Abstract
It is the object of this paper to study further the notion of Λs-semi-

θ-closed sets which is defined as the intersection of a θ-Λs-set and a
semi-θ-closed set. Moreover, we introduce some low separation axioms
using the above notions. Also we present and study the notions of Λs-
continuous functions, Λs-compact spaces and Λs-connected spaces.
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1 Introduction

The notion of θ-Λs-set is introduced and investigated by Caldas et al. [1]

by utilizing semi-θ-open sets. These sets suggested a new class of sets which

they called Λs-semi-θ-closed sets. They offered some properties of these sets.

Among others, they proved that a topological space (X, τ) is semi-θ-T0 if and

only if every singleton of X is Λs-semi-θ-closed. Recall that a topological

space is semi-θ-T0 [1] if to each pair of points x, y ∈ X and x 6= y, there

exists a semi-θ-open set which contains one of them but not the other.

In what follows (X, τ) and (Y, σ) (or X and Y ) denote topological spaces.

Let A be a subset of X. We denote the interior and the closure of a set A

by int(A) and cl(A), respectively.
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2 Preliminaries

In this section we recall the definitions of ΛΛs
θ [1] and Λ

Λ∗
s

θ -sets .

Definition 1 (see [1]) Let A be a subset of a topological space X. By ΛΛs
θ (A)

we denote the set ∩{O ∈ SθO(X, τ) | A ⊂ O}. A subset A of a topological

space (X, τ) is called a ΛΛs
θ -set if A = ΛΛs

θ (A).

Lemma 2.1 For subsets A and Ai (i ∈ I) of a space (X, τ), the following

hold:

(1) A ⊂ ΛΛs
θ (A).

(2) ΛΛs
θ (ΛΛs

θ (A)) = ΛΛs
θ (A).

(3) If A ⊂ B, then ΛΛs
θ (A) ⊂ ΛΛs

θ (B).

(4) ΛΛs
θ (∩{Ai : i ∈ I}) ⊂ ∩{ΛΛs

θ (Ai) : i ∈ I}.
(5) ΛΛs

θ (∪{Ai : i ∈ I}) = ∪{ΛΛs
θ (Ai) : i ∈ I}.

(6) ΛΛs
θ (A) is a ΛΛs

θ -set.

(7) If A is semi-θ-open, then A is a ΛΛs
θ -set.

(8) If Ai is ΛΛs
θ -set for each i ∈ I, then ∩i∈IAi is a ΛΛs

θ -set.

(9) If Ai is ΛΛs
θ -set for each i ∈ I, then ∪i∈IAi is a ΛΛs

θ -set.

Theorem 2.2 Let X be a topological space. We set τΛΛs
θ = {A : A is a ΛΛs

θ − set of X}.
The pair (X, τΛΛs

θ ) is an Alexandroff space.

Proof. This is an immediate consequence of Lemma 2.1.

Definition 2 Let A be a subset of a topological space (X, τ). By Λ
Λ∗
s

θ (A), we

denote the set ∪{B ∈ SθC(X, τ) | B ⊂ A}. A subset A of a topological space

(X, τ) is called a Λ
Λ∗
s

θ -set if A = Λ
Λ∗
s

θ (A).

We obtain the following lemma which is similar to Lemma 2.1.
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Lemma 2.3 For subsets A,B and Ai (i ∈ I) of a topological space (X, τ)

the following properties hold:

(1) Λ
Λ∗
s

θ (A) ⊆ A.

(2) If A ⊆ B, then Λ
Λ∗
s

θ (A) ⊆ Λ
Λ∗
s

θ (B).

(3) If A is semi-θ-closed, then Λ
Λ∗
s

θ (A) = A.

(4) Λ
Λ∗
s

θ (∩{Ai : i ∈ I}) = ∩{ΛΛ∗
s

θ (Ai) : i ∈ I}.
(5) ∪{ΛΛ∗

s
θ (Ai) : i ∈ I} ⊆ Λ

Λ∗
s

θ (∪{Ai : i ∈ I}).

(6) ΛΛs
θ (X − A) = X − Λ

Λ∗
s

θ (A) and

Λ
Λ∗
s

θ (X − A) = X − ΛΛs
θ (A).

(7) Λ
Λ∗
s

θ (A) is a Λ
Λ∗
s

θ -set.

