ON SOME APPLICATIONS OF b-OPEN SETS IN TOPOLOGICAL SPACES

M. Caldas and S. Jafari

Abstract

The purpose of this paper is to introduce some new classes of topological spaces by utilizing b-open sets and study some of their fundamental properties.

AMS Subject Classification (2000): 54D10
Key words and phrases: b-open sets, b-closure, b - R_{1} spaces, $b-T_{2}$ spaces, D-sets, b - D_{1}-spaces.

1 Introduction

In 1996, Andrijević [2] introduced a new class of generalized open sets called b-open sets into the field of topology. This class is a subset of the class of semi-preopen sets [3] also called β-open sets [1], i.e. a subset of a topological space which is contained in the closure of the interior of its closure. Also the class of b-open sets is a superset of the class of semi-open sets [7], i.e. a set which is contained in the closure of its interior, and the class of locally dense sets [6] or preopen sets [8], i.e. a set which is contained in the interior of its closure. Andrijević studied several fundamental and interesting properties of b-open sets. Among others, he showed that a rare b-open set is preopen [[2], Proposition 2.2]. Recall that a rare set [4] is a set with no interior points. It is well-known that for a topological space X, every rare b-open set is semiopen if and only if the interior of a dense subset is dense. Quite recently Caldas et al. [5] obtained some new generalized sets by utilizing b-open sets and investigated the topologies defined by these families of sets.

2 Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let $A \subseteq X$, then A is said to be b-open [2](resp. α-open [9]) if $A \subseteq C l(\operatorname{Int}(A)) \cup \operatorname{Int}(C l(A))($ resp. $A \subset \operatorname{Int}(C l(\operatorname{Int}(A))))$, where $C l(A)$ and $\operatorname{Int}(A)$ denote the closure and the interior of A in (X, τ), respectively. The complement $A^{c}=X \backslash A$ of a b-open set A is called b-closed and the b-closure of a set A, denoted by $C l_{b}(A)$, is the intersection of all b-closed sets containing A. The b-interior of a set A denoted by $\operatorname{Int}_{b}(A)$, is the union of all b-open sets contained in A. It is obvious that if the bounday of a b-open set is nowhere dense, then it is semi-open. Moreover a rare b-open set with a nowhere dense boundary is α-open! Also a b-open set which its closure is regulary closed (or semiopen) is β-open! Recall that a subset A of a space (X, τ) is called regular open (resp. regularly closed) if $A=\operatorname{Int}(C l(A))($ resp. $A=C l(\operatorname{Int}(A)))$. It is clear that if a b-open set is closed then it is semiopen.

The family of all b-open (resp. b-closed) sets in (X, τ) will be denoted by $B O(X, \tau)$ (resp. $B C(X, \tau))$.

Proposition 2.1 (Andrijević [2]) (a) The union of any family of b-open sets is a b-open.
(b) The intersection of an open and a b-open set is a b-open set.

Lemma 2.2 The b-closure $C l_{b}(A)$, is the set of all $x \in X$ such that $O \cap A \neq \emptyset$ for every $O \in B O(X, x)$, where $B O(X, x)=\{U \mid x \in U, U \in B O(X, \tau)\}$.

A subset N_{x} of a topological space X is said to be a b-neighbourhood of a point $x \in X$ if there exists a b-open set U such that $x \in U \subset N_{x}$.

Lemma 2.3 A subset of a space X is b-open in X if and only if it is a b-neighbourhood of each of its points.

$3 \quad b-R_{1}$ Topological Spaces

Definition 1 Let (X, τ) be a space and $A \subset X$. Then the b-kernel of A, denoted by $b \operatorname{Ker}(A)$ is defined to be the set $b \operatorname{Ker}(A)=\cap\{G \in B O(X, \tau) \mid A \subset G\}$.

It should be noticed that $b \operatorname{Ker}(A)$ is defined as $B^{\Lambda_{b}}$ in [5].

Lemma 3.1 Let (X, τ) be a space and $x \in X$. Then, $y \in b \operatorname{Ker}(\{x\})$ if and only if $x \in C l_{b}(\{y\})$.

Proof. Assume that $y \notin b \operatorname{Ker}(\{x\})$. Then there exists a b-open set V containing x such that $y \notin V$. Therefore, we have $x \notin C l_{b}(\{y\})$. The converse is similarly shown.

