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Abstract

In this paper, we study some properties of functions with strongly �-closed graphs

by utilizing �-open sets and the �-closure operator.

1 Introduction and preliminaries

The notion of �-open sets was introduced by O. Nj�astad [20] in 1965. Since then it has been

widely investigated in the literature (see, [1], [2], [3], [9], [10], [11], [12], [15], [16], [17], [18],

[19], [21], [23], [24], [26], [27], [28]). Functions with strongly closed graphs were introduced

by Herrington and long [7] to characterize H-closed spaces. Properties of such functions were

further investigated by Long and Herrington [14] and Noiri [23]. In this paper, we study

some properties of functions with strongly �-closed graphs by utilizing �-open sets and the

�-closure operator.

Throughout this paper, by (X; �) and (Y; �) (or X and Y ) we always mean topological

spaces. Let A be a subset of X: We denote the interior, the closure and the complement

of a set A by Int(A), Cl(A) and XnA or Ac respectively. A subset A of a topological

space (X; �) is called �-open [20] (resp. semi-open [13]) if A � Int(Cl(Int(A))) (resp.

A � Cl(Int(A))). The complement of an �-open (resp. semi-open) set is called �-closed

(resp. semi-closed [5]). By �O(X; �) (resp. SO(X; �), �C(X; �)), we denote the family of all

�-open (resp. semi-open, �-closed) sets of X. We set �O(X; x) = fU j x 2 U 2 �O(X; �)g,
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O(X; x) = fU j x 2 U 2 �g and �C(X; x) = fU j x 2 U 2 �C(X; �)g. The intersection of

all �-closed (resp. semi-closed) sets containing A is called the �-closure (resp. semi-closure

[4]) of A, denoted by �Cl(A) (resp. sCl(A)). A set U in a topological space (X; �) is an

�-neighborhood [16] of a point x if U contains an �-open set V such that x 2 V .

Lemma 1.1 The intersection of an arbitrary collection of �-closed sets in (X; �) is �-closed

Corollary 1.2 [15]. Let A be a subset of X. Then, x 2 �Cl(A) if and only if for any �-open

set U in X containing x , A
T
U 6= �.

Lemma 1.3 Let A and B be subsets of a space (X; �), then the following properties hold:

(1) A � �Cl(A).

(2) If A � B, then �Cl(A) � �Cl(B).

(3) �Cl(A) is �-closed.

(4) �Cl(�Cl(A)) = �Cl(A).

(5) A is �-closed if and only A = �Cl(A).

Corollary 1.4 Let Ai (i 2 I) be a subset of a space (X; �), then the following properties

hold:

(1) �Cl(\fAi : i 2 Ig) � \f�Cl(Ai) : i 2 Ig.

(2) �Cl([fAi : i 2 Ig) � [f�Cl(Ai) : i 2 Ig.

De�nition 1 A topological space (X; �) is said to be:

(1) �-T1 [17], if for any pair of distinct points x and y in X, there exist an �-open set U in

X containing x but not y and an �-open set V in X containing y but not x.

(2) �-T2 [15], if for any pair of distinct points x and y in X, there exist U 2 �O(X; x) and

V 2 �O(X; y) such that U \ V = ;:

Lemma 1.5 A topological space (X; �) is �-T2 if and only if it is T2.

Proof. This is shown in [27] and a simple proof is given in [[24], Corollary 4.7].
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De�nition 2 A function f : X ! Y is said to be

(1) �-continuous [19] if f�1(V ) 2 �O(X) for each open set V of Y ;

(2) weakly �-continuous [23]if for each x 2 X and each V 2 O(Y; f(x)), there exists U 2

�O(X; x) such that f(U) � Cl(V ).

Lemma 1.6 Let (X; �) be a topological space. Then �Cl(V ) = Cl(V ) for each V 2 SO(X).

Proof. For any V 2 SO(X), �Cl(V ) = V [ Cl(Int(Cl(V ))) = V [ Cl(Int(V )) =

V [ Cl(V ) = Cl(V ).

