MORE ON ALMOST CONTRA $\lambda\text{-}\mathrm{CONTINUOUS}$ FUNCTIONS *

C. W. Baker, M. Caldas, S. Jafari and S. P. Moshokoa

Abstract

In 1996, Dontchev [14] introduced and investigated a new notion of non-continuity called contra-continuity. Recently, Baker et al. [6] offered a new generalization of contra-continuous functions via λ -closed sets, called almost contra λ -continuous functions. It is the objective of this paper to further study some more properties of such functions.

1 Introduction and preliminaries

In 1986, Maki [25] introduced the notion of Λ -sets in topological spaces. A Λ -set is a set A which is equal to its kernel(= saturated set), i.e. to the intersection of all open supersets of A. Arenas et al. [3] introduced and investigated the notion of λ -closed sets by involving Λ -sets and closed sets. Quite recently, Caldas et al. ([7], [11]) introduced the notion of λ -closure of a set by utilizing the notion of λ -open sets defined in [3]. In [14], Dontchev introduced and studied a new notion of non-continuity called contra-continuity. It is the aim of this paper to continue our work ([6], [9], [8]) and present some more properties of almost contra λ -continuity which is a generalization of contra-continuity. Moreover, we present some of the basic properties and preservation theorems of almost contra λ -continuous functions. Furthermore, we investigate the relationships between almost contra λ -continuous functions and functions with λ R-closed graph.

^{*2000} Mathematics Subject Classification: 54B05, 54C08.

Key words and phrases:topological spaces, λ -open sets, λ -closed sets, almost contra λ continuous functions, λ R-closed graph.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. Let A be a subset of X. We denote the interior, the closure and the complement of a set A by Int(A), Cl(A) and $X \setminus A$ or A^c , respectively. A subset A of X is said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A subset A of a space X is called preopen [24] (resp. semi-open [23], β -open [1](also called semipreopen [2]) if $A \subset Int(Cl(A))$ (resp. $A \subset Cl(Int(A)), A \subset Cl(Int(Cl(A))))$. The complement of a preopen (resp. semi-open, β -open) set is said to be preclosed (resp. semi-closed, β -closed). The collection of all regular closed (resp. semi-open) subsets of X will be denoted by RC(X) (resp. SO(X)). We set $RC(X, x) = \{V \in RC(X) : x \in V\}$ (resp. $SO(X, x) = \{V \in SO(X) : x \in V\}$) V}). A subset A of (X, τ) is called λ -closed [3] if $A = L \cap D$, where L is a Λ -set and D is a closed set. The complement of a λ -closed set is called λ -open. We denote the collection of all λ -open sets (resp. λ -closed sets) by $\lambda O(X,\tau)$ (resp. $\lambda C(X,\tau)$). We set $\lambda O(X,x) = \{U : x \in U \in \lambda O(X,\tau)\}$ and $\lambda C(X, x) = \{U : x \in U \in \lambda C(X, \tau)\}$. A point x in a topological space (X,τ) is called a λ -cluster point of A [7] if $A \cap U \neq \emptyset$ for every λ -open set U of X containing x. The set of all λ -cluster points is called the λ -closure of A and is denoted by $Cl_{\lambda}(A)$ ([3], [7]).

A point $x \in X$ is said to be a λ -interior point of A if there exists a λ -open set U containing x such that $U \subset A$. The set of all λ -interior points of A is said to be λ -interior of A and is denoted by $Int_{\lambda}(A)$.

Lemma 1.1 ([3], [7]). Let A, B and A_i ($i \in I$) be subsets of a topological space (X, τ) . The following properties hold: (1) If A_i is λ -closed for each $i \in I$, then $\bigcap_{i \in I} A_i$ is λ -closed. (2) If A_i is λ -open for each $i \in I$, then $\bigcup_{i \in I} A_i$ is λ -open. (3) A is λ -closed if and only if $A = Cl_{\lambda}(A)$. (4) A is λ -open if and only if $A = Int_{\lambda}(A)$. (5) $Cl_{\lambda}(A) = \cap \{F \in \lambda C(X, \tau) : A \subset F\}$. (6) $A \subset Cl_{\lambda}(A)$. (7) If $A \subset B$, then $Cl_{\lambda}(A) \subset Cl_{\lambda}(B)$. (8) $Cl_{\lambda}(A)$ is λ -closed.

