ON SOME APPLICATIONS OF *b*-OPEN SETS IN TOPOLOGICAL SPACES

M. Caldas and S. Jafari

Abstract

The purpose of this paper is to introduce some new classes of topological spaces by utilizing b-open sets and study some of their fundamental properties.

AMS Subject Classification (2000): 54D10

Key words and phrases: *b*-open sets, b-closure, b- R_1 spaces, b- T_2 spaces, D-sets, b- D_1 -spaces.

1 Introduction

In 1996, Andrijević [2] introduced a new class of generalized open sets called b-open sets into the field of topology. This class is a subset of the class of semi-preopen sets [3] also called β -open sets [1], i.e. a subset of a topological space which is contained in the closure of the interior of its closure. Also the class of b-open sets is a superset of the class of semi-open sets [7], i.e. a set which is contained in the closure of its interior, and the class of locally dense sets [6] or preopen sets [8], i.e. a set which is contained in the interior of its closure. Andrijević studied several fundamental and interesting properties of b-open sets. Among others, he showed that a rare b-open set is preopen [[2], Proposition 2.2]. Recall that a rare set [4] is a set with no interior points. It is well-known that for a topological space X, every rare b-open set is semiopen if and only if the interior of a dense subset is dense. Quite recently Caldas et al. [5] obtained some new generalized sets by utilizing b-open sets and investigated the topologies defined by these families of sets.

2 Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let $A \subseteq X$, then A is said to be *b-open* [2](resp. α -open [9]) if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$ (resp. $A \subset Int(Cl(Int(A)))$), where Cl(A)and Int(A) denote the closure and the interior of A in (X, τ) , respectively. The complement $A^c = X \setminus A$ of a *b*-open set A is called *b-closed* and the *b-closure* of a set A, denoted by $Cl_b(A)$, is the intersection of all *b*-closed sets containing A. The *b-interior* of a set A denoted by $Int_b(A)$, is the union of all *b*-open sets contained in A. It is obvious that if the bounday of a b-open set is nowhere dense, then it is semi-open. Moreover a rare *b*-open set with a nowhere dense boundary is α -open! Also a *b*-open set which its closure is regulary closed (or semiopen) is β -open! Recall that a subset A of a space (X, τ) is called *regular open* (resp. *regularly closed*) if A = Int(Cl(A))(resp. A = Cl(Int(A))). It is clear that if a *b*-open set is closed then it is semiopen.

The family of all *b*-open (resp. *b*-closed) sets in (X, τ) will be denoted by $BO(X, \tau)$ (resp. $BC(X, \tau)$).

Proposition 2.1 (Andrijević [2]) (a) The union of any family of *b*-open sets is a *b*-open.

(b) The intersection of an open and a *b*-open set is a *b*-open set.

Lemma 2.2 The *b*-closure $Cl_b(A)$, is the set of all $x \in X$ such that $O \cap A \neq \emptyset$ for every $O \in BO(X, x)$, where $BO(X, x) = \{U \mid x \in U, U \in BO(X, \tau)\}$.

A subset N_x of a topological space X is said to be a *b*-neighbourhood of a point $x \in X$ if there exists a *b*-open set U such that $x \in U \subset N_x$.

Lemma 2.3 A subset of a space X is b-open in X if and only if it is a b-neighbourhood of each of its points.

3 b- R_1 Topological Spaces

Definition 1 Let (X, τ) be a space and $A \subset X$. Then the b-kernel of A, denoted by bKer(A) is defined to be the set $bKer(A) = \cap \{G \in BO(X, \tau) \mid A \subset G\}.$

It should be noticed that bKer(A) is defined as B^{Λ_b} in [5].

Lemma 3.1 Let (X, τ) be a space and $x \in X$. Then, $y \in bKer(\{x\})$ if and only if $x \in Cl_b(\{y\})$.

Proof. Assume that $y \notin bKer(\{x\})$. Then there exists a *b*-open set *V* containing *x* such that $y \notin V$. Therefore, we have $x \notin Cl_b(\{y\})$. The converse is similarly shown.