Lemma 1.7 A function f : X ! Y is weakly �-continuous if and only if for each x 2 X

and each V 2 �O(Y; f(x)), there exists U 2 �O(X; x) such that f(U) � �Cl(V ).

Proof. Necessity. Let x 2 X and V 2 �O(Y; f(x)). Then f(x) 2 V � Int(Cl(Int(V )))

and there exists U 2 �O(X; x) such that f(U) � Cl(Int(Cl(Int(V )))). By Lemma 1.6, we

have Cl(Int(Cl(Int(V )))) = Cl(Int(V )) = Cl(V ) = �Cl(V ). Therefore, f(U) � �Cl(V ).

Su�ciency. Let x 2 X and V 2 O(Y; f(x)). There exists U 2 �O(X; x) such that

f(U) � �Cl(V ). By Lemma 1.6, we obtain f(U) � Cl(V ).

2 Strongly �-closed graphs

If f : (X; �) ! (Y; �) is any function, then the subset G(f) = f(x; f(x)) : x 2 Xg of the

product space (X � Y; � � �) is called the graph of f [8].

De�nition 3 A function f : X ! Y has a strongly �-closed (resp. strongly closed [7])

graph if for each (x; y) 2 (X � Y ) n G(f), there exist U 2 �O(X; x) (resp. U 2 O(X; x))

and V 2 O(Y; y) such that (U � Cl(V )) \G(f) = ;.

Lemma 2.1 For a function f : (X; �)! (Y; �), the following properties are equivalent:

(1) G(f) is strongly �-closed;

(2) For each (x; y) 2 (X � Y ) nG(f), there exist U 2 �O(X; x) and V 2 O(Y; y) such that
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f(U) \ Cl(V ) = ;;

(3) For each (x; y) 2 (X � Y ) nG(f), there exist U 2 �O(X; x) and V 2 �O(Y; y) such that

(U � �Cl(V )) \G(f) = ;;

(4) For each (x; y) 2 (X � Y ) nG(f), there exist U 2 �O(X; x) and V 2 �O(Y; y) such that

f(U) \ �Cl(V ) = ;.

Proof. It is obvious that (1), (2) and (3), (4).

(1)) (3): Since � � �O(X) � SO(X), by Lemma 1.6 the proof is obvious.

(3) ) (1): Let (x; y) 2 (X � Y ) nG(f). There exist U 2 �O(X; x) and V 2 �O(Y; y) such

that (U��Cl(V ))\G(f) = ;. PutG = Int(Cl(Int(V ))). Then y 2 V � G 2 � and Cl(G) =

Cl(V ) = �Cl(V ). Therefore, we obtain (U � Cl(G)) \ G(f) = (U � �Cl(V )) \ G(f) = ;.

This shows that G(f) is strongly �-closed.

Theorem 2.2 If f : X ! Y is a function with the strongly �-closed graph, then for each

x 2 X, f(x) = \f�Cl(f(U)) : U 2 �O(X; x)g:

Proof. Suppose the theorem is false. Then there exists a y 6= f(x) such that y 2

\f�Cl(f(U)) : U 2 �O(X; x)g: This implies that y 2 �Cl(f(U)) for every U 2 �O(X; x).

So V \ f(U) 6= ; for every V 2 �O(Y; y): This, in its turn, indicates that �Cl(V ) \ f(U) �

V \ f(U) 6= ; which contradicts the hypothesis that f is a function with strongly �-closed

graph. Hence the theorem holds.

Theorem 2.3 If f : X ! Y is �-continuous and Y is T2, then G(f) is strongly �-closed.

Proof. Let (x; y) 2 (X � Y )nG(f): The T2-ness of Y gives the existence of a set V 2

O(Y; y) such that f(x) =2 Cl(V ): Now Y nCl(V ) 2 O(Y; f(x)): Therefore, by the �-continuity

of f there exists U 2 �O(X; x) such that f(U) � Y nCl(V ): Consequently, f(U)\Cl(V ) = ;

and therefore G(f) is strongly �-closed.