Definition 1 A function $f : X \to Y$ is said to be: (1) λ -continuous [3] If $f^{-1}(V)$ is λ -closed for every closed set V in Y, equivalently if the inverse image of every open set V in Y is λ -open in X. (2) almost λ -continuous [21] if $f^{-1}(V)$ is λ -closed in X for every regular $closed \ set \ V \ in \ Y.$

(3) almost contra pre-continuous ([16], [27]) if $f^{-1}(V)$ is preclosed in X for every regular open set V in Y.

(4) almost contra β -continuous [5] if $f^{-1}(V)$ is β -closed in X for every regular open set V in Y.

(5) almost contra λ -continuous if $f^{-1}(V)$ is λ -closed in X for each regular open set V of Y.

Definition 2 Let A be a subset of a space (X, τ) . The set $\cap \{U \in RO(X) : A \subset U\}$ is called the r-kernel of A [17] and is denoted by rker(A).

Lemma 1.2 (Ekici [17]) The following properties hold for the subsets A, B of a space X:

(1) $x \in rker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in RC(X, x)$. (2) $A \subset rker(A)$ and A = rker(A) if A is regular open in X.

(3) If $A \subset B$, then $rker(A) \subset rker(B)$.

Theorem 1.3 [6] Let $f : X \to Y$ be a function from a topological space X into a topological space Y. The following statements are equivalent:

(1) f is almost contra λ -continuous;

(2) The inverse image of each regular closed set in Y is λ -open in X;

(3) For each point x in X and each regular closed set V in Y containing

f(x), there is a λ -open set U in X containing x such that $f(U) \subset V$;

(4) For each point x in X and each semiopen set V in Y containing f(x), there is a λ -open set U in X containing x such that $f(U) \subset Cl(V)$;

(5) $f(Cl_{\lambda}(A)) \subset rker(f(A))$ for every subset A of X;

(6) $Cl_{\lambda}(f^{-1}(B)) \subset f^{-1}(rker(B))$ for every subset B of Y.

2 Some more properties

Recall that a topological space (X, τ) is said to be:

(i) λ - T_1 [10] if for any distinct pair of points x and y in X, there exist $U \in \lambda O(X)$ containing x but not y and $V \in \lambda O(X)$ containing y but not x. (ii) λ - T_2 [10] if for any distinct pair of points x and y in X, there exist $U \in \lambda O(X, x)$ and $V \in \lambda O(X, y)$ such that $U \cap V = \emptyset$.

(iii) Weakly Hausdorff [30] (briefly weak- T_2) if every point of X is an intersection of regular closed sets of X.

(iv) s-Urysohn [4] if for each pair of distinct points x and y in X, there exist $U \in SO(X, x)$ and $V \in SO(X, x)$ such that $Cl(U) \cap Cl(V) = \emptyset$.

Remark 2.1 Observe that T_0 , λ - T_1 and λ - T_2 are equivalent [18] and s-Urysohn \Rightarrow weak- $T_2 \Rightarrow T_1 \Rightarrow T_0$.

Theorem 2.2 If X is a topological space and for each pair of distinct points x_1 and x_2 in X, there exists a map f of X into a Urysohn topological space Y such that $f(x_1) \neq f(x_2)$ and f is almost contra λ -continuous at x_1 and x_2 , then X is T_0 .