Lemma 3.2 Let (X, τ) be a space and A a subset of X. Then, $b \operatorname{Ker}(A)=$ $\left\{x \in X \mid C l_{b}(\{x\}) \cap A \neq \emptyset\right\}$.

Proof. Let $x \in b \operatorname{Ker}(A)$ and $C l_{b}(\{x\}) \cap A=\emptyset$. Therefore, $x \notin X \backslash$ $C l_{b}(\{x\})$ which is a b-open set containing A. But this is impossible, since $x \in b \operatorname{Ker}(A)$. Consequently, $C l l_{b}(\{x\}) \cap A \neq \emptyset$. Now, let $x \in X$ such that $C l_{b}(\{x\}) \cap A \neq \emptyset$. Suppose that $x \notin b \operatorname{Ker}(A)$. Then, there exists a b open set U containing A and $x \notin U$. Let $y \in C l_{b}(\{x\}) \cap A$. Thus, U is a b-neigbourhood of y such that $x \notin U$. By this contradiction $x \in b \operatorname{Ker}(A)$.

Lemma 3.3 The following statements are equivalent for any points x and y in a space (X, τ) :
(1) $b \operatorname{Ker}(\{x\}) \neq b \operatorname{Ker}(\{y\})$;
(2) $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$.

Proof. (1) $\rightarrow(2):$ Let $b \operatorname{Ker}(\{x\}) \neq b \operatorname{Ker}(\{y\})$, then there exists a point z in X such that $z \in b \operatorname{Ker}(\{x\})$ and $z \notin \operatorname{bKer}(\{y\})$. From $z \in$ $b \operatorname{Ker}(\{x\})$ it follows that $\{x\} \cap C l_{b}(\{z\}) \neq \emptyset$ which implies $x \in C l_{b}(\{z\})$. By $z \notin b \operatorname{Ker}(\{y\})$, we have $\{y\} \cap C l_{b}(\{z\})=\emptyset$. Since $x \in C l_{b}(\{z\})$, $C l_{b}(\{x\}) \subset C l_{b}(\{z\})$ and $\{y\} \cap C l_{b}(\{x\})=\emptyset$. Therefore it follows that $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$. Now $b \operatorname{Ker}(\{x\}) \neq b \operatorname{Ker}(\{y\})$ implies that $C l_{b}(\{x\}) \neq$ $C l_{b}(\{y\})$.
$(2) \rightarrow(1):$ Suppose that $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$. Then there exists a point z in X such that $z \in C l_{b}(\{x\})$ and $z \notin C l_{b}(\{y\})$. It means that there exists a b-open set containing z. Therefore x but not y, i.e., $y \notin b \operatorname{Ker}(\{x\})$ and hence $b \operatorname{Ker}(\{x\}) \neq b \operatorname{Ker}(\{y\})$.

Recall that a space (X, τ) is called $b-T_{0}$ (resp. $\left.b-T_{1}[5]\right)$ if for any distinct pair of points x and y in X, there is a b-open U in X containing x but not y or (resp. and) a b-open set V in X containing y but not x. It is worth-noticing that in a private correspondence Professor Maximilian Ganster has shown that a space is $b-T_{1}$ if and only if each singleton is either rare or regular open.

Theorem 3.4 Every topological space (X, τ) is $b-T_{0}$.
Proof. Take two points x and y in X. If $\operatorname{Int}\{x\}$ is nonempty then $\{x\}$ is open, thus b-open and we are done. Otherwise, if $\operatorname{Int}\{x\}$ is empty, then $\{x\}$ is preclosed, i.e. $X-\{x\}$ is a preopen (thus b-open) set containing y, and we are also done.

Theorem 3.5 For a space (X, τ) each pair of distinct points x, y of X, $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$.

Proof. Let x, y be any two distinct points of X. Since every space (X, τ) is $b-T_{0}$ (Theorem 3.4), there exists a b-open set G containing x or y, say x but not y. Then G^{c} is a b-closed set which does not contain x but contains y. Since $C l_{b}(\{y\})$ is the smallest b-closed set containing $y, C l_{b}(\{y\}) \subset G^{c}$, and so $x \notin C l_{b}(\{y\})$. Consequently $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$.

Theorem 3.6 A space (X, τ) is $b-T_{1}$ if and only if the singletons are b-closed sets.

