On some Ramanujan's equations (Hardy-Ramanujan number, taxicab numbers and Rogers-Ramanujan continued fractions) linked to various parameters of Standard Model Particles and String Theory: New possible mathematical connections. IV

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have described and deepened further Ramanujan equations (Hardy-Ramanujan number, taxicab numbers and Rogers-Ramanujan continued fractions) linked to various parameters of Standard Model Particles and String Theory. We have therefore obtained further possible mathematical connections.

[^0]
https://www.britannica.com/biography/Srinivasa-Ramanujan

https://futurism.com/brane-science-complex-notions-of-superstring-theory
\[

$$
\begin{aligned}
& \text { Ff } \\
& \text { (i) } \frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+ \\
& \text { on } \frac{\alpha_{0}}{x^{2}}+\frac{\alpha_{1}}{x^{2}}+\frac{\alpha_{L}}{x^{3}}+ \\
& \text { (ii) } \frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}=b_{0}+L_{1} x+L_{2} x^{2}+L_{0} x+ \\
& \text { or } \frac{\beta_{0}}{x}+\frac{\beta_{1}}{x^{L}}+\frac{\beta_{2}}{x^{0}}+ \\
& \text { (iii) } \frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}}=c_{0}+c_{1} x+c_{2} x^{2}+c_{0} x^{3}+ \\
& \text { or } \frac{x_{0}}{x_{1}}+\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x^{0}}+ \\
& \text { then } \\
& \left.a_{n}{ }^{3}+{a_{n}}^{3}=c_{n}^{3}+(-1)^{n}\right\} \\
& \text { and } \left.\quad \alpha_{n}^{3}+\beta_{n}^{3}=\gamma_{n}^{3}+(-1)^{n}\right\} \\
& \text { Examples } \\
& 135^{5^{3}}+138^{3}=172^{3}-1 \\
& 11161^{3}+11468^{3}=14255^{3}+1 \\
& 791^{3}+812^{3}=1010^{3}-1 \\
& 9^{3}+10^{3}=12^{3}+1 \\
& 6^{3}+8^{3}=9^{3}-1
\end{aligned}
$$
\]

https://plus.maths.org/content/ramanujan

Ramanujan's manuscript

The representations of 1729 as the sum of two cubes appear in the bottom right corner. The equation expressing the near counter examples to Fermat's last theorem appears further up: $\alpha^{3}+\beta^{3}=\gamma^{3}+(-1)^{n}$.

From Wikipedia
The taxicab number, typically denoted Tan) or Taxicab(n), also called the nth Hardy-Ramanujan number, is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is $1729=T a(2)=1^{3}+12^{3}=9^{3}+10^{3}$.

From:

Sub-critical Closed String Field Theory in D

Less Than 26
Michio Kaku - arXiv:hep-th/9311173v1 29 Nov 1993

We have that:

The holomorphic part of the energy-momentum tensor is therefore:

$$
\begin{align*}
T_{z z}^{\phi} & =-\frac{1}{2}\left(\partial_{z} \phi^{\mu}\right)^{2}-\frac{Q_{\mu}}{2}\left(\partial_{z}^{2} \phi^{u}\right) \\
T_{z z}^{\mathrm{gh}} & =\frac{1}{2}\left(\partial_{z} \sigma\right)^{2}+\frac{3}{2}\left(\partial_{z} \sigma^{2}\right) \tag{8}
\end{align*}
$$

where we have bosonized the ghost fields via $c=e^{\sigma}$ and $b=e^{-\sigma}$ and where $Q^{\mu}=(0, Q)$. Demanding that the central charge of the Virasoro algebra vanish implics that:

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12} n\left(n^{2}-1\right) \dot{\delta}_{n+m, 0} \tag{9}
\end{equation*}
$$

with total central charge:

$$
\begin{equation*}
c=D+1+3 Q^{2}-26=0 \tag{10}
\end{equation*}
$$

so that $Q=2 \sqrt{2}$ for $D=1$ (or for two dimensions if we promote ϕ to a dimension). Notice that the ghost field has a background charge of -3 and the

From (10), we obtain:
$2+3 Q^{\wedge} 2-26=0$

Input:

$2+3 Q^{2}-26=0$
Result:
$3 Q^{2}-24=0$

Root plot:

Alternate forms:

$Q^{2}=8$
$3\left(Q^{2}-8\right)=0$

Solutions:

$Q=-2 \sqrt{2}$
$Q=2 \sqrt{2}$
$2 \sqrt{ } 2$
$2 \sqrt{2}$
2.828427124746190097603377448419396157139343750753896146353...
2.8284271247...

We note that:
$2^{*}((2 \operatorname{sqrt}(2)))^{\wedge} 4$

Input:

$2(2 \sqrt{2})^{4}$

Result:

128
128

And:
$2^{*}((2 \operatorname{sqrt}(2)))^{\wedge} 4-\mathrm{Pi}+1 /$ golden ratio

Input:

$2(2 \sqrt{2})^{4}-\pi+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}+128-\pi$

Decimal approximation:

125.4764413351601016097419434510861352335231397804306570411...
$125.47644133 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Property:

$128+\frac{1}{\phi}-\pi$ is a transcendental number

Alternate forms:

$\frac{1}{2}(255+\sqrt{5}-2 \pi)$
$-\frac{-128 \phi+\pi \phi-1}{\phi}$
$\frac{(128-\pi) \phi+1}{\phi}$

Series representations:

$2(2 \sqrt{2})^{4}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$
$2(2 \sqrt{2})^{4}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}+\sum_{k=0}^{\infty} \frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}$
$2(2 \sqrt{2})^{4}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)$

Integral representations:

$2(2 \sqrt{2})^{4}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-4 \int_{0}^{1} \sqrt{1-t^{2}} d t$
$2(2 \sqrt{2})^{4}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-2 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t$
$2(2 \sqrt{2})^{4}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$
$2 *((2 \operatorname{sqrt}(2)))^{\wedge} 4+11+1 /$ golden ratio

Input:

$2(2 \sqrt{2})^{4}+11+\frac{1}{\phi}$
ϕ is the golden ratio

Result:

$\frac{1}{\phi}+139$

Decimal approximation:

139.6180339887498948482045868343656381177203091798057628621...
$139.6180339887 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:
$\frac{1}{2}(277+\sqrt{5})$
$\frac{139 \phi+1}{\phi}$
$\frac{\sqrt{5}}{2}+\frac{277}{2}$

Series representations:

$2(2 \sqrt{2})^{4}+11+\frac{1}{\phi}=11+\frac{1}{\phi}+32{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}$
for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$2(2 \sqrt{2})^{4}+11+\frac{1}{\phi}=$

$$
11+\frac{1}{\phi}+32 \exp ^{4}\left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{4}
$$

for ($x \in \mathbb{R}$ and $x<0$)
$2(2 \sqrt{2})^{4}+11+\frac{1}{\phi}=$

$$
11+\frac{1}{\phi}+32\left(\frac{1}{z_{0}}\right)^{\left.2 \arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{2+2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right]}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)^{4}
$$

$2 *((2 \operatorname{sqrt}(2)))^{\wedge} 4+7+$ golden $\operatorname{ratio}^{\wedge} 2$

Input:

$2(2 \sqrt{2})^{4}+7+\phi^{2}$

Result:

$\phi^{2}+135$

Decimal approximation:

137.6180339887498948482045868343656381177203091798057628621...
137.6180339887...

This result is very near to the inverse of fine-structure constant 137,035

Alternate forms:

$\frac{1}{2}(273+\sqrt{5})$

$$
\begin{aligned}
& \frac{273}{2}+\frac{\sqrt{5}}{2} \\
& 135+\frac{1}{4}(1+\sqrt{5})^{2}
\end{aligned}
$$

Series representations:

$2(2 \sqrt{2})^{4}+7+\phi^{2}=7+\phi^{2}+32{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}$
for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$2(2 \sqrt{2})^{4}+7+\phi^{2}=$
$7+\phi^{2}+32 \exp ^{4}\left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{4}$
for $(x \in \mathbb{R}$ and $x<0)$
$2(2 \sqrt{2})^{4}+7+\phi^{2}=$
$7+\phi^{2}+32\left(\frac{1}{z_{0}}\right)^{2\left\lfloor\operatorname{agg}\left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{2+2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}$
$27^{*}((2 \operatorname{sqrt}(2)))^{\wedge} 4+1$

Input:

$27(2 \sqrt{2})^{4}+1$

Result:

1729
1729

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Now, we have that:

$$
\begin{equation*}
\left\{p e^{\sigma\left(z_{0}\right)}\left[\frac{D+2}{24}+\frac{1}{8}\left(Q^{2}-3^{2}\right)\right]+\frac{d e^{\sigma\left(z_{0}\right)}}{d z}\left[\frac{5(D+2)}{96}+\frac{5}{32}\left(Q^{2}-3^{2}\right)\right]\right\}\left|V_{3}\right\rangle_{0} \tag{55}
\end{equation*}
$$

With
$\mathrm{Q}=2 \sqrt{ } 2$
$p=b / a$
$\mathrm{a}=5, \mathrm{~b}=8, \sigma=2, \mathrm{z}_{0}=\pi, \mathrm{D}=2, \mathrm{Q}^{2}=(2 \sqrt{ } 2)^{\wedge} 2$ and $\left|V_{3}\right\rangle_{0}=1$

$$
\begin{equation*}
\left\{p e^{\sigma\left(z_{0}\right)}\left[\frac{D+2}{24}+\frac{1}{8}\left(Q^{2}-3^{2}\right)\right]+\frac{d e^{\sigma\left(z_{0}\right)}}{d z}\left[\frac{5(D+2)}{96}+\frac{5}{32}\left(Q^{2}-3^{2}\right)\right]\right\}\left|V_{3}\right\rangle_{0} \tag{55}
\end{equation*}
$$

$\left[8 / 5^{*} \mathrm{e}^{\wedge}(2 \mathrm{Pi})\left(\left(\left(4 / 24+1 / 8\left((2 \mathrm{sqrt} 2)^{\wedge} 2-9\right)\right)\right)\right)+\left(\left(\mathrm{d} / \mathrm{dz}\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})\right)\right)\right)\left(\left(\left(20 / 96+5 / 32\left((2 \mathrm{sqrt} 2)^{\wedge} 2-\right.\right.\right.\right.\right.$
9))))]

Input interpretation:

$\frac{8}{5} e^{2 \pi}\left(\frac{4}{24}+\frac{1}{8}\left((2 \sqrt{2})^{2}-9\right)\right)+\frac{\partial e^{2 \pi}}{\partial z}\left(\frac{20}{96}+\frac{5}{32}\left((2 \sqrt{2})^{2}-9\right)\right)$
Result:
$\frac{e^{2 \pi}}{15}$

Decimal approximation:

$35.69944370165098243353662197260314543185371984021966103381 \ldots$
35.6994437016...

Property:

$\frac{e^{2 \pi}}{15}$ is a transcendental number

And:
$4^{*}\left[8 / 5^{*} \mathrm{e}^{\wedge}(2 \mathrm{Pi})\left(\left(\left(4 / 24+1 / 8\left((2 \text { sqrt2 } 2)^{\wedge} 2-9\right)\right)\right)\right)+\left(\left(\mathrm{d} / \mathrm{dz}\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})\right)\right)\right)\right.$
(((20/96+5/32((2sqrt2)^2-9))))]
Input interpretation:
$4\left(\frac{8}{5} e^{2 \pi}\left(\frac{4}{24}+\frac{1}{8}\left((2 \sqrt{2})^{2}-9\right)\right)+\frac{\partial e^{2 \pi}}{\partial z}\left(\frac{20}{96}+\frac{5}{32}\left((2 \sqrt{2})^{2}-9\right)\right)\right)$

Result:

$\frac{4 e^{2 \pi}}{15}$

Decimal approximation:

$142.7977748066039297341464878904125817274148793608786441352 \ldots$
142.797774806...