Proof. Let x_1 and x_2 be any distinct points in X. Then by hypothesis, there is a Urysohn space Y and a function $f: X \to Y$ which satisfies the conditions of the theorem. Let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$. Since Y is Urysohn, there exist open sets U_{y_1} and U_{y_2} of y_1 and y_2 , respectively, in Y such that $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \emptyset$. Since f is almost contra λ -continuous at x_i , there exists a λ -open set W_{x_i} of x_i in X such that $f(W_{x_i}) \subset Cl(U_{y_i})$ for i = 1, 2. Hence we get $W_{x_1} \cap W_{x_2} = \emptyset$ since $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \emptyset$. Hence X is λ - T_2 and therefore by Remark 2.1, X is T_0 .

Corollary 2.3 If f is an almost contra λ -continuous injection of a topological space X into a Urysohn space Y, then X is T_0 .

Proof. For each pair of distinct points x_1 and x_2 in X, f is an almost contra λ -continuous function of X into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ since f is injective. Hence by Theorem 2.2, X is T_0 .

Theorem 2.4 If f is an almost contra λ -continuous injection of a topological space X into a weakly Hausdorff space Y, then X is T_0 .

Proof. Since Y is weakly Hausdorff and f is injective, for any distinct points x_1 and x_2 of X, there exist $V_1, V_2 \in RC(Y)$ such that $f(x_1) \in V_1$, $f(x_2) \notin V_1$, $f(x_2) \in V_2$ and $f(x_1) \notin V_2$. Since f is almost contra λ continuous, by Theorem 2.2 $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are λ -open sets and $x_1 \in$ $f^{-1}(V_1), x_2 \notin f^{-1}(V_1), x_2 \in f^{-1}(V_2), x_1 \notin f^{-1}(V_2)$. Then there exists $U_1, U_2 \in \lambda O(X)$ such that $x_1 \in U_1 \subset f^{-1}(V_1), x_2 \notin U_1, x_2 \in U_2 \subset f^{-1}(V_2)$ and $x_1 \notin U_2$. Thus X is λ -T₁ and therefore by Remark 2.1, X is T₀.

Corollary 2.5 If f is an almost contra λ -continuous injection of a topological space X into a s-Urysohn space Y, then X is T_0 . Recall that a topological space is called a λ -space [3] if the union of any two λ -closed sets is a λ -closed set. Observe that if $f, g : X \to Y$ are almost contra λ -continuous functions, X is a λ -space and Y is s-Urysohn, then it is obvious that $E = \{x \in X \mid f(x) = g(x)\}$ is λ -closed in X.

We say that the product space $X = X_1 \times \ldots \times X_n$ has Property P_{Λ} if A_i is a λ -open set in a topological space X_i , for $i = 1, 2, \ldots n$, then $A_1 \times \ldots \times A_n$ is also λ -open in the product space $X = X_1 \times \ldots \times X_n$.

Theorem 2.6 Let $f_1 : X_1 \to Y$ and $f_2 : X_2 \to Y$ be two functions, where (1) $X = X_1 \times X_2$ has the Property P_{Λ} . (2) Y is a Urysohn space. (3) f_1 and f_2 are almost contra λ -continuous. Then $\{(x_1, x_2) : f_1(x_1) = f_2(x_2)\}$ is λ -closed in the product space $X = X_1 \times X_2$.

Proof. Let A denote the set $\{(x_1, x_2) : f_1(x_1) = f_2(x_2)\}$. In order to show that A is λ -closed, we show that $(X_1 \times X_2) \setminus A$ is λ -open. Let $(x_1, x_2) \notin A$. Then $f_1(x_1) \neq f_2(x_2)$. Since Y is Urysohn, there exist open sets V_1 and V_2 of $f_1(x_1)$ and $f_2(x_2)$, respectively, such that $Cl(V_1) \cap Cl(V_2) = \emptyset$. Since f_i (i = 1, 2) is almost contra λ -continuous and $Cl(V_i)$ is regular closed, then $f_i^{-1}(Cl(V_i))$ is a λ -open set containing x_i in X_i (i = 1, 2). Hence by (1), $f_1^{-1}(Cl(V_1)) \times f_2^{-1}(Cl(V_2))$ is λ -open. Furthermore $(x_1, x_2) \in f_1^{-1}(Cl(V_1)) \times$ $f_2^{-1}(Cl(V_2)) \subset (X_1 \times X_2) \setminus A$. It follows that $(X_1 \times X_2) \setminus A$ is λ -open. Thus A is λ -closed in the product space $X = X_1 \times X_2$.