Proof. Suppose that (X, τ) is $b-T_{1}$ and $x \in X$. Let $y \in\{x\}^{c}$. Then $x \neq y$ and so there exists a b-open set U_{y} such that $y \in U_{y}$ but $x \notin U_{y}$. Consequently $y \in U_{y} \subset\{x\}^{c}$ i.e., $\{x\}^{c}=\bigcup\left\{U_{y} / y \in\{x\}^{c}\right\}$ which is b-open.

Conversely. Suppose that $\{p\}$ is b-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in\{x\}^{c}$. Hence $\{x\}^{c}$ is a b-open set containing y but not x. Similarly $\{y\}^{c}$ is a b-open set containing x but not y. Accordingly X is a $b-T_{1}$ space.

Definition $2 A$ space (X, τ) is said to be $b-R_{1}$ if for x, y in X with $C l_{b}(\{x\}) \neq$ $C l_{b}(\{y\})$, there exist disjoint b-open sets U and V such that $C l_{b}(\{x\})$ is a subset of U and $C l_{b}(\{y\})$ is a subset of V.

Theorem 3.7 A space (X, τ) is $b-R_{1}$ if and only if for $x, y \in X, b \operatorname{Ker}(\{x\}) \neq$ $b \operatorname{Ker}(\{y\})$, there exist disjoint b-open sets U and V such that $C l_{b}(\{x\}) \subset U$ and $C l_{b}(\{y\}) \subset V$.

Proof. It follows from Lemma 3.3.
A space (X, τ) is called $b-T_{2}$ if for any distinct pair of points x and y in X, there exist b-open sets U and V in X containing x and y, respectively, such that $U \cap V=\emptyset$.

Theorem 3.8 A space (X, τ) is $b-T_{2}$ if and only if (X, τ) is $b-R_{1}$.
Proof. Necessity. Since X is $b-T_{2}$, then X is $b-T_{1}$. If $x, y \in X$ such that $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$, then $x \neq y$. Then there exists disjoint b-open sets U and V such that $x \in U$ and $y \in V$; hence $C l_{b}(\{x\})=\{x\} \subset U$ and $C l_{b}(\{y\})=\{y\} \subset V$. Hence X is $b-R_{1}$.
Sufficiency. Let $x, y \in X$ such that $x \neq y$. By Theorem 3.4, There exists a b-open set U such that $x \in U$ and $y \notin U$. Then by Lemma $3.1 x \notin C l_{b}(\{y\})$ and hence $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$. Therefore there exist disjoint b-open sets U_{1} and U_{2} such that $x \in C l_{b}(\{x\}) \subset U_{1}$ and $y \in C l_{b}(\{y\}) \subset U_{2}$. Thus X is $b-T_{2}$

Theorem 3.9 A space X is $b-T_{2}$ if and only if the intersection of all b-closed b-neighourhoods of each point of X is reduced to that point.

Proof. Necessity. Let X be $b-T_{2}$ and $x \in X$. Then for each $y \in X$ which is distinct from x, there exist b-open sets G and H such that $x \in G, y \in H$ and $G \cap H=\emptyset$. Since $x \in G \subset H^{c}$, hence H^{c} is a b-closed b-neighbourhood of x to which y does not belong. Consequently, the intersection of all b-closed b-neighbourhood of x is reduced to $\{x\}$.

Sufficiency. Let $x, y \in X$ and $x \neq y$. Then by hypothesis there exists a b-closed b-neighbourhood U of x such that $y \notin U$. Now there is a b-open set G such that $x \in G \subset U$. Thus G an U^{c} are disjoint b-open sets containing x and y respectively. Hence X is $b-T_{2}$.

Theorem 3.10 For a space (X, τ), the following statements are equivalent .
(1) (X, τ) is $b-R_{1}$;
(2) If $x, y \in X$ such that $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$, then there exist b-closed sets F_{1} and F_{2} such that $x \in F_{1}, y \notin F_{1}, y \in F_{2}, x \notin F_{2}$ and $X=F_{1} \cup F_{2}$.