(8) If A is a semi-θ-closed, then A is a Λ
Λ∗
s

θ -set.

(9) If Ai is a Λ
Λ∗
s

θ -set for each i ∈ I, then ∪{Ai | i ∈ I} and ∩{Ai | i ∈ I}
are Λ

Λ∗
s

θ -sets.

Observe that ifX is a topological space and τΛ
Λ∗s
θ = {A : A is a Λ

Λ∗
s

θ − set of X},
then (X, τΛΛs

θ ) is an Alexandroff space.

3 Λs-semi-θ-closed sets

Definition 3 A subset A of a topological space (X, τ) is called Λs-semi-θ-

closed [1], denoted by (Λ, sθ)-closed, if A = T ∩C, where T is a ΛΛs
θ -set and

C is a semi-θ-closed set.

Lemma 3.1 ([1], Lemma 2.23) Let A be a subset of a space (X, τ). Then

the following conditions are equivalent:

(1) A is (Λ, sθ)-closed,

(2) A = P ∩ sclθ(A), where P is a ΛΛs
θ -set,

(3) If A = ΛΛs
θ (A) ∩ sclθ(A).

3



Example 3.2 Let X = {a, b, c, } and τ = {∅, X, {b}, {c}, {b, c}}. The semi

θ-closed sets of (X, τ) are {∅, X, {a}, {b}, {c}, {a, b}, {a, c}}. The set A = {c}
is (Λ, sθ)-closed since it is semi θ-closed but it is not closed.

Example 3.3 Let X = {a, b, c, } and τ = {∅, X, {a}, {b}, {a, b}, {b, c}}. The

set A = {c} is closed but it is not (Λ, sθ)-closed.

The Example 3.2 and Example 3.3 shown that the sets (Λ, sθ)-closed and

closed are independent of each other.

Note that every semi θ-closed set is (Λ, sθ)-closed, but the converse is not

true in general.

Example 3.4 Let (X, τ) as in the Example 3.2.Then B = {b, c} is (Λ, sθ)-

closed since it is ΛΛs
θ -set, but it is not semi θ-closed.

Lemma 3.5 If Ai is (Λ, sθ)-closed for each i ∈ I, then ∩i∈IAi is (Λ, sθ)-

closed.

Proof. Suppose that Ai is (Λ, sθ)-closed for each i ∈ I. Then, for each

i ∈ I there exist a ΛΛs
θ -set Ti and a semi-θ-closed set Ci such that Ai = Ti∩Ci.

Now
⋂
i∈I Ai =

⋂
i∈I(Ti ∩ Ci) = (

⋂
i∈I Ti) ∩ (

⋂
i∈I Ci). By Lemma 2.1,

⋂
i∈I Ti

is a ΛΛs
θ -set and

⋂
i∈I Ci is semi-θ-closed. This shows that

⋂
i∈I Ai is (Λ, sθ)-

closed. 2

Definition 4 A subset A of a space (X, τ) is said to be (sθ, sθ)-generalized

closed if sclθ(A) ⊆ G holds whenever A ⊆ G and G ∈ SθO(X, τ).

Lemma 3.6 A subset A of a space (X, τ) is (sθ, sθ)-generalized closed if and

only if sclθ(A) ⊆ ΛΛs
θ (A).
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Proof. Necessity: Suppose that there is a point xεX such that x /∈ ΛΛs
θ (A).

Then exists a subset OεSθO(X, τ) such that A ⊆ O and x /∈ O. This implies

that sclθ(A) ⊆ O.Hence x /∈ sClθ(A) since A is (sθ, sθ)-generalized closed.

Sufficiency: Obvious.

Theorem 3.7 A subset A of a space (X, τ) is semi-θ-closed if and only if A

is (sθ, sθ)-generalized closed and (Λ, sθ)-closed.

Proof. Necessity: Every semi θ-closed set is both (sθ, sθ)-generalized

closed and (Λ, sθ)-closed..

Sufficiency: SinceA is (sθ, sθ)-generalized closed, then by Lemma 3.3, sclθ(A) ⊆
ΛΛs
θ (A). By assumption and Lemma 3.1 A = ΛΛs

θ (A)
⋂
sClθ(A) = sClθ(A).

i.e., A is semi θ-closed.

Definition 5 A subset A of a topological space (X, τ) is called (Λ, sθ)-open

if X \ A is (Λ, sθ)-closed.