Lemma 3.2 Let (X, τ) be a space and A a subset of X. Then, $bKer(A) = \{x \in X \mid Cl_b(\{x\}) \cap A \neq \emptyset\}.$

Proof. Let $x \in bKer(A)$ and $Cl_b(\{x\}) \cap A = \emptyset$. Therefore, $x \notin X \setminus Cl_b(\{x\})$ which is a *b*-open set containing *A*. But this is impossible, since $x \in bKer(A)$. Consequently, $Cl_b(\{x\}) \cap A \neq \emptyset$. Now, let $x \in X$ such that $Cl_b(\{x\}) \cap A \neq \emptyset$. Suppose that $x \notin bKer(A)$. Then, there exists a *b*-open set *U* containing *A* and $x \notin U$. Let $y \in Cl_b(\{x\}) \cap A$. Thus, *U* is a *b*-neigbourhood of *y* such that $x \notin U$. By this contradiction $x \in bKer(A)$.

Lemma 3.3 The following statements are equivalent for any points x and yin a space (X, τ) : (1) $bKer(\{x\}) \neq bKer(\{y\});$ (2) $Cl_b(\{x\}) \neq Cl_b(\{y\}).$

Proof. (1) \rightarrow (2) : Let $bKer(\{x\}) \neq bKer(\{y\})$, then there exists a point z in X such that $z \in bKer(\{x\})$ and $z \notin bKer(\{y\})$. From $z \in$ $bKer(\{x\})$ it follows that $\{x\} \cap Cl_b(\{z\}) \neq \emptyset$ which implies $x \in Cl_b(\{z\})$. By $z \notin bKer(\{y\})$, we have $\{y\} \cap Cl_b(\{z\}) = \emptyset$. Since $x \in Cl_b(\{z\})$, $Cl_b(\{x\}) \subset Cl_b(\{z\})$ and $\{y\} \cap Cl_b(\{x\}) = \emptyset$. Therefore it follows that $Cl_b(\{x\}) \neq Cl_b(\{y\})$. Now $bKer(\{x\}) \neq bKer(\{y\})$ implies that $Cl_b(\{x\}) \neq Cl_b(\{y\})$.

 $(2) \to (1)$: Suppose that $Cl_b(\{x\}) \neq Cl_b(\{y\})$. Then there exists a point z in X such that $z \in Cl_b(\{x\})$ and $z \notin Cl_b(\{y\})$. It means that there exists a b-open set containing z. Therefore x but not y, i.e., $y \notin bKer(\{x\})$ and hence $bKer(\{x\}) \neq bKer(\{y\})$.

Recall that a space (X, τ) is called $b \cdot T_0$ (resp. $b \cdot T_1$ [5]) if for any distinct pair of points x and y in X, there is a b-open U in X containing x but not y or (resp. and) a b-open set V in X containing y but not x. It is worth-noticing that in a private correspondence Professor Maximilian Ganster has shown that a space is $b \cdot T_1$ if and only if each singleton is either rare or regular open. **Theorem 3.4** Every topological space (X, τ) is b-T₀.

Proof. Take two points x and y in X. If $Int\{x\}$ is nonempty then $\{x\}$ is open, thus b-open and we are done. Otherwise, if $Int\{x\}$ is empty, then $\{x\}$ is preclosed, i.e. $X - \{x\}$ is a preopen (thus b-open) set containing y, and we are also done.

Theorem 3.5 For a space (X, τ) each pair of distinct points x, y of X, $Cl_b(\{x\}) \neq Cl_b(\{y\})$.

Proof. Let x, y be any two distinct points of X. Since every space (X, τ) is $b \cdot T_0$ (Theorem 3.4), there exists a b-open set G containing x or y, say x but not y. Then G^c is a b-closed set which does not contain x but contains y. Since $Cl_b(\{y\})$ is the smallest b-closed set containing $y, Cl_b(\{y\}) \subset G^c$, and so $x \notin Cl_b(\{y\})$. Consequently $Cl_b(\{x\}) \neq Cl_b(\{y\})$.