Proof. (1) $\rightarrow(2):$ Let $x, y \in X$ such that $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$, and hence $x \neq y$. Therefore, there exist disjoint b-open sets U_{1} and U_{2} such that $x \in C l_{b}(\{x\}) \subset U_{1}$ and $y \in C l_{b}(\{y\}) \subset U_{2}$. Then $F_{1}=X \backslash U_{2}$ and $F_{2}=X \backslash U_{1}$ are b-closed sets such that $x \in F_{1}, y \notin F_{1}, y \in F_{2}, x \notin F_{2}$ and $X=F_{1} \cup F_{2}$.
$(2) \rightarrow(1)$: Suppose that x and y are distinct points of X, such that $C l_{b}(\{x\}) \neq C l_{b}(\{y\})$. Therefore there exist b-closed sets F_{1} and F_{2} such that $x \in F_{1}, y \notin F_{1}, y \in F_{2}, x \notin F_{2}$ and $X=F_{1} \cup F_{2}$. Now, we set $U_{1}=X \backslash F_{2}$ and $U_{2}=X \backslash F_{1}$, then we obtain that $x \in U_{1}, y \in U_{2}$,
$U_{1} \cap U_{2}=\emptyset$ and U_{1}, U_{2} are b-open. This shows that (X, τ) is b - T_{2}. It follows from Theorem 3.8 that (X, τ) is $b-R_{1}$.

A space (X, τ) is said to be a b - R_{0} space if every b-open set contains the b-closure of each of its singletons.

Theorem 3.11 For every space (X, τ) the following statements are equivalent:
a) $b-R_{0}$.
b) $b-T_{1}$.

Proof. The equivalnce of $b-T_{1}$ and $b-R_{0}$ follows from the fact that $b-T_{1}$ is equivalent to $b-R_{0}$ and $b-T_{0}$.

A point x of a space (X, τ) is an $b-\theta$-accumulation point of a subset $A \subset X$, if for each b-open U of X containing $\mathrm{x}, C l_{b}(U) \cap A \neq \emptyset$. The set $b C l_{\theta}(A)$ of all $b-\theta$-accumulation points of A is called the $b-\theta$-closure of A. The set A is said to be b - θ-closed if $b C l_{\theta}(A)=A$. Complement of a b - θ-closed set is said to be $b-\theta$-open.

Lemma 3.12 For any subset A of a space $(X, \tau), C l_{b}(A) \subset b C l_{\theta}(A)$.
Lemma 3.13 Let x and y are points in a space (X, τ). Then $y \in b C l_{\theta}(\{x\})$ if and only if $x \in b C l_{\theta}(\{y\})$.

Theorem 3.14 A space (X, τ) is $b-R_{1}$ if and only if for each $x \in X$, $C l_{b}(\{x\})=b C l_{\theta}(\{x\})$.

Proof. Necessity. Assume that X is $b-R_{1}$ and $y \in b C l_{\theta}(\{x\}) \backslash C l_{b}(\{x\})$. Then there exists a b-open set U containing y such that $C l_{b}(U) \cap\{x\} \neq \emptyset$ but $U \cap\{x\}=\emptyset$. Thus $C l_{b}(\{y\}) \subset U, C l_{b}(\{x\}) \cap U=\emptyset$. Hence $C l_{b}(\{x\}) \neq$ $C l_{b}(\{y\})$. Since X is $b-R_{1}$, there exist disjoint b-open sets U_{1} and U_{2} such that $C l_{b}(\{x\}) \subset U_{1}$ and $C l_{b}(\{y\}) \subset U_{2}$. Therefore $X \backslash U_{1}$ is a b-closed b neigbourhood at y which does not contain x. Thus $y \notin b C l_{\theta}(\{x\})$. This is a contradiction.

Sufficiency. Suppose that $C l_{b}(\{x\})=b C l_{\theta}(\{x\})$ for each $x \in X$. We first prove that X is $b-R_{0}$. Let x belong to the b-open set U and $y \notin U$. Since $b C l_{\theta}(\{y\})=C l_{b}(\{y\}) \subset X \backslash U$, we have $x \notin b C l_{\theta}(\{y\})$ and by Lemma 3.13 $y \notin b C l_{\theta}(\{x\})=C l_{b}(\{x\})$. It follows that $C l_{b}(\{x\}) \subset U$. Therefore (X, τ) is
$b-R_{0}$. Now, let $a, b \in X$ with $C l_{b}(\{a\}) \neq C l_{b}(\{b\})$. By Theorem 3.11, (X, τ) is $b-T_{1}$ and $b \notin b C l_{\theta}(\{a\})$ and hence there exists a b-open set U containing b such that $a \notin C l_{b}(U)$. Therefore, we obtain $b \in U, a \in X \backslash C l_{b}(U)$ and $U \cap\left(X \backslash C l_{b}(U)\right)=\emptyset$. This shows that (X, τ) is $b-T_{2}$. It follows from Theorem 3.8 that (X, τ) is $b-R_{1}$.