Theorem 3.8 The union of any family of (Λ, sθ)-open sets is a (Λ, sθ)-open

set.

Proof. The proof of this theorem follows by the fact that the intersection

of a family of (Λ, sθ)-closed sets is (Λ, sθ)-closed. 2

Lemma 3.9 The following statements are equivalent for a subset A of a

topological space X:

(1) A is (Λ, sθ)-open

(2) A = T ∪ C, where T is a Λ
Λ∗
s

θ -set and C is a semi-θ-open set.

Proof. The proof of this lemma is clear. 2
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Lemma 3.10 Every Λ
Λ∗
s

θ -set is (Λ, sθ)-open.

Proof. Take A = A ∪ ∅, where A is a Λ
Λ∗
s

θ -set, X is semi-θ-closed and

∅ = X \X. 2

Definition 6 A subset A of a topological space X is called a ΛΛs
θ -D set if

there are two (Λ, sθ)-open sets U and V in X such that U 6= X and A =

U − V .

It is true that every (Λ, sθ)-open set U different from X is a ΛΛs
θ -D set if

A = U and V = ∅.

Definition 7 A topological space (X, τ) is called:

(i) ΛΛs
θ -D0 if for any distinct pair of points x and y of X there exists a ΛΛs

θ -D

set of X containing x but not y or a ΛΛs
θ -D set of X containing y but not x.

(ii) ΛΛs
θ -D1 if for any distinct pair of points x and y of X there exist a ΛΛs

θ -D

set of X containing x but not y and a ΛΛs
θ -D set of X containing y but not

x.

(iii) ΛΛs
θ -D2 if for any distinct pair of points x and y of X there exist disjoint

ΛΛs
θ -D sets G and E of X containing x and y, respectively.

A topological space (X, τ) satisfies the (Λ, sθ)-property if for any distinct

pair of points in X, there is a (Λ, sθ)-open set containing one of the points

but not the other.

Remark 3.11 (i) If (X, τ) satisfies the (Λ, sθ)-property, then it is ΛΛs
θ -D0.

(ii) If (X, τ) is ΛΛs
θ -Di , then it is ΛΛs

θ -Di−1 , where i = 1, 2.

Theorem 3.12 For a topological space (X, τ), the following statements are

true:

(1) (X, τ) is ΛΛs
θ -D0 if and only if it satisfies the (Λ, sθ)-property.

(2) (X, τ) is ΛΛs
θ -D1 if and only if it is ΛΛs

θ -D2.
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Proof. The sufficiency for (1) and (2) follows from the above Remark 3.5.

Necessity condition for (1). Let (X, τ) be ΛΛs
θ -D0 so that for any distinct

pair of points x and y of X at least one belongs to a ΛΛs
θ -D set O. Therefore

we choose x ∈ O and y /∈ O. Suppose O = U − V for which U 6= X and

U and V are (Λ, sθ)-open sets in X. This implies that x ∈ U . For the case

that y /∈ O we have (i) y /∈ U , (ii) y ∈ U and y ∈ V . For (i), the space X

satisfies the (Λ, sθ)-property since x ∈ U and y /∈ U . For (ii), the space X

also satisfies the (Λ, sθ)-property since y ∈ V but x /∈ V .

Necessity condition for (2). Suppose that X is ΛΛs
θ -D1. It follows from

the definition that for any distinct points x and y in X there exist ΛΛs
θ -D

sets G and E such that G containing x but not y and E containing y but not

x. Let G = U − V and E = W −D, where U, V,W and D are (Λ, sθ)-open

sets in X. By the fact that x /∈ E, we have two cases, i.e. either x /∈ W or

both W and D contain x. If x /∈ W , then from y /∈ G either (i) y /∈ U or(ii)

y ∈ U and y ∈ V . If (i) is the case, then it follows from x ∈ U − V that

x ∈ U − (V ∪W ), and also it follows from y ∈ W −D that y ∈ W − (U ∪D).

Thus we have U − (V ∪W ) and W − (U ∪ D) which are disjoint. If (ii) is

the case, it follows that x ∈ U − V , y ∈ V and (U − V ) ∩ V = ∅. If x ∈ W
and x ∈ D, we have y ∈ W −D, x ∈ D and (W −D) ∩D = ∅. This shows

that X is ΛΛs
θ -D2. 2

Definition 8 Let (X, τ) be a topological space. A point x ∈ X which has

only X as the (Λ, sθ)-neighborhood is called a ΛΛs
θ -neat point.