Corollary 2.7 Assume that the product space $X \times X$ has the Property P_{Λ} . If $f: X \to Y$ is almost contra λ -continuous and Y is a Urysohn space. Then $A = \{(x_1, x_2) : f(x_1) = f(x_2)\}$ is λ -closed in the product space $X \times X$.

Recall that a topological space X is called a $T_{\frac{1}{2}}$ -space ([15], [22]) if every singleton is open or closed.

Lemma 2.8 Let (X, τ) be a $T_{\frac{1}{2}}$ -space and $f : X \to Y$. If f is almost contra- β -continuous or almost contra-pre-continuous then f is almost contra- λ -continuous.

Proof. It follows directly from Theorem 2.6 of [3].

Remark 2.9 Observe that a topological space (X, τ) in which every two nonvoid λ -closed subsets of (X, τ) intersect is indiscrete. It is obvious that if a topological space X is indiscrete and $f: X \to Y$ is a surjective almost contra λ -continuous function, then Y is hyperconnected. Recall that a topological space is hyperconnected if every open set is dense. To see this, suppose that Y is not hyperconnected. This implies that there exists an open set V such that $Cl(V) \neq Y$. Thus, there exist disjoint regular open sets D and E in Y, i.e, Int(Cl(V)) and $Y \setminus Cl(V)$. Since f is a surjective almost contra λ continuous function, we have $A = f^{-1}(D)$ and $B = f^{-1}(E)$ such that A and B are disjoint non-empty λ -closed subsets of X. By hypothesis, X is indiscrete and this implies that $A \cap B \neq \emptyset$. But this is a contradiction. Hence Y is hyperconnected.

Theorem 2.10 Let $f : X \to Y$ be a function and $g : X \to X \times Y$ the graph function, given by g(x) = (x, f(x)) for every $x \in X$. Then f is almost contra λ -continuous if g is almost contra λ -continuous.

Proof. Let $x \in X$ and V be a regular open subset of Y containing f(x). Then we have $X \times V$ is a regular open. Since g is almost contra λ -continuous, $g^{-1}(X \times V) = f^{-1}(V)$ is λ -closed. Hence f is almost contra λ -continuous.

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 3 A function $f : X \to Y$ has a λ -closed graph if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in \lambda O(X, x)$ and an open set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 2.11 The graph, G(f) of a function $f : X \to Y$ is λ -closed if and only if for each $(x, y) \in (X \times Y) - G(f)$ there exists $U \in \lambda O(X, x)$ and an open set V of Y containing y such that $f(U) \cap V = \emptyset$.

Theorem 2.12 If $f : X \to Y$ is a function with λ -closed graph, then for each $x \in X$, $f(x) = \cap \{Cl(f(U)) : U \in \lambda O(X, x)\}.$

Proof. Suppose the theorem is false. Then there exists a $y \neq f(x)$ such that $y \in \cap \{Cl(f(U)) : U \in \lambda O(X, x)\}$. This implies that $y \in Cl(f(U))$, for every $U \in \lambda O(X, x)$. So $V \cap f(U) \neq \emptyset$, for every $V \in O(Y, y)$. which contradicts the hypothesis that f is a function with λ -closed graph. Hence the theorem.