4 Others Properties of b-open Sets

Definition $3 A$ subset A of a space X is called a bD-set if there are two $U, V \in B O(X, \tau)$ such that $U \neq X$ and $A=U \backslash V$.

One can observe that every b-open set U different from X is a $b D$-set if $A=U$ and $V=\emptyset$.

Definition 4 A space (X, τ) is called:
(i) $b-D_{0}$ if for any distinct pair of points x and y of X there exists a bD-set of X containing x but not y or a bD-set of X containing y but not x.
(ii) b - D_{1} if for any distinct pair of points x and y of X there exists a bD-set of X containing x but not y and $a b D$-set of X containing y but not x.
(iii) $b-D_{2}$ if for any distinct pair of points x and y of X there exist disjoint $b D$-sets G and E of X containing x and y, respectively.

Remark 4.1 (i) If (X, τ) is $b-T_{i}$, then it is $b-T_{i-1}, i=1,2$.
(ii) If (X, τ) is $b-T_{i}$, then (X, τ) is $b-D_{i}, i=0,1,2$.
(iii) If (X, τ) is $b-D_{i}$, then it is $b-D_{i-1}, i=1,2$.

Theorem 4.2 For a space (X, τ) the following statements are true:
(1) (X, τ) is $b-D_{0}$ if and only if it is $b-T_{0}$.
(2) (X, τ) is $b-D_{1}$ if and only if it is $b-D_{2}$.

Proof. (1) We prove only the necessity condition since the sufficiency condition is stated in Remark 4.1(ii).

Necessity. Let (X, τ) be $b-D_{0}$. Then for each distinct pair $x, y \in X$, at least one of x, y, say x, belongs to a $b D$-set G but $y \notin G$. Let $G=U_{1} \backslash U_{2}$ where $U_{1} \neq X$ and $U_{1}, U_{2} \in B O(X, \tau)$. Then $x \in U_{1}$, and for $y \notin G$ we have two cases: (a) $y \notin U_{1}$; (b) $y \in U_{1}$ and $y \in U_{2}$.

In case (a), U_{1} contains x but not y;

In case (b), U_{2} contains y but not x. Hence X is $b-T_{0}$.
(2) Sufficiency. Remark 4.1(iii).

Necessity. Let X be a $b-D_{1}$ topological space. Then for each distinct pair $x, y \in X$, we have $b D$-sets G_{1}, G_{2} such that $x \in G_{1}, y \notin G_{1} ; y \in G_{2}, x \notin G_{2}$. Let $G_{1}=U_{1} \backslash U_{2}, G_{2}=U_{3} \backslash U_{4}$. ¿From $x \notin G_{2}$, we have either $x \notin U_{3}$ or $x \in U_{3}$ and $x \in U_{4}$. Now we consider the following two cases separately.
(1) $x \notin U_{3}$. From $y \notin G_{1}$ we have two subcases:
(a) $y \notin U_{1}$. From $x \in U_{1} \backslash U_{2}$ we have $x \in U_{1} \backslash\left(U_{2} \cup U_{3}\right)$ and from $y \in U_{3} \backslash U_{4}$ we have $y \in U_{3} \backslash\left(U_{1} \cup U_{4}\right)$. Therefore, $\left(U_{1} \backslash\left(U_{2} \cup U_{3}\right)\right) \cap\left(U_{3} \backslash\left(U_{1} \cup\right.\right.$ $\left.U_{4}\right)=\emptyset$.
(b) $y \in U_{1}$ and $y \in U_{2}$. We have $x \in U_{1} \backslash U_{2}, y \in U_{2} .\left(U_{1} \backslash U_{2}\right) \cap U_{2}=\emptyset$.
(2) $x \in U_{3}$ and $x \in U_{4}$. We have $y \in U_{3} \backslash U_{4}, x \in U_{4} .\left(U_{3} \backslash U_{4}\right) \cap U_{4}=\emptyset$. From the discussion above we know that the space X is $b-D_{2}$.

From Theorems 4.2 and 3.4 , we obtain also that every space is $b-D_{0}$.

Definition 5 A point $x \in X$ which has X as the b-neighborhood is called a b-neat point.

Theorem 4.3 For a space (X, τ) the following are equivalent:
(1) (X, τ) is $b-D_{1}$;
(2) (X, τ) has no b-neat point.