Theorem 3.6 A space (X, τ) is b-T₁ if and only if the singletons are b-closed sets.

Proof. Suppose that (X, τ) is $b \cdot T_1$ and $x \in X$. Let $y \in \{x\}^c$. Then $x \neq y$ and so there exists a *b*-open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subset \{x\}^c$ i.e., $\{x\}^c = \bigcup \{U_y/y \in \{x\}^c\}$ which is *b*-open.

Conversely. Suppose that $\{p\}$ is *b*-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in \{x\}^c$. Hence $\{x\}^c$ is a *b*-open set containing *y* but not *x*. Similarly $\{y\}^c$ is a *b*-open set containing *x* but not *y*. Accordingly *X* is a *b*-*T*₁ space.

Definition 2 A space (X, τ) is said to be b- R_1 if for x, y in X with $Cl_b(\{x\}) \neq Cl_b(\{y\})$, there exist disjoint b-open sets U and V such that $Cl_b(\{x\})$ is a subset of U and $Cl_b(\{y\})$ is a subset of V.

Theorem 3.7 A space (X, τ) is b- R_1 if and only if for $x, y \in X$, $bKer(\{x\}) \neq bKer(\{y\})$, there exist disjoint b-open sets U and V such that $Cl_b(\{x\}) \subset U$ and $Cl_b(\{y\}) \subset V$.

Proof. It follows from Lemma 3.3.

A space (X, τ) is called $b - T_2$ if for any distinct pair of points x and y in X, there exist b-open sets U and V in X containing x and y, respectively, such that $U \cap V = \emptyset$.

Theorem 3.8 A space (X, τ) is b-T₂ if and only if (X, τ) is b-R₁.

Proof. Necessity. Since X is b- T_2 , then X is b- T_1 . If $x, y \in X$ such that $Cl_b(\{x\}) \neq Cl_b(\{y\})$, then $x \neq y$. Then there exists disjoint b-open sets U and V such that $x \in U$ and $y \in V$; hence $Cl_b(\{x\}) = \{x\} \subset U$ and $Cl_b(\{y\}) = \{y\} \subset V$. Hence X is b- R_1 .

Sufficiency. Let $x, y \in X$ such that $x \neq y$. By Theorem 3.4, There exists a *b*-open set U such that $x \in U$ and $y \notin U$. Then by Lemma 3.1 $x \notin Cl_b(\{y\})$ and hence $Cl_b(\{x\}) \neq Cl_b(\{y\})$. Therefore there exist disjoint *b*-open sets U_1 and U_2 such that $x \in Cl_b(\{x\}) \subset U_1$ and $y \in Cl_b(\{y\}) \subset U_2$. Thus X is b- T_2

Theorem 3.9 A space X is $b-T_2$ if and only if the intersection of all b-closed b-neighburhoods of each point of X is reduced to that point.

Proof. Necessity. Let X be b- T_2 and $x \in X$. Then for each $y \in X$ which is distinct from x, there exist b-open sets G and H such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$. Since $x \in G \subset H^c$, hence H^c is a b-closed b-neighbourhood of x to which y does not belong. Consequently, the intersection of all b-closed b-neighbourhood of x is reduced to $\{x\}$.

Sufficiency. Let $x, y \in X$ and $x \neq y$. Then by hypothesis there exists a *b*-closed *b*-neighbourhood *U* of *x* such that $y \notin U$. Now there is a *b*-open set *G* such that $x \in G \subset U$. Thus *G* an U^c are disjoint *b*-open sets containing *x* and *y* respectively. Hence *X* is *b*-*T*₂.