It is shown in ([14], Theorem 3) and ([22], Theorem 2) that if f : X ! Y is surjective and

G(f) is strongly closed, then Y is Hausdor�. The following theorem is a slight improvement

of this result.
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Theorem 2.4 If f : X ! Y is surjective and has a strongly �-closed graph G(f), then Y

is both T2 and �-T1.

Proof. Let y1; y2 (y1 6= y2) 2 Y . The surjectivity of f gives a x1 2 X such that f(x1) = y1.

Now (x1; y2) 2 (X � Y )nG(f): The strongly �-closedness of G(f) provides U 2 �O(X; x1),

V 2 O(Y; y2) such that f(U) \ Cl(V ) = ;; whence one infers that y1 =2 Cl(V ). This means

that there exists W 2 O(Y; y1) such that W \ V = ;: So, Y is T2 and T2-ness always

guarantees �-T1-ness. Hence Y is �-T1:

Theorem 2.5 A space X is T2 if and only if the identity function id : X ! X has a strongly

�-closed graph G(id):

Proof. Necessity. Let X be T2: Since the identity function id : X ! X is continuous, it

follows from Theorem 2.4 that G(id) is strongly �-closed.

Su�ciency. Let G(id) be a strongly �-closed graph. Then the surjectivity of id and strong

�-closedness of G(id) together imply, by Theorem 2.4, that X is T2:

Theorem 2.6 If f : X ! Y is an injection and G(f) is strongly �-closed, then X is �-T1:

Proof. Since f is injective, for any pair of distinct points x1; x2 2 X, f( x1) 6= f(x2): Then

(x1; f(x2)) 2 (X � Y )nG(f): Since G(f) is strongly �-closed, there exist U 2 �O(X; x1),

V 2 O(Y; f(x2)) such that f(U)\Cl(V ) = ;: Therefore x2 =2 U . Pursuing the same reasoning

as before we obtain a set W 2 �O(X; x2) such that x1 =2 W . Hence Y is �-T1:

Theorem 2.7 If f : X ! Y is a bijection with the strongly �-closed graph, then both X

and Y are �-T1:

Proof. The proof is an immediate consequence of Theorems 2.4 and 2.6.

Theorem 2.8 If a function f : X ! Y is a weakly �-continuous injection with the strongly

�-closed graph G(f), then X is T2:
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Proof. Since f is injective, for any pair of distinct points x1; x2 2 X, f(x1) 6= f(x2):

Therefore (x1; f(x2)) 2 (X � Y )nG(f): Since G(f) is strongly �-closed, there exist U 2

�O(X; x1), V 2 O(Y; f(x2)) such that f(U) \ Cl(V ) = ;; hence U \ f�1(Cl(V )) = ;: Con-

sequently, f�1(Cl(V )) � XnU: Since f is weakly � continuous, there exists W 2 �O(X; x2)

such that f(W ) � Cl(V ): From this and the foregoing it follows that W � f�1(Cl(V )) �

XnU ; hence W \ U = ;: Thus for the pair of distinct points x1; x2 2 X, there exist

U 2 �O(X; x1), W 2 �O(X; x2) such that W \ U = ;: By Lemma 1.5, this guarantees

the T2-ness of X:

Corollary 2.9 If a function f : X ! Y is an �-continuous injection with the strongly

�-closed graph, then X is T2:

Proof. The proof follows from Theorem 2.9 and the fact that every �-continuous is weakly

�-continuous.

Remark 2.10 If f is not T2 in Corollary 2.9, then even �-continuity need not imply a

strongly �-closed graph. For example, let X be a topological space containing more than one

point with the indiscrete topology and let id : X ! X the identity function. Then id is

certainly �-continuous, but the graph of id is not strongly �-closed because X � X has the

indiscrete topology and hence the graph of id being the diagonal set, which is di�erent from

the whole space, is not strongly �-closed.