Theorem 3.13 For a topological space (X, τ) that satisfies the (Λ, sθ)-property

the following are equivalent:

(1) (X, τ) is ΛΛs
θ -D1;

(2) (X, τ) has no ΛΛs
θ -neat point.
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Proof. (1)→ (2). Since (X, τ) is ΛΛs
θ -D1, so each point x of X is contained

in a ΛΛs
θ -D set O = U −V and thus in U . By definition U 6= X. This implies

that x is not a ΛΛs
θ -neat point.

(2) → (1). Since X satisfies the (Λ, psθ)-property, then for each distinct

pair of points x, y ∈ X, at least one of them, choose x for example has a

(Λ, sθ)-neighborhood U containing x and not y. Thus U which is different

from X is a ΛΛs
θ -D set. If X has no ΛΛs

θ -neat point, then y is not a ΛΛs
θ -neat

point. This means that there exists a (Λ, sθ)-neighborhood V of y such that

V 6= X. Thus y ∈ (V −U) but not x and V −U is a ΛΛs
θ -D set. Hence X is

ΛΛs
θ -D1. 2

Remark 3.14 It is clear that a topological space (X, τ) that satisfies the

(Λ, sθ)-property is not ΛΛs
θ -D1 if and only if there is a unique ΛΛs

θ -neat point

in X. It is unique because if x and y are both ΛΛs
θ -neat point in X, then at

least one of them say x has a (Λ, sθ)-neighborhood U containing x but not y.

But this is a contradiction since U 6= X.

Definition 9 Let (X, τ) be a topological spaces and A ⊆ X. A point x ∈ X is

called (Λ, sθ)-cluster point of A if for every (Λ, sθ)-open set U of X containing

x we have A∩U 6= ∅. The set of all (Λ, sθ)-cluster points is called the (Λ, sθ)-

closure of A and is denoted by A(Λ,sθ).

Lemma 3.15 Let A and B be subsets of a topological space (X, τ). For the

(Λ, sθ)-closure, the following properties hold.

(1) A ⊂ A(Λ,sθ).

(2) A(Λ,sθ) = ∩{F | A ⊂ F and F is (Λ, sθ)− closed}.
(3) If A ⊂ B, then A(Λ,sθ) ⊂ B(Λ,sθ).

(4) A is (Λ, sθ)-closed if and only if A = A(Λ,sθ).

(5) A(Λ,sθ) is (Λ, sθ)-closed.
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Proof. Straightforward.

Definition 10 A topological space (X, τ) is called a (Λ, sθ)-symmetric if for

x and y in X, x ∈ y(Λ,sθ) implies y ∈ x(Λ,sθ).

Theorem 3.16 A topological space (X, τ) is (Λ, sθ)-symmetric if and only

if for x ∈ X, x(Λ,sθ) ⊆ E whenever x ∈ E and E is (Λ, sθ)-open in (X, τ).

Proof. Assume that x ∈ y(Λ,sθ) but y /∈ x(Λ,sθ). This means that the

complement of x(Λ,sθ) contains y. Therefore the set {y} is a subset of the

complement of x(Λ,sθ). This implies that y(Λ,sθ) is a subset of the complement

of x(Λ,sθ). Now the complement of x(Λ,sθ) contains x which is a contradiction.

Conversely, suppose that {x} ⊂ E and E is (Λ, sθ)-open in (X, τ) but

x(Λ,sθ) is not a subset of E. This means that x(Λ,sθ) and the complement

of E are not disjoint. Let y belongs to their intersection. Now we have

x ∈ y(Λ,sθ) which is a subset of the complement of E and x /∈ E. But this is

a contradiction. 2

Theorem 3.17 For a (Λ, sθ)-symmetric topological space (X, τ), the follow-

ing are equivalent:

(1) (X, τ) satisfies the (Λ, sθ)-property;

(2) (X, τ) is ΛΛs
θ -D0;

(3) (X, τ) is ΛΛs
θ -D1.

Proof. (1)↔ (2) : Lemma 3.10.

(3)→ (2) : Remark 3.11.