Theorem 2.13 If $f : X \to Y$ is almost contra λ -continuous and Y is Haudorff, then G(f) is λ -closed.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$. Since Y is Hausdorff, there exists disjoint open sets V and W of Y such that $y \in V$ and $f(x) \in W$. Then $f(x) \notin Y - Cl(W)$. Since Y - Cl(W) is a regular open set containg V, it follows that $f(x) \notin \operatorname{rKer}(V)$ and hence $x \notin f^{-1}(\operatorname{rKer}(V))$. Then by Theorem 1.3(6) $x \notin \operatorname{Cl}_{\lambda}(f^{-1}(V))$. Therefore we have $(x, y) \in (X - \operatorname{Cl}_{\lambda}(f^{-1}(V))) \times V \subset$ $(X \times Y) - G(f)$, which proves that G(f) is λ -closed.

Theorem 2.14 Let $f : X \to Y$ have a λ -closed graph. (1) If f is injective, then X is T_0 . (2) If f is surjective, then Y is T_1 .

Proof. (1) Let x_1 and x_2 be two points in X. Then $(x_1, f(x_2)) \in (X \times Y) - G(f)$. Since f has a λ -closed graph, there exist $U \in \lambda O(X, x_1)$ and an open set V of Y containing $f(x_2)$ such that $f(U) \cap V = \emptyset$. Then $U \cap f^{-1}(V) = \emptyset$. Since $x_2 \in f^{-1}(V)$, $x_2 \notin U$. Therefore U is a λ -open set containing x_1 but not x_2 , which proves that X is λ - T_1 and hence by Remark 2.1 that X is T_0 . (2) Let y_1 and y_2 be two points in Y. Since Y is surjective, there exists $x \in X$ such that $f(x) = y_1$. Then $(x, y_2) \in (X \times Y) - G(f)$. Since f has a λ -closed graph, there exist $U \in \lambda O(X, x)$ and an open set V of Y containing y_2 such that $f(U) \cap V = \emptyset$. Since $y_1 = f(x)$ and $x \in U$, $y_1 \in f(U)$. Therefore $y_1 \notin V$, which proves that Y is T_1 .

It is clear that if $f: X \to Y$ has a λ -closed graph and X is a λ -space, then $f^{-1}(K)$ is λ -closed for every compact subset K of Y.

3 λ **R**-closed graphs

Definition 4 A function $f : X \to Y$ has a λR -closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \lambda O(X, x)$ and $V \in RC(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$.

Remark 3.1 The above definition is equivalent with the statement that a function $f : X \to Y$ has a λR -closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \lambda O(X, x)$ and $V \in SO(Y, y)$ such that $(U \times Cl(V)) \cap G(f) = \emptyset$.

Lemma 3.2 A graph G(f) of a function $f : X \to Y$ is λR -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \lambda O(X)$ containing x and $V \in RC(Y)$ containing y such that $f(U) \cap V = \emptyset$.

Remark 3.3 Observe that a graph G(f) of a function $f : X \to Y$ is λR closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \lambda O(X)$ containing x and $V \in SO(Y)$ containing y such that $f(U) \cap Cl(V) = \emptyset$.

Theorem 3.4 For a function $f : X \to Y$, the following are equivalent: (1) f is λ -continuous; (2) for each $x \in X$ and each $V \in O(Y, f(x))$, there exists $U \in \lambda O(X, x)$ such that $f(U) \subset V$.

Proof. Straightforward.

Remark 3.5 Examples 3.4 and 3.5 in [6] show that λ -continuity and almost contra λ -continuity are, in general, independent

Theorem 3.6 If $f : X \to Y$ is λ -continuous and Y is Hausdorff, then G(f) is λR -closed.

Proof. Let $(x, y) \in X \times Y \setminus G(f)$. Since Y is Hausdorff, then there exists a set $V \in O(Y, y)$ such that $f(x) \notin Cl(V)$. Now $Y \setminus Cl(V) \in O(Y, f(x))$. Therefore, by the λ -continuity of f there exists $U \in \lambda O(X, x)$ such that $f(U) \subset Y \setminus Cl(V)$. Consequently, $f(U) \cap Cl(V) = \emptyset$ where Cl(V) is a regular closed set since V is open. By Lemma 3.2, G(f) is λ R-closed.