Proof. (1) \rightarrow (2). Since (X, τ) is b - D_{1}, so each point x of X is contained in a $b D$-set $O=U \backslash V$ and thus in U. By definition $U \neq X$. This implies that x is not a b-neat point.
$(2) \rightarrow(1)$. By Theorem 3.4, each distinct pair of points $x, y \in X$, at least one of them, x (say) has a b-neighborhood U containing x and not y. Thus U which is different from X is a $b D$-set. If X has no b-neat point, then y is not a b-neat point. This means that there exists a b-neighborhood V of y such that $V \neq X$. Thus $y \in(V \backslash U)$ but not x and $V \backslash U$ is a $b D$-set. Hence X is $b-D_{1}$.

Remark 4.4 It should be noted that a space (X, τ) is not $b-D_{1}$ if and only if there is a unique b-neat point in X. It is unique because if x and y are both b-neat point in X, then at least one of them say x has a b-neighborhood U containing x but not y. But this is a contradiction since $U \neq X$.

Definition $6 A$ function $f:(X, \tau) \rightarrow(Y, \sigma)$ is b-continuous if the inverse image of each b-open set is b-open.

Theorem 4.5 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a b-continuous surjective function and E is a $b D$-set in Y, then the inverse image of E is a $b D$-set in X.

Proof. Let E be a $b D$-set in Y. Then there are b-open sets U_{1} and U_{2} in Y such that $S=U_{1} \backslash U_{2}$ and $U_{1} \neq Y$. By the b - continuity of $f, f^{-1}\left(U_{1}\right)$ and $f^{-1}\left(U_{2}\right)$ are b-open in X. Since $U_{1} \neq Y$, we have $f^{-1}\left(U_{1}\right) \neq X$. Hence $f^{-1}(E)=f^{-1}\left(U_{1}\right) \backslash f^{-1}\left(U_{2}\right)$ is a $b D$-set.

Theorem 4.6 If (Y, σ) is b - D_{1} and $f:(X, \tau) \rightarrow(Y, \sigma)$ is b-continuous and bijective, then (X, τ) is $b-D_{1}$.

Proof. Suppose that Y is a $b-D_{1}$ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is b - D_{1}, there exist $b D$-sets G_{x} and G_{y} of Y containing $f(x)$ and $f(y)$ respectively, such that $f(y) \notin G_{x}$ and $f(x) \notin G_{y}$. By Theorem 4.5, $f^{-1}\left(G_{x}\right)$ and $f^{-1}\left(G_{y}\right)$ are $b D$-sets in X containing x and y respectively. This implies that X is a $b-D_{1}$ space.

Theorem 4.7 A space (X, τ) is $b-D_{1}$ if and only if for each pair of distinct points $x, y \in X$, there exists a b-continuous surjective function $f:(X, \tau) \rightarrow$ (Y, σ), where Y is a $b-D_{1}$ space such that $f(x)$ and $f(y)$ are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.
Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a b-continuous, surjective function f of a space X onto a $b-D_{1}$ space Y such that $f(x) \neq f(y)$. Therefore, there exist disjoint $b D$-sets G_{x} and G_{y} in Y such that $f(x) \in G_{x}$ and $f(y) \in G_{y}$. Since f is b-continuous and surjective, by Theorem 4.5, $f^{-1}\left(G_{x}\right)$ and $f^{-1}\left(G_{y}\right)$ are disjoint $b D$-sets in X containing x and y, respectively. Hence by Theorem 4.2, X is $b-D_{1}$ space.

Acknowledgment. The authors are grateful to Professor Maximilian Ganster for his comments on an earlier version of this paper and also his observations concerning Theorems 3.4 and 3.11.

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12(1983), 7790.
[2] D. Andrijević, On b-open sets, Math. Vesnik 48(1996), 59-64.
[3] D. Andrijević, Semi-preopen sets, Math. Vesnik 38(1986), 24-32.
[4] N. Bourbaki, Eléments de mathématique, Livre III: Topologie générale, Châp. IX-Paris 1948.
[5] M. Caldas, S. Jafari and T. Noiri, On Λ_{b}-sets and the associated topology $\tau^{\Lambda_{b}}$, Acta Math. Hungar (to appear).
[6] H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math. 8(1964), 351-360.
[7] N. Levine, Semi-open sets and semi-continuity in topologyical spaces, Amer. Math. Monthly 70(1963), 36-41.
[8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
[9] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961-970.

Addresses :
Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ BRASIL.
e-mail: gmamccs@vm.uff.br
College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, DENMARK.
E-mail: jafari@stofanet.dk