Theorem 3.10 For a space (X, τ) , the following statements are equivalent :

(1) (X, τ) is b-R₁;

(2) If $x, y \in X$ such that $Cl_b(\{x\}) \neq Cl_b(\{y\})$, then there exist b-closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. (1) \rightarrow (2) : Let $x, y \in X$ such that $Cl_b(\{x\}) \neq Cl_b(\{y\})$, and hence $x \neq y$. Therefore, there exist disjoint *b*-open sets U_1 and U_2 such that $x \in Cl_b(\{x\}) \subset U_1$ and $y \in Cl_b(\{y\}) \subset U_2$. Then $F_1 = X \setminus U_2$ and $F_2 = X \setminus U_1$ are *b*-closed sets such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

 $(2) \rightarrow (1)$: Suppose that x and y are distinct points of X, such that $Cl_b(\{x\}) \neq Cl_b(\{y\})$. Therefore there exist b-closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$. Now, we set $U_1 = X \setminus F_2$ and $U_2 = X \setminus F_1$, then we obtain that $x \in U_1$, $y \in U_2$,

 $U_1 \cap U_2 = \emptyset$ and U_1, U_2 are b-open. This shows that (X, τ) is b-T₂. It follows from Theorem 3.8 that (X, τ) is b-R₁.

A space (X, τ) is said to be a b- R_0 space if every b-open set contains the b-closure of each of its singletons.

Theorem 3.11 For every space (X, τ) the following statements are equivalent: a) b- R_0 . b) b- T_1 .

Proof. The equivalence of $b-T_1$ and $b-R_0$ follows from the fact that $b-T_1$ is equivalent to $b-R_0$ and $b-T_0$.

A point x of a space (X, τ) is an b- θ -accumulation point of a subset $A \subset X$, if for each b-open U of X containing x, $Cl_b(U) \cap A \neq \emptyset$. The set $bCl_{\theta}(A)$ of all b- θ -accumulation points of A is called the b- θ -closure of A. The set A is said to be b- θ -closed if $bCl_{\theta}(A) = A$. Complement of a b- θ -closed set is said to be b- θ -open.

Lemma 3.12 For any subset A of a space (X, τ) , $Cl_b(A) \subset bCl_{\theta}(A)$.

Lemma 3.13 Let x and y are points in a space (X, τ) . Then $y \in bCl_{\theta}(\{x\})$ if and only if $x \in bCl_{\theta}(\{y\})$.

Theorem 3.14 A space (X, τ) is $b - R_1$ if and only if for each $x \in X$, $Cl_b(\{x\}) = bCl_{\theta}(\{x\})$.

Proof. Necessity. Assume that X is $b - R_1$ and $y \in bCl_{\theta}(\{x\}) \setminus Cl_b(\{x\})$. Then there exists a b-open set U containing y such that $Cl_b(U) \cap \{x\} \neq \emptyset$ but $U \cap \{x\} = \emptyset$. Thus $Cl_b(\{y\}) \subset U$, $Cl_b(\{x\}) \cap U = \emptyset$. Hence $Cl_b(\{x\}) \neq$ $Cl_b(\{y\})$. Since X is $b - R_1$, there exist disjoint b-open sets U_1 and U_2 such that $Cl_b(\{x\}) \subset U_1$ and $Cl_b(\{y\}) \subset U_2$. Therefore $X \setminus U_1$ is a b-closed bneigbourhood at y which does not contain x. Thus $y \notin bCl_{\theta}(\{x\})$. This is a contradiction.

Sufficiency. Suppose that $Cl_b(\{x\}) = bCl_\theta(\{x\})$ for each $x \in X$. We first prove that X is b- R_0 . Let x belong to the b-open set U and $y \notin U$. Since $bCl_\theta(\{y\}) = Cl_b(\{y\}) \subset X \setminus U$, we have $x \notin bCl_\theta(\{y\})$ and by Lemma 3.13 $y \notin bCl_\theta(\{x\}) = Cl_b(\{x\})$. It follows that $Cl_b(\{x\}) \subset U$. Therefore (X, τ) is b- R_0 . Now, let $a, b \in X$ with $Cl_b(\{a\}) \neq Cl_b(\{b\})$. By Theorem 3.11, (X, τ) is b- T_1 and $b \notin bCl_{\theta}(\{a\})$ and hence there exists a b-open set U containing b such that $a \notin Cl_b(U)$. Therefore, we obtain $b \in U$, $a \in X \setminus Cl_b(U)$ and $U \cap (X \setminus Cl_b(U)) = \emptyset$. This shows that (X, τ) is b- T_2 . It follows from Theorem 3.8 that (X, τ) is b- R_1 .