Theorem 3.7 Let $f : X \to Y$ has a λ R-closed graph. (1) If f is injective, then X is T_0 . (2) If f is surjective, then Y is weakly- T_2 .

Proof. (1) Suppose that x and y are any two distinct points of X. We have $(x, f(y)) \in X \times Y \setminus G(f)$. Since f has a λ R-closed graph, then there exist a λ -open neighborhood U of x and a regular closed set F of Y containing f(y) such that $f(U) \cap F = \emptyset$. Hence $U \cap f^{-1}(F) = \emptyset$. This means that we have $y \notin U$. Thus X is T_0 .

(2) Let y_1 and y_2 be any distinct points of Y. Since f is surjective, then $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in X \times Y \setminus G(f)$. Since f has a λ R-closed graph, then there exist a λ -open neighborhood U of x and a regular closed set F of Y containing y_2 such that $f(U) \cap F = \emptyset$. This means that $y_1 \notin F$. It follows that Y is weakly- T_2 .

Theorem 3.8 If $f : X \to Y$ is almost contra λ -continuous and Y is Urysohn, then G(f) is λR -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$, then $y \neq f(x)$. Since Y is Urysohn there exist open sets V and W in Y such that $y \in V$, $f(x) \in W$ with $Cl(V) \cap Cl(W) = \emptyset$. Since f is almost contra λ -continuous, by Theorem 1.3(3) and since Cl(W) is regular closed containing f(x) there exists $U \in$ $\lambda O(X, x)$ such that $f(U) \subset Cl(W)$. Therefore, we obtain $f(U) \cap Cl(V) = \emptyset$. By definition G(f) is λ R-closed in $X \times Y$.

Theorem 3.9 If $f : X \to Y$ is almost contra λ -continuous and Y is s-Urysohn, then G(f) is λR -closed in $X \times Y$.

Definition 5 A subset A of a space X is said to be S-closed relative to X [26] if for every cover $\{V_{\alpha} \mid \alpha \in \nabla\}$ of A by semi-open sets of X, there exists a finite subset ∇_0 of ∇ such that $A \subset \bigcup \{Cl(V_{\alpha}) \mid \alpha \in \nabla_0\}$. A space X is said to be S-closed [32] if X is S-closed relative to X.

It should be noted that if a function $f : X \to Y$ has a λ R-closed graph and X is λ -space, then $f^{-1}(K)$ is λ -closed in X for every subset K which is S-closed relative to Y.

Definition 6 A topological space X is said to be:

(1) strongly λS -closed if every λ -closed cover of X has a finite subcover. (resp. $A \subset X$ is strongly λS -closed if the subspace A is strongly λS -closed). (2) nearly-compact [28] if every regular open cover of X has a finite subcover.

Theorem 3.10 If $f : X \to Y$ is an almost contra λ -continuous surjection and X is strongly λS -closed, then Y is nearly compact.

Proof. Let $\{V_{\alpha} : \alpha \in I\}$ be a regular open cover of Y. Since f is almost contra λ -continuous, we have that $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a cover of X by λ closed sets. Since X is strongly λ S-closed, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ and therefore Y is nearly compact.

Definition 7 A topological space X is said to be almost-regular [29] if for each regular closed set F of X and each point $x \in X \setminus F$, there exist disjoint open sets U and V such that $F \subset V$ and $x \in U$. **Theorem 3.11** If a function $f : X \to Y$ is almost contra λ -continuous and Y is almost-regular, then f is almost λ -continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y containing f(x). Since Y is almost-regular, by Theorem 3.2 of [29] there exists a regular open set W in Y containing f(x) such that $Cl(W) \subset Int(Cl(V))$. Since f is almost contra λ -continuous, and Cl(W) is regular closed in Y, by Theorem 1.3(3) there exists $U \in \lambda O(X, x)$ such that $f(U) \subset Cl(W)$. Then $f(U) \subset Cl(W) \subset Int(Cl(V))$. Hence, f is almost λ -continuous.