(1)→ (3) : Let x 6= y and by (1), we may assume that x ∈ E ⊂ {y}c for some

E (Λ, sθ)-open in (X, τ). Then x /∈ y(Λ,sθ) and hence y /∈ x(Λ,sθ) . Hence there

exists a (Λ, sθ)-open set F such that y ∈ F ⊂ {x}c. Since every (Λ, sθ)-open

set is a ΛΛs
θ -D set, we have that (X, τ) is a ΛΛs

θ -D1 space. 2
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4 (Λ, sθ)-continuous functions

Definition 11 Let (X, τ) and (Y, σ) two topological spaces. A function f :

(X, τ) → (Y, σ) is called (Λ, sθ)-continuous at a point x ∈ X if for every

(Λ, p)-open set V of Y such that f(x) ∈ V there exists a (Λ, sθ)-open set U

of X such that x ∈ U and f(U) ⊆ V .

The function f is called (Λ, sθ)-continuous if f is (Λ, sθ)-continuous at

every point x ∈ X.

Definition 12 Let (X, τ) be a topological space, x ∈ X and {xs, s ∈ S} be

a net of X. We say that the net {xs, s ∈ S} (Λ, sθ)-converges to x if for

every (Λ, sθ)-open set U containing x there exists an element s0 ∈ S such

that s ≥ s0 implies xs ∈ U .

Theorem 4.1 Let (X, τ) be a topological space and A ⊆ X. A point x ∈
A(Λ,sθ) if and only if there exists a net {xs, s ∈ S} of A which (Λ, sθ)-

converges to x.

Proof. The existence of such a net clearly implies that x ∈ A(Λ,sθ). Sup-

pose x ∈ A(Λ,sθ) and let us denote by U the set of all (Λ, sθ)-open subsets

U of X such that x ∈ U directed by the relation ⊆, i.e., let us define that

U1 ≤ U2 if U2 ⊆ U1. The net {xU , U ∈ U}, where xU is an arbitrary point of

A ∩ U , (Λ, sθ)-converges to x. 2

Theorem 4.2 For a function f : (X, τ) → (Y, σ), the following are equiva-

lent:

(1) f is (Λ, sθ)-continuous;

(2) f−1(V ) is (Λ, sθ)-open in (X, τ) for every (Λ, sθ)-open set V of (Y, σ);

(3) f−1(F ) is (Λ, sθ)-closed in (X, τ) for every (Λ, sθ)-closed set F of (Y, σ);
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(4) f(A(Λ,sθ)) ⊂ [f(A)](Λ,sθ) for each subset A of X;

(5) [f−1(B)](Λ,sθ) ⊂ f−1(B(Λ,sθ)) for each subset B of Y ;

(6) For every x ∈ X and every net {xs, s ∈ S} of X which (Λ, sθ)-converges

to x in X, the net {f(xs), s ∈ S} (Λ, sθ)-converges to f(x) in Y .

Proof. (1)→ (2): Let V be any (Λ, sθ)-open set of (Y, σ) and x ∈ f−1(V ).

Since f is (Λ, sθ)-continuous, there exists a (Λ, sθ)-open set Ux containing

x such that f(Ux) ⊂ V . Therefore, we have x ∈ Ux ⊂ f−1(V ) and hence

f−1(V ) = ∪{Ux | x ∈ f−1(V )}. By Theorem 3.8, f−1(V ) is (Λ, sθ)-open in

(X, τ).

(2) → (1): This is obvious.

(2) ↔ (3): This is obvious from Definition 5.

(3) → (4): Let A be any subset of X. Since A ⊂ f−1([f(A)](Λ,sθ)),

by Lemma 3.15 we have A(Λ,sθ) ⊂ f−1([f(A)](Λ,sθ)) and hence f(A(Λ,sθ)) ⊂
[f(A)](Λ,sθ).

(4) → (5): Let B be any subset of Y . By (4) we have f([f−1(B)](Λ,sθ)) ⊂
[f(f−1(B))](Λ,sθ) ⊂ B(Λ,sθ) and hence [f−1(B)](Λ,sθ) ⊂ f−1(B(Λ,sθ)).