4 Others Properties of *b*-open Sets

Definition 3 A subset A of a space X is called a bD-set if there are two $U, V \in BO(X, \tau)$ such that $U \neq X$ and $A=U \setminus V$.

One can observe that every b-open set U different from X is a bD-set if A=U and $V=\emptyset$.

Definition 4 A space (X, τ) is called:

(i) $b-D_0$ if for any distinct pair of points x and y of X there exists a bD-set of X containing x but not y or a bD-set of X containing y but not x. (ii) $b-D_1$ if for any distinct pair of points x and y of X there exists a bD-set of X containing x but not y and a bD-set of X containing y but not x. (iii) $b-D_2$ if for any distinct pair of points x and y of X there exist disjoint bD-sets G and E of X containing x and y, respectively.

Remark 4.1 (i) If (X, τ) is b- T_i , then it is b- T_{i-1} , i = 1, 2. (ii) If (X, τ) is b- T_i , then (X, τ) is b- D_i , i = 0, 1, 2. (iii) If (X, τ) is b- D_i , then it is b- D_{i-1} , i = 1, 2.

Theorem 4.2 For a space (X, τ) the following statements are true: (1) (X, τ) is b-D₀ if and only if it is b-T₀. (2) (X, τ) is b-D₁ if and only if it is b-D₂.

Proof. (1) We prove only the necessity condition since the sufficiency condition is stated in Remark 4.1(ii).

Necessity. Let (X, τ) be $b - D_0$. Then for each distinct pair $x, y \in X$, at least one of x, y, say x, belongs to a bD-set G but $y \notin G$. Let $G = U_1 \setminus U_2$ where $U_1 \neq X$ and $U_1, U_2 \in BO(X, \tau)$. Then $x \in U_1$, and for $y \notin G$ we have two cases: (a) $y \notin U_1$; (b) $y \in U_1$ and $y \in U_2$.

In case (a), U_1 contains x but not y;

In case (b), U_2 contains y but not x. Hence X is $b-T_0$.

(2) Sufficiency. Remark 4.1(iii).

Necessity. Let X be a $b-D_1$ topological space. Then for each distinct pair $x, y \in X$, we have bD-sets G_1, G_2 such that $x \in G_1, y \notin G_1$; $y \in G_2, x \notin G_2$. Let $G_1 = U_1 \setminus U_2$, $G_2 = U_3 \setminus U_4$. From $x \notin G_2$, we have either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. Now we consider the following two cases separately.

(1) $x \notin U_3$. From $y \notin G_1$ we have two subcases:

(a) $y \notin U_1$. From $x \in U_1 \setminus U_2$ we have $x \in U_1 \setminus (U_2 \cup U_3)$ and from $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. Therefore, $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4) = \emptyset$.

(b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, $y \in U_2$. $(U_1 \setminus U_2) \cap U_2 = \emptyset$. (2) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$, $x \in U_4$. $(U_3 \setminus U_4) \cap U_4 = \emptyset$.

From the discussion above we know that the space X is $b-D_2$.

From Theorems 4.2 and 3.4, we obtain also that every space is $b-D_0$.

Definition 5 A point $x \in X$ which has X as the b-neighborhood is called a *b*-neat point.

Theorem 4.3 For a space (X, τ) the following are equivalent: (1) (X, τ) is b-D₁; (2) (X, τ) has no b-neat point.