Property:

$\frac{4 e^{2 \pi}}{15}$ is a transcendental number
$4^{*}\left[8 / 5^{*} \mathrm{e}^{\wedge}(2 \mathrm{Pi})\left(\left(\left(4 / 24+1 / 8\left((2 \mathrm{sqrt} 2)^{\wedge} 2-9\right)\right)\right)\right)+\left(\left(\mathrm{d} / \mathrm{dz}\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})\right)\right)\right)\right.$ $\left.\left(\left(\left(20 / 96+5 / 32\left((2 \mathrm{sqrt} 2)^{\wedge} 2-9\right)\right)\right)\right)\right]-18+1 /$ golden ratio

Input interpretation:

$4\left(\frac{8}{5} e^{2 \pi}\left(\frac{4}{24}+\frac{1}{8}\left((2 \sqrt{2})^{2}-9\right)\right)+\frac{\partial e^{2 \pi}}{\partial z}\left(\frac{20}{96}+\frac{5}{32}\left((2 \sqrt{2})^{2}-9\right)\right)\right)-18+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}-18+\frac{4 e^{2 \pi}}{15}$

Decimal approximation:

125.4158087953538245823510747247782198451351885406844069973...
125.415808795... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Property:

$-18+\frac{4 e^{2 \pi}}{15}+\frac{1}{\phi}$ is a transcendental number

Alternate forms:

$\frac{1}{2}(\sqrt{5}-37)+\frac{4 e^{2 \pi}}{15}$
$-18+\frac{2}{1+\sqrt{5}}+\frac{4 e^{2 \pi}}{15}$
$\frac{15(1-18 \phi)+4 e^{2 \pi} \phi}{15 \phi}$
$4^{*}\left[8 / 5^{*} \mathrm{e}^{\wedge}(2 \mathrm{Pi})\left(\left(\left(4 / 24+1 / 8\left((2 \mathrm{sqrt} 2)^{\wedge} 2-9\right)\right)\right)\right)+\left(\left(\mathrm{d} / \mathrm{dz}\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})\right)\right)\right)\right.$ $\left.\left(\left(\left(20 / 96+5 / 32\left((2 \mathrm{sqrt} 2)^{\wedge} 2-9\right)\right)\right)\right)\right]-4+1 /$ golden ratio

Input interpretation:

$4\left(\frac{8}{5} e^{2 \pi}\left(\frac{4}{24}+\frac{1}{8}\left((2 \sqrt{2})^{2}-9\right)\right)+\frac{\partial e^{2 \pi}}{\partial z}\left(\frac{20}{96}+\frac{5}{32}\left((2 \sqrt{2})^{2}-9\right)\right)\right)-4+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}-4+\frac{4 e^{2 \pi}}{15}$

Decimal approximation:

139.4158087953538245823510747247782198451351885406844069973...
$139.41580879 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$-4+\frac{4 e^{2 \pi}}{15}+\frac{1}{\phi}$ is a transcendental number

Alternate forms:

$\frac{1}{2}(\sqrt{5}-9)+\frac{4 e^{2 \pi}}{15}$
$-4+\frac{2}{1+\sqrt{5}}+\frac{4 e^{2 \pi}}{15}$
$\frac{15(1-4 \phi)+4 e^{2 \pi} \phi}{15 \phi}$

And again:
$48 *\left[8 / 5 * \mathrm{e}^{\wedge}(2 \mathrm{Pi})\left(\left(\left(4 / 24+1 / 8\left((2 \mathrm{sqrt} 2)^{\wedge} 2-9\right)\right)\right)\right)+\left(\left(\mathrm{d} / \mathrm{dz}\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})\right)\right)\right)\right.$
$\left.\left(\left(\left(20 / 96+5 / 32\left((2 \mathrm{sqrt} 2)^{\wedge} 2-9\right)\right)\right)\right)\right]+11+\mathrm{Pi}+$ golden ratio

Input interpretation:

$48\left(\frac{8}{5} e^{2 \pi}\left(\frac{4}{24}+\frac{1}{8}\left((2 \sqrt{2})^{2}-9\right)\right)+\frac{\partial e^{2 \pi}}{\partial z}\left(\frac{20}{96}+\frac{5}{32}\left((2 \sqrt{2})^{2}-9\right)\right)\right)+11+\pi+\phi$
ϕ is the golden ratio

Result:

$\phi+11+\frac{16 e^{2 \pi}}{5}+\pi$

Decimal approximation:

1729.332924321586844896425084902596121730896030909724598306...
1729.33292432...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternate forms:
$\frac{1}{5}\left(5(\phi+11+\pi)+16 e^{2 \pi}\right)$
$\frac{23}{2}+\frac{\sqrt{5}}{2}+\frac{16 e^{2 \pi}}{5}+\pi$
$11+\frac{1}{2}(1+\sqrt{5})+\frac{16 e^{2 \pi}}{5}+\pi$

We have also:

We also find:

$$
\begin{align*}
\frac{d z^{\prime}}{d z} \frac{1}{\left(z^{\prime}-z\right)^{2}} & =\epsilon^{-2} f_{1}^{-2}\left[\left(\epsilon f_{2}\right)^{\prime}-2 f_{3} f_{1}^{\prime}\right. \\
& \left.+3 f_{2}^{2} f_{1}^{-2}+\left(\epsilon f_{1}\right)^{\prime}\left(-2 f_{2} f_{1}^{-1}\right)+\ldots\right] \\
& -\epsilon^{-2}\left(\frac{5}{48}+\frac{p \digamma}{12}\right)+\ldots \tag{38}
\end{align*}
$$

For $p=8 / 5$ and $\epsilon=0.0864055$, from

$$
\epsilon^{-2}\left(\frac{5}{48}+\frac{p \epsilon}{12}\right)+\ldots
$$

we obtain:
$1 / 0.0864055^{\wedge} 2\left(\left(5 / 48+\left(8 / 5^{*} 0.0864055\right) / 12\right)\right)$