(5) → (3): Let F be any (Λ, sθ)-closed set in (Y, σ). By Lemma 3.15,

[f−1(F )](Λ,sθ) ⊂ f−1(F (Λ,sθ)) =f−1(F ) and [f−1(F )](Λ,sθ) ⊂ f−1(F ). There-

fore, we obtain [f−1(F )](Λ,sθ) = f−1(F ). This shows that f−1(F ) is (Λ, sθ)-

closed in (X, τ).

(1) → (6): Let x ∈ X and {xs | s ∈ S} be a net (Λ, sθ)-converging to

x. For any (Λ, sθ)-open set of (Y, σ) containing f(x), by (1) there exists a

(Λ, sθ)-open set U of X containing x such that f(U) ⊂ V . Since {xs | s ∈
S} converges to x, there exists s0 ∈ S such that s ≥ s0 implies xs ∈ U .

Therefore, f(xs) ∈ V for any s ≥ s0 and the net {f(xs) | s ∈ S} (Λ, sθ)-

converges to f(x).
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(6) → (1): Let us suppose that there exists a point x ∈ X and a (Λ, sθ)-

open neighbourhood V of f(x) such that for every (Λ, sθ)-open set U of X

containing x such that f(U) 6⊆ V . Then for every (Λ, sθ)-open set U of X

such that x ∈ U , we choose an element xU ∈ U such that f(xU) 6∈ V . Let

U be the set of all (Λ, sθ)-open sets U of X containing x and is directed

by the relation ⊆ i.e., let us define that U1 ≤ U2 if U2 ⊆ U1. Easily, the

net {xU , U ∈ U} (Λ, sθ)-converges to x but the net {f(xU), U ∈ U} does

not (Λ, sθ)-converge to f(x) which is a contradiction. Thus there exists a

(Λ, sθ)-open set U of X such that x ∈ U and f(U) ⊆ V . 2

We recall that a function f : (X, τ)→ (Y, σ) is said to be quasi irresolute

[3] if f−1(V ) is semi-θ-open in (X, τ) for each semi-θ-open set V of (Y, σ).

Clearly, if a function f : (X, τ) → (Y, σ) is quasi irresolute, then f :

(X, τΛ
Λ∗s
θ )→ (Y, σΛ

Λ∗s
θ ) is continuous.

Indeed let V be any Λ
Λ∗
s

θ -set of (Y, σ). Then V = Λ
Λ∗
s

θ (V ) = ∪{W | V ⊃
W ∈ SθC(Y, σ)}. Since f is quasi irresolute, we have f−1(V ) = ∪{f−1(W ) |
f−1(V ) ⊃ f−1(W ) ∈ SθC(X, τ)} ⊂ ∪{U | f−1(V ) ⊃ U ∈ SθC(X, τ)} =

Λ
Λ∗
s

θ (f−1(V )). By Lemma 2.3, we have f−1(V ) ⊃ Λ
Λ∗
s

θ (f−1(V )) and hence

f−1(V ) is a Λ
Λ∗
s

θ -set of (X, τ). 2

Observe that if a function f : (X, τ) → (Y, σ) is quasi irresolute, then

f : (X, τΛΛs
θ )→ (Y, σΛΛs

θ ) is continuous.

Theorem 4.3 If f : (X, τ)→ (Y, σ) is a quasi irresolute function, then it is

(Λ, sθ)-continuous.

Proof. Let F be a (Λ, sθ)-closed set of (Y, σ). Then there exist a ΛΛs
θ -set

T and a semi-θ-closed set C such that F = T ∩ C. Since f is quasi irres-

olute f−1(T ) is a ΛΛs
θ -set of (X, τ) and f−1(C) is semi-θ-closed. Therefore,
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f−1(F ) = f−1(T ) ∩ f−1(C) is (Λ, sθ)-closed in (X, τ). By Theorem 4.2, f is

(Λ, sθ)-continuous. 2

Example 4.4 Let X = {a, b, c, } and τ = {∅, X, {b}, {c}, {b, c}} and

σ = {∅, X, {a}, {b}, {a, b}, {b, c}}. The semi θ-closed sets of (X, τ) are

{∅, X, {a}, {b}, {c}, {a, b}, {a, c}}, the (Λ, sθ)-closed sets of (X, τ) are

{∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} and the semi θ-closed sets of (X, σ)

are {∅, X, {a}, {b, c}}. Let f : (X, τ)→ (Y, σ) be the identity function. Then

f is (Λ, sθ)-continuous but it is not quasi-irresolute since f−1({b, c}) is not

semi θ-closed in (X, τ).