Proof. $(1) \to (2)$. Since (X, τ) is $b \cdot D_1$, so each point x of X is contained in a bD-set $O = U \setminus V$ and thus in U. By definition $U \neq X$. This implies that x is not a b-neat point.

 $(2) \rightarrow (1)$. By Theorem 3.4, each distinct pair of points $x, y \in X$, at least one of them, x(say) has a *b*-neighborhood U containing x and not y. Thus Uwhich is different from X is a *bD*-set. If X has no *b*-neat point, then y is not a *b*-neat point. This means that there exists a *b*-neighborhood V of y such that $V \neq X$. Thus $y \in (V \setminus U)$ but not x and $V \setminus U$ is a *bD*-set. Hence X is $b-D_1$.

Remark 4.4 It should be noted that a space (X, τ) is not $b-D_1$ if and only if there is a unique b-neat point in X. It is unique because if x and y are both b-neat point in X, then at least one of them say x has a b-neighborhood U containing x but not y. But this is a contradiction since $U \neq X$. **Definition 6** A function $f : (X, \tau) \to (Y, \sigma)$ is b-continuous if the inverse image of each b-open set is b-open.

Theorem 4.5 If $f : (X, \tau) \to (Y, \sigma)$ is a b-continuous surjective function and E is a bD-set in Y, then the inverse image of E is a bD-set in X.

Proof. Let E be a bD-set in Y. Then there are b-open sets U_1 and U_2 in Y such that $S = U_1 \setminus U_2$ and $U_1 \neq Y$. By the b- continuity of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are b-open in X. Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence $f^{-1}(E) = f^{-1}(U_1) \setminus f^{-1}(U_2)$ is a bD-set.

Theorem 4.6 If (Y, σ) is $b-D_1$ and $f : (X, \tau) \to (Y, \sigma)$ is b-continuous and bijective, then (X, τ) is $b-D_1$.

Proof. Suppose that Y is a $b-D_1$ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is $b-D_1$, there exist bD-sets G_x and G_y of Y containing f(x) and f(y) respectively, such that $f(y) \notin G_x$ and $f(x) \notin G_y$. By Theorem 4.5, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are bD-sets in X containing x and y respectively. This implies that X is a $b-D_1$ space.

Theorem 4.7 A space (X, τ) is $b-D_1$ if and only if for each pair of distinct points $x, y \in X$, there exists a b-continuous surjective function $f : (X, \tau) \to (Y, \sigma)$, where Y is a $b-D_1$ space such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a b-continuous, surjective function f of a space X onto a $b-D_1$ space Y such that $f(x) \neq f(y)$. Therefore, there exist disjoint bD-sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is b-continuous and surjective, by Theorem 4.5, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint bD-sets in X containing x and y, respectively. Hence by Theorem 4.2, X is $b-D_1$ space.

Acknowledgment. The authors are grateful to Professor Maximilian Ganster for his comments on an earlier version of this paper and also his observations concerning Theorems 3.4 and 3.11.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12(1983), 77-90.
- [2] D. Andrijević, On *b*-open sets, *Math. Vesnik* 48(1996), 59-64.
- [3] D. Andrijević, Semi-preopen sets, Math. Vesnik 38(1986), 24-32.
- [4] N. Bourbaki, Eléments de mathématique, Livre III: Topologie générale, Châp. IX-Paris 1948.
- [5] M. Caldas, S. Jafari and T. Noiri, On Λ_b -sets and the associated topology τ^{Λ_b} , Acta Math. Hungar (to appear).
- [6] H. H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.* 8(1964), 351-360.
- [7] N. Levine, Semi-open sets and semi-continuity in topologyical spaces, Amer. Math. Monthly **70**(1963), 36-41.
- [8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt* 53(1982), 47-53.
- [9] O. Njåstad, On some classes of nearly open sets, *Pacific J. Math.* 15(1965), 961-970.

Addresses :

Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ BRASIL.

e-mail: gmamccs@vm.uff.br

College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, DENMARK.

E-mail: jafari@stofanet.dk