Input interpretation:

$\frac{1}{0.0864055^{2}}\left(\frac{5}{48}+\frac{1}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)$

Result:

15.49541761594990707596963807011646541846750814091713165178...
15.4954176159...

$$
\begin{align*}
\left(\frac{d z^{\prime}}{d z}\right)^{2} \frac{1}{\left(z^{\prime}-z\right)^{2}} & =\epsilon^{-2} f_{1}^{-2}\left[-4\left(\epsilon f_{1}\right)^{\prime} f_{2} f_{1}^{-1}\right. \\
& +\left(\epsilon f_{1}\right)^{\prime}+2\left(\epsilon f_{2}\right)^{\prime} \\
& \left.-2 f_{3} f_{1}^{-1}+3 f_{2}^{2} f_{1}^{-2}+\ldots\right] \\
& =\epsilon^{-2}\left(\frac{29}{48}+\frac{13}{12} p \epsilon\right)+\ldots \tag{39}
\end{align*}
$$

$$
\begin{aligned}
\left(\frac{d z^{\prime}}{d z}\right)^{2} \frac{1}{z^{\prime}-z} & =\epsilon^{-1} f_{1}^{-1}\left(-f_{2} f_{1}^{-1}+2\left(\epsilon f_{1}\right)^{\prime}\right) \\
& =-\frac{3}{4} \epsilon^{-1}+\ldots
\end{aligned}
$$

From

$$
\epsilon^{-2}\left(\frac{29}{48}+\frac{13}{12} p \epsilon\right)+\ldots
$$

we obtain:
$1 / 0.0864055^{\wedge} 2\left(\left(29 / 48+13 / 12 *\left(8 / 5^{*} 0.0864055\right)\right)\right)$

Input interpretation:

$\frac{1}{0.0864055^{2}}\left(\frac{29}{48}+\frac{13}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)$

Result:

100.9838260241161295976023338925323025241366208526782238381...
100.983826024...

From

$$
-\frac{3}{4} \epsilon^{-1}+\ldots
$$

we obtain:
$-3 / 4 * 1 / 0.0864055$

Input interpretation:

$-\frac{3}{4} \times \frac{1}{0.0864055}$

Result:

-8.68000300906770981013940084832562741955083877762410957635...
-8.6800030090677...

From the sum of the three expressions, we obtain:
$\left(\left(\left(1 / 0.0864055^{\wedge} 2\left(\left(5 / 48+\left(8 / 5^{*} 0.0864055\right) / 12\right)\right)\right)\right)\right)+\left(\left(\left(1 / 0.0864055^{\wedge} 2\right.\right.\right.$
$((29 / 48+13 / 12 *(8 / 5 * 0.0864055))))))+(((-3 / 4 * 1 / 0.0864055)))$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{0.0864055^{2}}\left(\frac{5}{48}+\frac{1}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+ \\
& \frac{1}{0.0864055^{2}}\left(\frac{29}{48}+\frac{13}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+-\frac{3}{4} \times \frac{1}{0.0864055}
\end{aligned}
$$

Result:

107.7992406309983268634325711143231405230532902159712459135.
107.79924063099...

From which:
$\left(\left(\left(1 / 0.0864055^{\wedge} 2\left(\left(5 / 48+\left(8 / 5^{*} 0.0864055\right) / 12\right)\right)\right)\right)\right)+\left(\left(\left(1 / 0.0864055^{\wedge} 2\right.\right.\right.$
$((29 / 48+13 / 12 *(8 / 5 * 0.0864055))))))+(((-3 / 4 * 1 / 0.0864055)))+29+1 /$ golden ratio

Input interpretation:

$$
\begin{aligned}
& \frac{1}{0.0864055^{2}}\left(\frac{5}{48}+\frac{1}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+ \\
& \frac{1}{0.0864055^{2}}\left(\frac{29}{48}+\frac{13}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+-\frac{3}{4} \times \frac{1}{0.0864055}+29+\frac{1}{\phi}
\end{aligned}
$$

Result:

137.417.
137.417...

This result is very near to the inverse of fine-structure constant 137,035

Alternative representations:

$$
\begin{aligned}
& \frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+29+\frac{1}{\phi}= \\
& 29-\frac{3}{0.0864055 \times 4}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}}+\frac{1}{2 \sin \left(54^{\circ}\right)} \\
& \frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+29+\frac{1}{\phi}= \\
& 29-\frac{3}{0.0864055 \times 4}+-\frac{1}{2 \cos \left(216^{\circ}\right)}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}} \\
& \frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+29+\frac{1}{\phi}= \\
& 29-\frac{3}{0.0864055 \times 4}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}}+-\frac{1}{2 \sin \left(666^{\circ}\right)}
\end{aligned}
$$

$\left(\left(\left(1 / 0.0864055^{\wedge} 2\left(\left(5 / 48+\left(8 / 5^{*} 0.0864055\right) / 12\right)\right)\right)\right)\right)+\left(\left(\left(1 / 0.0864055^{\wedge} 2\right.\right.\right.$ $\left.\left.\left.\left(\left(29 / 48+13 / 12 *\left(8 / 5^{*} 0.0864055\right)\right)\right)\right)\right)\right)+(((-3 / 4 * 1 / 0.0864055)))+29+$ golden ratio ${ }^{\wedge} 2$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{0.0864055^{2}}\left(\frac{5}{48}+\frac{1}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+ \\
& \frac{1}{0.0864055^{2}}\left(\frac{29}{48}+\frac{13}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+-\frac{3}{4} \times \frac{1}{0.0864055}+29+\phi^{2}
\end{aligned}
$$

Result:

139.417...
$139.417 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{aligned}
& \frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+29+\phi^{2}= \\
& 29-\frac{3}{0.0864055 \times 4}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}}+\left(2 \sin \left(54^{\circ}\right)\right)^{2} \\
& \frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+29+\phi^{2}= \\
& 29-\frac{3}{0.0864055 \times 4}+\left(-2 \cos \left(216^{\circ}\right)\right)^{2}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}} \\
& \frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+29+\phi^{2}= \\
& 29-\frac{3}{0.0864055 \times 4}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}}+\left(-2 \sin \left(666^{\circ}\right)\right)^{2}
\end{aligned}
$$