5 (Λ, sθ)-compactness and (Λ, sθ)-connectedness

Definition 13 A topological space (X, τ) is called (Λ, sθ)-compact (resp.

semi-θ-compact) if every cover of (Λ, sθ)-open (resp. semi-θ-open) sets has

a finite subcover.

Theorem 5.1 A topological space (X, τ) is (Λ, sθ)-compact (resp. semi-θ-

compact) if and only if for every family {Ai : i ∈ I} of (Λ, sθ)-closed (resp.

semi-θ-closed) sets in X satisfying ∩{Ai : i ∈ I} = ∅, there is a finite

subfamily Ai1,...,Ain with ∩{Aik : k = 1, ..., n} = ∅.

Proof. Straightforward. 2

Theorem 5.2 For a topological space (X, τ), the following hold:

(1) If (X, τΛΛs
θ ) is compact, then (X, τ) is semi-θ-compact.

(2) If (X, τ) is (Λ, sθ)-compact, then (X, τ) is semi-θ-compact.

(3) If (X, τ) is (Λ, sθ)-compact, then (X, τΛ
Λ∗s
θ ) is compact.

13



Proof. (1) This follows from Lemma 2.1.

(2) This follows from Theorem 5.1 and of the fact that every semi-θ-closed

set is (Λ, sθ)-closed.

(3) This follows from Lemma 3.10. 2

Theorem 5.3 If f : (X, τ) → (Y, σ) is a (Λ, sθ)-continuous surjection and

(X, τ) is a (Λ, sθ)-compact space, then (Y, σ) is (Λ, sθ)-compact.

Proof. Let {Vi | i ∈ I} be any cover of Y by (Λ, sθ)-open sets of (Y, σ).

Since f is (Λ, sθ)-continuous, by Theorem 4.2 {f−1(Vi | i ∈ I} is a cover of X

by (Λ, sθ)-open sets of (X, τ). By (Λ, sθ)-compactness of (X, τ), there exists

a finite subset I0 of I such that X = ∪{f−1(Vi | i ∈ I0}. Since f is surjective,

we obtain Y = f(X) = ∪i∈I0Vi. This shows that (Y, σ) is (Λ, sθ)-compact.

2

Corollary 5.4 The (Λ, sθ)-compactness is preserved by quasi irresolute sur-

jections.

Proof. This is an immediate consequence of Theorem 5.3 and Theorem

4.3. 2

Definition 14 A topological space (X, τ) is called (Λ, sθ)-connected if X

cannot be written as a disjoint union of two non-empty (Λ, sθ)-open sets.

Theorem 5.5 For a topological space (X, τ), the following statements are

equivalent:

(1) The space X is (Λ, sθ)-connected;

(2) The only subsets of X, which are both (Λ, sθ)-open and (Λ, sθ)-closed are

the empty set ∅ and X.

14



Proof. Straightforward. 2
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México under the TWAS-UNESCO

References

[1] M. Caldas and S. Jafari, On θ-semigeneralized closed sets in topology,
Kyungpook Math. J. 43(2003), 135-148.

[2] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math.
18(3)(1987), 226-233.

[3] G. Di Maio and T. Noiri, Weak and strong forms of irresolute functions,
Rend. Circ. Mat. Palermo (2) Suppl. 18(1988), 255-273.

[4] S. Ganguly and C. K. Basu Further characterizations of s-closed spaces,
Indian J. Pure Appl. Math. 23(9)(1992), 635-641.

[5] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo
19(2)(1970), 89-96.

Addresses :

M. Caldas

Departamento de Matematica Aplicada,
Universidade Federal Fluminense,
Rua Mario Santos Braga, s/n
24020-140, Niteroi, RJ BRASIL.

e-mail: gmamccs@vm.uff.br

M. Ganster

Department of Mathematics
Graz University of Technology
Steyrergasse 30
A-8010 Graz, AUSTRIA.

ganster@weyl.math.tu-graz.ac.at

D. N. Georgiou

15



Department of Mathematics,
University of Patras,
26500 Patras, GREECE.

E-mail: georgiou@math.upatras.gr

S. Jafari

College of Vestsjaelland South,
Herrestraede 11,
4200 Slagelse, DENMARK.

E-mail: jafari@stofanet.dk

16