Theorem 2.11 If f : X ! Y is a weakly �-continuous bijection with the strongly �-closed

graph, then both X and Y are T2:

Proof. The proof follows from Theorems 2.8 and 2.4.

Lemma 2.12 Every clopen subset of a quasi H-closed space X is quasi H-closed relative to

X.
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Proof. Let B be any clopen subset of a quasi H-closed space X. Let fO� : � 2 
g be

any cover of B by open sets in X. Then the family F = fO� : � 2 
g [ fXnBg is a cover

of X by open sets in X. Because of quasi H-closedness of X there exists a �nite subfamily

F � = fO�i : 1 � i � ng [ fXnBg of F whose closure covers X. So, because of clopenness

of B we now infer that the family fCl(O�i) : 1 � i � ng covers B. Therefore, B is quasi

H-closed relative to X.

Theorem 2.13 If Y is a quasi H-closed extremally disconnected space, then a function

f : X ! Y with the strongly �-closed graph G(f) is weakly �-continuous.

Proof. Let x 2 X and V 2 O(Y; f(x)). Take any y 2 Y nCl(V ). Then (x; y) 2 (X �

Y )nG(f): Now the strong �-closedness of G(f) induces the existence of Uy(x) 2 �O(X; x),

Vy 2 O(Y; y) such that f(Uy(x)) \ Cl(Vy) = ;:...(*).

Now extremal disconnectedness of Y induces the clopenness of Cl(V ) and hence Y nCl(V ) is

also clopen. Now fVy : y 2 Y nCl(V )g is a cover of Y nCl(V ) by open sets in Y . By Lemma

2.13, there exists a �nite subfamily fVyi : 1 � i � ng such that Y nCl(V ) �
nS

i=1
Cl(Vyi). Let

W =
nT

i=1
Uyi(x), where Uyi(x) are �-open sets in X satisfying (*). Also, W 2 �O(X; x):

Now f(W )\ (Y nCl(V )) � f [
nT

i=1
Uyi(x)]\ (

nS

i=1
Cl(Vyi)) �

nS

i=1
(f [Uyi(x)]\Cl(Vyi)) = ;, by (*).

Therefore, f(W ) � Cl(V ) and this indicates that f is weakly �-continuous.

Noiri [22] showed that if G(f) is strongly closed then f has the following property:

(P ) For every set B which is quasi H{closed relative to Y , f�1(B) is a closed set of X:

Analogously, we have the following theorem.

Theorem 2.14 If a function f : X ! Y has a strongly �-closed graph G(f), then f enjoys

the following property:

(P �) For every set F which is quasi H-closed relative to Y , f�1(F ) is �-closed in X:

Proof. Let f�1(F ) be not �-closed in X: Then there exists x 2 �Cl(f�1(F ))nf�1(F ):

Let y 2 F: Then (x; y) 2 (X � Y )nG(f): Strong �-closedness of G(f) gives the existence of
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Uy(x) 2 �O(X; x) and Vy 2 O(Y; y) such that f(Uy(x)) \ Cl(Vy) = ;:...(*).

Clearly fVy : y 2 Fg is a cover of F by open sets in Y . Since F is quasi H-closed relative to

Y , there exist a �nite number of open sets Vy1 ; Vy2 ; :::; Vyn in Y such that F �
nS

i=1
Cl(Vyi).

Let U =
nT

i=1
Uyi(x), where Uyi(x) are the �-open sets in X satisfying (*). Also U 2 �O(X; x):

Now f(U) \ F � f [
nT

i=1
Uyi(x)] \ (

nS

i=1
Cl(Vyi)) �

nS

i=1
(f [Uyi(x)] \ Cl(Vyi)) = ;. But since

x 2 �Cl(f�1(F )), U \ f�1(F ) 6= ;; hence f(U) \ F 6= ;. This is a contradiction. Hence the

result holds.