$\left(\left(\left(1 / 0.0864055^{\wedge} 2\left(\left(5 / 48+\left(8 / 5^{*} 0.0864055\right) / 12\right)\right)\right)\right)\right)+\left(\left(\left(1 / 0.0864055^{\wedge} 2\right.\right.\right.$
$((29 / 48+13 / 12 *(8 / 5 * 0.0864055))))))+(((-3 / 4 * 1 / 0.0864055)))+11+4+$ golden ratio ${ }^{\wedge} 2$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{0.0864055^{2}}\left(\frac{5}{48}+\frac{1}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+ \\
& \frac{1}{0.0864055^{2}}\left(\frac{29}{48}+\frac{13}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+-\frac{3}{4} \times \frac{1}{0.0864055}+11+4+\phi^{2}
\end{aligned}
$$

Result:

125.417...
125.417... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\begin{aligned}
& \frac{\frac{5}{48}+\frac{80.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+11+4+\phi^{2}= \\
& 15-\frac{3}{0.0864055 \times 4}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}}+\left(2 \sin \left(54^{\circ}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+11+4+\phi^{2}= \\
& 15-\frac{3}{0.0864055 \times 4}+\left(-2 \cos \left(216^{\circ}\right)\right)^{2}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}} \\
& \frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12} \\
& 0.0864055^{2}
\end{aligned}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}+11+4+\phi^{2}=, ~ \frac{3.98617}{\frac{0.691244}{5 \times 12}+\frac{5}{48}}+\frac{\frac{29}{58}}{0.0864055^{2}}+\left(-2 \sin \left(666^{\circ}\right)\right)^{2} \quad l
$$

$$
16^{*}\left(\left(\left(\left(\left(\left(1 / 0.0864055^{\wedge} 2\left(\left(5 / 48+\left(8 / 5^{*} 0.0864055\right) / 12\right)\right)\right)\right)\right)+\left(\left(\left(1 / 0.0864055^{\wedge} 2\right.\right.\right.\right.\right.\right.
$$

$$
((29 / 48+13 / 12 *(8 / 5 * 0.0864055))))))+(((-3 / 4 * 1 / 0.0864055))))))+\mathrm{Pi}+\text { golden ratio- } 1 / 2
$$

Input interpretation:

$$
\begin{aligned}
& 16\left(\frac{1}{0.0864055^{2}}\left(\frac{5}{48}+\frac{1}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+\right. \\
& \left.\quad \frac{1}{0.0864055^{2}}\left(\frac{29}{48}+\frac{13}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)+-\frac{3}{4} \times \frac{1}{0.0864055}\right)+\pi+\phi-\frac{1}{2}
\end{aligned}
$$

Result:

1729.05...
1729.05...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternative representations:

$$
\begin{aligned}
& 16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}= \\
& -\frac{1}{2}+\pi+2 \cos \left(\frac{\pi}{5}\right)+16\left(-\frac{3}{0.0864055 \times 4}+\frac{\frac{0.601244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}= \\
& -\frac{1}{2}+\pi-2 \cos \left(216^{\circ}\right)+16\left(-\frac{3}{0.0864055 \times 4}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.98617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}}\right) \\
& 16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}= \\
& -\frac{1}{2}+180^{\circ}+2 \cos \left(\frac{\pi}{5}\right)+16\left(-\frac{3}{0.0864055 \times 4}+\frac{\frac{0.691244}{5 \times 12}+\frac{5}{48}}{0.0864055^{2}}+\frac{\frac{8.08617}{5 \times 12}+\frac{29}{48}}{0.0864055^{2}}\right)
\end{aligned}
$$

Series representations:

$16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}=$

$$
1724.29+\phi+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
$$

$16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}=$

$$
1722.29+\phi+2 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}
$$

$16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}=$

$$
1724.29+\phi+\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}
$$

Integral representations:

$16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}=$ $1724.29+\phi+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$

$$
\begin{aligned}
& 16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}= \\
& 1724.29+\phi+4 \int_{0}^{1} \sqrt{1-t^{2}} d t
\end{aligned}
$$

$$
16\left(\frac{\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}}{0.0864055^{2}}+\frac{\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}}{0.0864055^{2}}+-\frac{3}{0.0864055 \times 4}\right)+\pi+\phi-\frac{1}{2}=
$$

$$
1724.29+\phi+2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t
$$

$$
\begin{aligned}
& -\left(\left(\left((((1 / 0 . 0 8 6 4 0 5 5 ^ { \wedge } 2 ((5 / 4 8 + (8 / 5 ^ { * } 0 . 0 8 6 4 0 5 5) / 1 2))))) ^ { * } \left(\left(\left(1 / 0.0864055^{\wedge} 2\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.\left.\left(\left(29 / 48+13 / 12 *\left(8 / 5^{*} 0.0864055\right)\right)\right)\right)\right)\right)\right)^{*}(((-3 / 4 * 1 / 0.0864055)))\right)\right)\right)\right)
\end{aligned}
$$

Input interpretation:

$$
\begin{aligned}
& -\left(\left(\frac{1}{0.0864055^{2}}\left(\frac{5}{48}+\frac{1}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)\right)\right. \\
& \left.\quad\left(\frac{1}{0.0864055^{2}}\left(\frac{29}{48}+\frac{13}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)\right)\left(-\frac{3}{4} \times \frac{1}{0.0864055}\right)\right)
\end{aligned}
$$

Result:

13582.35202070565305684624989730546763578662824246108752544.
13582.352020705...