Recall that Caldas et al. [7] introduced the notion of λ -frontier of A, denoted by $Fr_{\lambda}(A)$, as $Fr_{\lambda}(A) = Cl_{\lambda}(A) \setminus Int_{\lambda}(A)$, equivalently $Fr_{\lambda}(A) = Cl_{\lambda}(A) \cap Cl_{\lambda}(X \setminus A)$.

Theorem 3.12 The set of points $x \in X$ at which $f: (X, \tau) \to (Y, \sigma)$ is not almost contra λ -continuous is identical with the union of the λ -frontiers of the inverse images of regular closed sets of Y containing f(x).

Proof. Necessity. Suppose that f is not almost contra λ -continuous at a point x of X. Then there exists a regular closed set $F \subset Y$ containing f(x) such that f(U) is not a subset of F for every $U \in \lambda O(X, x)$. Hence we have $U \cap (X \setminus f^{-1}(F)) \neq \emptyset$ for every $U \in \lambda O(X, x)$. It follows that $x \in Cl_{\lambda}(X \setminus f^{-1}(F))$. We also have $x \in f^{-1}(F) \subset Cl_{\lambda}(f^{-1}(F))$. This means that $x \in Fr_{\lambda}(f^{-1}(F))$.

Sufficiency. Suppose that $x \in Fr_{\lambda}(f^{-1}(F))$ for some $F \in RC(Y, f(x))$ Now, we assume that f is almost contra λ -continuous at $x \in X$. Then there exists $U \in \lambda O(X, x)$ such that $f(U) \subset F$. Therefore, we have $x \in U \subset f^{-1}(F)$ and hence $x \in Int_{\lambda}(f^{-1}(F)) \subset X \setminus Fr_{\lambda}(f^{-1}(F))$. This is a contradiction. This means that f is not almost contra λ -continuous.

Definition 8 A space (X, τ) is called λ -compact ([7], [8]) (also called λ O-compact [19]) if every cover of X by λ -open sets has a finite subcover.

Definition 9 A space X is said to be

(1) S-Lindelöf [12] if every cover of X by regular closed sets has a countable subcover,

(2) countably S-closed [1] if every countable cover of X by regular closed sets has a finite subcover,

(3) mildly compact [31] if every clopen cover of X has a finite subcover.

Theorem 3.13 Let $f : (X, \tau) \to (Y, \sigma)$ be an almost contra λ -continuous surjection.

(1) If X is λO -compact, then Y is S-closed.

(2) If X is S-Lindelöf, then Y is S-Lindelöf.

(3) If X is countably λO -compact, then Y is countably S-closed.

Proof. We prove only (1) since the proofs of (2) and (3) are analogous. Suppose that $\{V_{\alpha} \mid \alpha \in \nabla\}$ be any regular closed cover of Y. Since f is almost contra λ -continuous, then $\{f^{-1}(V_{\alpha}) \mid \alpha \in \nabla\}$ is a λ -open cover of X. Thus, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup\{f^{-1}(V_{\alpha}) \mid \alpha \in \nabla_0\}$. We have $Y = \bigcup\{V_{\alpha} \mid \alpha \in \nabla_0\}$ and this shows that Y is S-closed [[20], Theorem 3.2].

Acknowledgment. S. P. Moshokoa acknowledges the support by the South African National Research Foundation under Grant number 2053847.