3 Additional properties

Lemma 3.1 For a topological space X, the following properties are equivalent:

(1) X is Urysohn;

(2) For every pair of distinct points x; y 2 X, there exist U 2 �O(X; x), V 2 �O(X; y) such

that Cl(U) \ Cl(V ) = ;;

(3) For every pair of distinct points x; y 2 X, there exist U 2 �O(X; x), V 2 �O(X; y) such

that �Cl(U) \ �Cl(V ) = ;:

Proof. (1)) (2): This is obvious.

(2)) (3): Since �Cl(U) = Cl(U) for each U 2 �(X) by Lemma 1.6, this is obvious.

(3) ) (1): Suppose that (3) holds. For every pair of distinct points x, y, there exist U 2

�O(X; x), V 2 �O(X; y) such that �Cl(U) \ �Cl(V ) = ;. Now, put G = Int(Cl(Int(U)))

and H = Int(Cl(Int(V ))), then G and H are open sets containing x and y, respectively.

Furthermore, Cl(G) \ Cl(H) = Cl(U) \ Cl(V ) = �Cl(U) \ �Cl(V ) = ;. Therefore, X is

Urysohn.

Recall, that a function f : X ! Y is said to be �-open [19] if f(A) 2 �O(Y ) for all open

set A of Y:

Lemma 3.2 Let a bijection f : X ! Y be �-open. Then for any closed set B of X,

f(B) 2 �C(Y ):
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Urysohn spaces remain invariant under certain bijective function as is shown in the next

theorem.

Theorem 3.3 If a bijection f : X ! Y is �-open and X is Urysohn, then Y is Urysohn.

Proof. Let y1; y2 2 Y and y1 6= y2: Since f is bijective, f�1(y1), f
�1(y2) 2 X and

f�1(y1) 6= f�1(y2): The Urysohn property of X gives the existence of sets U 2 O(X; f�1(y1)),

V 2 O(X; f�1(y2)) such that Cl(U) \ Cl(V ) = ;: As Cl(U) is a closed set in X, then by

the bijectivity and �-openness of f together then indicate, by Lemma 3.2 that f(Cl(U)) 2

�C(Y ): Therefore by the injectivity of f , �Cl(f(U))\�Cl(f(V )) � f(Cl(U))\f(Cl(V )) =

f(Cl(U)\Cl(V )) = ;: Thus �-openness of f gives the existence of two sets f(U) 2 �O(Y; y1),

f(V ) 2 �O(Y; y2), with �Cl(f(U)) \ �Cl(f(V )) = ;. By Lemma 3.1, Y is Urysohn.

Theorem 3.4 If f : X ! Y is weakly �-continuous and Y is Urysohn, then G(f) is strongly

�-closed.

Proof. Let (x; y) 2 (X � Y )nG(f): Then y 6= f(x): Since Y is Urysohn, there exist

V 2 O(Y; y), W 2 O(Y; f(x)) such that Cl(V )\Cl(W ) = ;: Since f is weakly �-continuous,

there exists U 2 �O(X; x) such that f(U) � Cl(W ): This, therefore, implies that f(U) \

Cl(V ) = ;. So by Lemma 2.2, G(f) is strongly �-closed.

Theorem 3.5 Let X be a Urysohn space. Then any �-open bijection f : X ! Y has a

strongly �-closed graph.

Proof. Let (x; y) 2 (X � Y ) n G(f). Then y 6= f(x) and y 6= f�1(y), where f�1(y) is a

singleton. Since X is Urysohn, there exist open sets Ux and Uy such that x 2 Ux, f
�1(y) 2 Uy

and Cl(Ux) \ Cl(Uy) = ;. Since f is �-open, f(Ux) 2 �O(Y; f(x)), f(Uy) 2 �O(Y; y) and

f(Ux) \ �Cl(f(Uy)) � �Cl(f(Ux)) \ �Cl(f(Uy)) � f(Cl(Ux)) \ f(Cl(Uy)) = ;. Therefore,

by Lemma 2.2, G(f) is strongly �-closed.
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