From the formula of coefficients of the '5th order' mock theta function $\psi_{1}(\mathrm{q})$: (A053261 OEIS Sequence)
sqrt(golden ratio) * $\exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(\mathrm{n} / 15)\right) /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{n})\right)$
for $\mathrm{n}=263$ and adding $34, \pi$ and the golden ratio conjugate, we obtain:
sqrt(golden ratio) * $\exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(263 / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(263)\right)+34+\mathrm{Pi}+1 /$ golden ratio

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}+34+\pi+\frac{1}{\phi}$

Exact result:

$\frac{e^{\sqrt{263 / 15} \pi} \sqrt{\frac{\phi}{263}}}{2 \sqrt[4]{5}}+\frac{1}{\phi}+34+\pi$

Decimal approximation:

13582.55507182406239058945354123977131538191027202659034118...
13582.55507182406...

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2}(67+\sqrt{5})+\frac{1}{2} \sqrt{\frac{5+\sqrt{5}}{2630}} e^{\sqrt{263 / 15} \pi}+\pi \\
& 34+\frac{2}{1+\sqrt{5}}+\frac{\sqrt{\frac{1}{526}(1+\sqrt{5})} e^{\sqrt{263 / 15} \pi}}{2 \sqrt[4]{5}}+\pi \\
& \frac{e^{\sqrt{263 / 15} \pi} \phi^{3 / 2}+2 \sqrt[4]{5} \sqrt{263}((34+\pi) \phi+1)}{2 \sqrt[4]{5} \sqrt{263} \phi}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}+34+\pi+\frac{1}{\phi}= \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+340 \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 10 \phi \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+5^{3 / 4} \phi \\
& \left.\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{263}{15}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(10 \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right) \\
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}+34+\pi+\frac{1}{\phi}= \\
& \left(10 \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& 340 \phi \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 10 \phi \pi \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 5^{3 / 4} \phi \exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right) \exp \left(\pi \exp \left(i \pi \left\lvert\, \frac{\arg \left(\frac{263}{15}-x\right)}{2 \pi}\right.\right]\right) \sqrt{x} \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{263}{15}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(10 \phi \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}+34+\pi+\frac{1}{\phi}=\left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(10\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 340 \phi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \quad \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+10 \phi \pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \\
& z_{0}^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 5^{3 / 4} \phi \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\operatorname{agg}\left(\frac{263}{15}-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(\frac{263}{15}-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)_{k}\right)\left(\frac{263}{15}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\frac{1}{\left.z_{0}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor}}+\right. \\
& \left.z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(10 \phi \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}\right)}{k!}\right)
\end{aligned}
$$

From which:

$1 / 8\left(\left(\left(\operatorname{sqrt}(\right.\right.\right.$ golden ratio $\left.\left.\left.) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(263 / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(263)\right)\right)\right)\right)+34+\mathrm{e}-$ 1/golden ratio

Input:

$\frac{1}{8}\left(\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}\right)+34+e-\frac{1}{\phi}$

Exact result:

$\frac{e^{\sqrt{263 / 15} \pi} \sqrt{\frac{\phi}{263}}}{16 \sqrt[4]{5}}-\frac{1}{\phi}+34+e$

Decimal approximation:

1729.199678487424488200003989514752796177536037094820380775...
1729.199678487...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2}(69-\sqrt{5})+e+\frac{1}{16} \sqrt{\frac{5+\sqrt{5}}{2630}} e^{\sqrt{263 / 15} \pi} \\
& 34-\frac{2}{1+\sqrt{5}}+e+\frac{\sqrt{\frac{1}{526}(1+\sqrt{5})} e^{\sqrt{263 / 15} \pi}}{16 \sqrt[4]{5}} \\
& \frac{-16 \sqrt[4]{5} \sqrt{263}(1-34 \phi)+16 \sqrt[4]{5} \sqrt{263} e \phi+e^{\sqrt{263 / 15} \pi} \phi^{3 / 2}}{16 \sqrt[4]{5} \sqrt{263} \phi}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{(2 \sqrt[4]{5} \sqrt{263}) 8}+34+e-\frac{1}{\phi}= \\
& \left(-80 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{k}}{k!}+2720 \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 80 e \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+5^{3 / 4} \phi \\
& \left.\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{263}{15}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(80 \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right) \\
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{(2 \sqrt[4]{5} \sqrt{263}) 8}+34+e-\frac{1}{\phi}= \\
& \left(-80 \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& 2720 \phi \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 80 e \phi \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 5^{3 / 4} \phi \exp \left(i \pi\left\lfloor\frac{\arg (\phi-x)}{2 \pi}\right\rfloor\right) \exp \left(\pi \exp \left(i \pi\left\lfloor\frac{\arg \left(\frac{263}{15}-x\right)}{2 \pi}\right\rfloor\right) \sqrt{x}\right. \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{263}{15}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(80 \phi \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{(2 \sqrt[4]{5} \sqrt{263}) 8}+34+e-\frac{1}{\phi}=\left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(-80\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 2720 \phi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+80 e \phi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \\
& z_{0}^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 5^{3 / 4} \phi \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left[\arg \left(\frac{263}{15}-z_{0}\right) /(2 \pi)\right]} z_{0}^{1 / 2\left(1+\left[\arg \left(\frac{263}{15}-z_{0}\right) /(2 \pi)\right]\right)}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{263}{15}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.\left.z_{0}^{1 / 2}\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
& \left(80 \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

sqrt(golden ratio) * $\exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(263 / 15)\right) /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(263)\right)+521+199-2 \mathrm{Pi}-1 / 2$

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}+521+199-2 \pi-\frac{1}{2}$

Exact result:

$\frac{e^{\sqrt{263 / 15} \pi} \sqrt{\frac{\phi}{263}}}{2 \sqrt[4]{5}}+\frac{1439}{2}-2 \pi$

Decimal approximation:

14258.01225987454311602586102425556716861159845464865926085..
14258.0122598745... (Ramanujan taxicab number)