References

- [1] M. E. Abd El-Monsef, S. N. Ei-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Assiut Univ., **12** (1983), 77-90.
- [2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, **38** (1986), 24-32.
- [3] F. G. Arenas, J. Dontchev and M. Ganster, On λ -sets and dual of generalized continuity, Questions Answers Gen. Topology, **15** (1997), 3-13.
- [4] S. P. Arya and M. P. Bhamini, Some generalizations of pairwise Urysohn spaces, Indian J. Pure Appl. Math. 18 (1987), 1088-1093.
- [5] C. W. Baker, On contra almost β-continuous functions in topological spaces, Kochi J. Math., 1 (2006), 1-8.
- [6] C. W. Baker, M. Caldas, S. Jafari and S. P. Moshokoa, Characterizations of a new class of maps via λ -open and λ -closed sets (submitted).
- [7] M. Caldas, S. Jafari, G. Navalagi, More on λ -closed sets in topological spaces, Rev. Colombiana Mat. 4(207)2, 355-369.
- [8] M. Caldas, E. Hatir, S. Jafari and T. Noiri, A new Kupka type continuity, λ -compactness and multifunctions, CUBO, A Mathematical Journal, 11(4)(2009), 1-13.

- [9] M. Caldas, E. Ekici, S. Jafari and T. Noiri, On the class of contra λ continuous functions, Ann. Univ. Sci. Budapest Sec. Math. 49(2006), 75-86.
- [10] M. Caldas, and S. Jafari, On some low separation axioms via λ -open and λ -closure operator, Rendiconti del Circ. Mat. Di Palermo, **54** (2005), 195-208.
- [11] M. Caldas, E. Ekici, S. Jafari and T. Noiri, Weakly λ -continuous functions, Novi Sad J. Math. 38 (2)(2008), 47-56.
- [12] G. Di Maio, S-closed spaces, S-sets and S-continuous functions, Accad. Sci. Torino 118 (1984), 125-134.
- [13] K. Dlaska, N. Ergun and M. Ganster, Countably S-closed spaces, Math. Slovaca 44 (1994), 337-348.
- [14] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (1996), 303-310.
- [15] W. Dunham, $T_{1/2}$ -spaces, Kyungpook Math. J., **17** (1977), 161-169.
- [16] E. Ekici, Almost contra-precontinuous functions, Bull. Malaysian Math. Sci. Soc., 27 (2006), 53-65.
- [17] E. Ekici, Another form of contra-continuity, Kochi J. Math., 1 (2006), 21-29.
- [18] M. Ganster, S. Jafari and M. Steiner, Some observations on λ -closed sets,(submitted).
- [19] M. Ganster, S. Jafari and M. Steiner, On some very strong compactness conditions,(submitted).
- [20] R. A. Hermann, *RC*-convergence, Proc. Amer. Math. Soc. 75(1979), 311-317.
- [21] S. Jafari, S. P. Moshokoa, K. R. Nailana and T. Noiri, On almost λ -continuous functions (submitted).
- [22] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96
- [23] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 68 (1961), 44-46.
- [24] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.

- [25] H. Maki, Generalized A-sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazusada IKEDA' Retirement, 1. Oct. (1986), 139-146.
- [26] T. Noiri, On S-closed subspaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur, 8(64) (1978), 157-162.
- [27] T. Noiri and V. Popa, Some properties of almost contra-precontinuous functions, Bull. Malaysian Math. Sci. Soc., 28 (2005), 107-116.
- [28] M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital., 4 (2) (1969), 702-710.
- [29] M. K. Singal and S. P. Arya, On almost-regular spaces, Glasnik Mat. III 4 (24) (1969), 89-99.
- [30] T. Soundarajan, Weakly Hausdorff space and the cardinality of topological spaces, General Topology and its Relation to Modern Analysis and Algebra III, Proc. Conf. Kampur, 168, Acad. Prague (1971), 301-306.
- [31] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math. 50 (1974), 169-185.
- [32] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335-338.

C. W. Baker Department of Mathematics, Indiana University Southeast, New Albany, Indiana 47150, USA. email: cbaker@ius.edu

M. Caldas Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ BRASIL. e-mail: gmamccs@vm.uff.br

S. Jafari College of Vestsjaelland South Herrestraede 11 4200 Slagelse DENMARK. S. P. Moshokoa Department of Mathematical Sciences, University of South Africa, P.O. Box 392, Pretoria 0003, SOUTH AFRICA. email: moshosp@unisa.ac.za