Alternate forms:

$$
\begin{aligned}
& \frac{1439}{2}+\frac{1}{2} \sqrt{\frac{5+\sqrt{5}}{2630}} e^{\sqrt{263 / 15} \pi}-2 \pi \\
& \frac{3784570+5^{3 / 4} \sqrt{526(1+\sqrt{5})} e^{\sqrt{263 / 15} \pi}-10520 \pi}{5260}
\end{aligned}
$$

$$
\frac{\sqrt{\frac{1}{526}(1+\sqrt{5})} e^{\sqrt{263 / 15} \pi}}{2 \sqrt[4]{5}}+\frac{1}{2}(1439-4 \pi)
$$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}+521+199-2 \pi-\frac{1}{2}= \\
& -\left(\left(-7195 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+20 \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}-\right.\right. \\
& 5^{3 / 4} \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{263}{15}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) /\left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}+521+199-2 \pi-\frac{1}{2}= \\
& -\left(\left(-7195 \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right.\right. \\
& 20 \pi \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 5^{3 / 4} \exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right) \exp \left(\pi \exp \left(i \pi\left[\frac{\arg \left(\frac{263}{15}-x\right)}{2 \pi}\right]\right) \sqrt{x}\right. \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{263}{15}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left.\left(10 \exp \left(i \pi\left[\frac{\arg (263-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(263-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in
\end{aligned}
$$
\]

$$
\mathbb{R} \text { and } x<0 \text {) }
$$

$$
\begin{gathered}
\frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{263}{15}}\right)}{2 \sqrt[4]{5} \sqrt{263}}+521+199-2 \pi-\frac{1}{2}= \\
-\left(\left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right. \\
\left(-7195\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2\left\lfloor\arg \left(263-z_{0}\right)\right)(2 \pi)\right\rfloor}\right. \\
\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}+20 \pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \\
z_{0}^{1 / 2\left\lfloor\arg \left(263-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{-k}}{k!}- \\
5^{3 / 4} \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\frac{263}{15}-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(\frac{263}{15}-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right. \\
\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{263}{15}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\frac{1}{\left.z_{0}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor}}\right. \\
\left.\left.z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
\left.\left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(263-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)\right)
\end{gathered}
$$

Note that:

$$
\begin{aligned}
& -\left(\left(\left((((1 / 0 . 0 8 6 4 0 5 5 ^ { \wedge } 2 ((5 / 4 8 + (8 / 5 ^ { * } 0 . 0 8 6 4 0 5 5) / 1 2))))) * \left(\left(\left(1 / 0.0864055^{\wedge} 2\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(29 / 48+13 / 12 *\left(8 / 5^{*} 0.0864055\right)\right)\right)\right)\right)\right)\right)^{*}\left(\left(\left(-3 / 4^{*} 1 / 0.0864055\right)\right)\right)\right)\right)\right)\right)+521+123+29+\mathrm{e}\right]
\end{aligned}
$$

Input interpretation:

$$
\begin{aligned}
& -\left(\left(\frac{1}{0.0864055^{2}}\left(\frac{5}{48}+\frac{1}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)\right)\left(\frac{1}{0.0864055^{2}}\left(\frac{29}{48}+\frac{13}{12}\left(\frac{8}{5} \times 0.0864055\right)\right)\right)\right. \\
& \left.\quad\left(-\frac{3}{4} \times \frac{1}{0.0864055}\right)\right)+521+123+29+e
\end{aligned}
$$

Result:

14258.1...
14258.1... (Ramanujan taxicab number)

Alternative representation:

$$
\begin{aligned}
& -\frac{\left(\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}\right)\left(\left(\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}\right)(-3)\right)}{0.0864055^{2}\left(0.0864055^{2}(4 \times 0.0864055)\right)}+521+123+29+e= \\
& \quad-\frac{\left(\frac{5}{48}+\frac{80.0864055}{5 \times 12}\right)\left(\left(\frac{29}{48}+\frac{13(8 \times 0.0864055)}{125}\right)(-3)\right)}{0.0864055^{2}\left(0.0864055^{2}(4 \times 0.0864055)\right)}+521+123+29+\exp (z) \text { for } z=1
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -\frac{\left(\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}\right)\left(\left(\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}\right)(-3)\right)}{0.0864055^{2}\left(0.0864055^{2}(4 \times 0.0864055)\right)}+521+123+29+e=14255.4+\sum_{k=0}^{\infty} \frac{1}{k!} \\
& -\frac{\left(\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}\right)\left(\left(\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}\right)(-3)\right)}{0.0864055^{2}\left(0.0864055^{2}(4 \times 0.0864055)\right)}+521+123+29+e= \\
& 14255.4+0.5 \sum_{k=0}^{\infty} \frac{1+k}{k!} \\
& -\frac{\left(\frac{5}{48}+\frac{8 \times 0.0864055}{5 \times 12}\right)\left(\left(\frac{29}{48}+\frac{13(8 \times 0.0864055)}{12 \times 5}\right)(-3)\right)}{0.0864055^{2}\left(0.0864055^{2}(4 \times 0.0864055)\right)}+521+123+29+e= \\
& 14255.4+\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}
\end{aligned}
$$

Now, we have that:

$$
\begin{equation*}
\left\{p c\left(z_{0}\right)\left[\frac{D}{24}-\frac{13}{12}+\frac{1}{24}+\frac{1}{8} Q^{2}\right]+\frac{d c\left(z_{0}\right)}{d z}\left[\frac{5 D}{96}-\frac{65}{48}+\frac{5}{96}+\frac{5}{32} Q^{2}\right]\right\}\left|V_{3}\right\rangle_{0} \tag{50}
\end{equation*}
$$

With
$Q=2 \sqrt{2}$
$p=b / a$
$\mathrm{a}=5, \mathrm{~b}=8, \mathrm{c}=2, \mathrm{z}_{0}=\pi, \mathrm{D}=2, \mathrm{Q}^{2}=(2 \sqrt{ } 2)^{\wedge} 2$ and $\left|V_{3}\right\rangle_{0}=1$
$\left[8 / 5^{*}(2 \mathrm{Pi})\left(\left(\left(2 / 24-13 / 12+1 / 24+1 / 8\left((2 \mathrm{sqrt} 2)^{\wedge} 2\right)\right)\right)\right)+((\mathrm{d} / \mathrm{dz}(2 \mathrm{Pi})))\right)(((10 / 96-$ $\left.\left.\left.\left.65 / 48+5 / 96+5 / 32\left((2 \mathrm{sqrt} 2)^{\wedge} 2\right)\right)\right)\right)\right]$

Input interpretation:

$$
\frac{8}{5}(2 \pi)\left(\frac{2}{24}-\frac{13}{12}+\frac{1}{24}+\frac{1}{8}(2 \sqrt{2})^{2}\right)+\frac{\partial(2 \pi)}{\partial z}\left(\frac{10}{96}-\frac{65}{48}+\frac{5}{96}+\frac{5}{32}(2 \sqrt{2})^{2}\right)
$$

Result:

$\frac{2 \pi}{15}$

Decimal approximation:

0.418879020478639098461685784437267051226289253250014109463...
0.4188790204...

From which:
$-4 * 1 / 10^{\wedge} 3+\operatorname{sqrt15*}\left[\left[8 / 5^{*}(2 \mathrm{Pi})\left(\left(\left(2 / 24-13 / 12+1 / 24+1 / 8\left((2 \mathrm{sqrt} 2)^{\wedge} 2\right)\right)\right)\right)+((\mathrm{d} / \mathrm{dz}(2 \mathrm{Pi})))\right)\right.$ $\left.\left.\left(\left(\left(10 / 96-65 / 48+5 / 96+5 / 32\left((2 \mathrm{sqrt} 2)^{\wedge} 2\right)\right)\right)\right)\right]\right]$

Input interpretation:

$$
\begin{aligned}
& -4 \times \frac{1}{10^{3}}+ \\
& \sqrt{15}\left(\frac{8}{5}(2 \pi)\left(\frac{2}{24}-\frac{13}{12}+\frac{1}{24}+\frac{1}{8}(2 \sqrt{2})^{2}\right)+\frac{\partial(2 \pi)}{\partial z}\left(\frac{10}{96}-\frac{65}{48}+\frac{5}{96}+\frac{5}{32}(2 \sqrt{2})^{2}\right)\right)
\end{aligned}
$$

Result:

$$
\frac{2 \pi}{\sqrt{15}}-\frac{1}{250}
$$

Decimal approximation:

1.618311470389444758781184308119175619982003625269461867120...
$1.61831147038 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Property:

$-\frac{1}{250}+\frac{2 \pi}{\sqrt{15}}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{1}{750}(100 \sqrt{15} \pi-3) \\
& \frac{500 \pi-\sqrt{15}}{250 \sqrt{15}}
\end{aligned}
$$

And:
$55^{*} 1 /\left[\left[8 / 5^{*}(2 \mathrm{Pi})\left(\left(\left(2 / 24-13 / 12+1 / 24+1 / 8\left((2 \mathrm{sqrt} 2)^{\wedge} 2\right)\right)\right)\right)+((\mathrm{d} / \mathrm{dz}(2 \mathrm{Pi})))(((10 / 96-\right.\right.$ $\left.\left.\left.\left.\left.65 / 48+5 / 96+5 / 32\left((2 \mathrm{sqrt} 2)^{\wedge} 2\right)\right)\right)\right)\right]\right]+4-1 / 2 * 0.618034$

Input interpretation:

$$
\begin{aligned}
& 55 \times \frac{1}{\frac{8}{5}(2 \pi)\left(\frac{2}{24}-\frac{13}{12}+\frac{1}{24}+\frac{1}{8}(2 \sqrt{2})^{2}\right)+\frac{\partial(2 \pi)}{\partial z}\left(\frac{10}{96}-\frac{65}{48}+\frac{5}{96}+\frac{5}{32}(2 \sqrt{2})^{2}\right)}+ \\
& 4+\frac{1}{2} \times(-0.618034)
\end{aligned}
$$

Result:

134.993811...
$134.993811 \ldots \approx 135$ (Ramanujan taxicab number)
$55^{*} 1 /\left[\left[8 / 5^{*}(2 \mathrm{Pi})\left(\left(\left(2 / 24-13 / 12+1 / 24+1 / 8\left((2 \mathrm{sqrt2})^{\wedge} 2\right)\right)\right)\right)+((\mathrm{d} / \mathrm{dz}(2 \mathrm{Pi})))(((10 / 96-\right.\right.$ $\left.\left.\left.\left.\left.65 / 48+5 / 96+5 / 32\left((2 \text { sqrt2 })^{\wedge} 2\right)\right)\right)\right)\right]\right]+7-1 / 2^{*} 0.618034$

Input interpretation:

$$
\begin{aligned}
& 55 \times \frac{1}{\frac{8}{5}(2 \pi)\left(\frac{2}{24}-\frac{13}{12}+\frac{1}{24}+\frac{1}{8}(2 \sqrt{2})^{2}\right)+\frac{\partial(2 \pi)}{\partial z}\left(\frac{10}{96}-\frac{65}{48}+\frac{5}{96}+\frac{5}{32}(2 \sqrt{2})^{2}\right)}+ \\
& 7+\frac{1}{2} \times(-0.618034)
\end{aligned}
$$

Result:

137.993811...
$137.993811 \ldots \approx 138$ (Ramanujan taxicab number)
$55 * 1 /[[8 / 5 *(2 \mathrm{Pi})(((2 / 24-13 / 12+1 / 24+1 / 8((2 \mathrm{sqrt2}) \wedge 2))))+((\mathrm{d} / \mathrm{dz}(2 \mathrm{Pi})))(((10 / 96-$ $\left.\left.\left.\left.\left.65 / 48+5 / 96+5 / 32\left((2 \mathrm{sqrt2})^{\wedge} 2\right)\right)\right)\right)\right]\right]+47-7+0.618034$

Input interpretation:

$55 \times \frac{1}{\frac{8}{\frac{8}{5}(2 \pi)\left(\frac{2}{24}-\frac{13}{12}+\frac{1}{24}+\frac{1}{8}(2 \sqrt{2})^{2}\right)+\frac{\partial(2 \pi)}{\partial z}\left(\frac{10}{96}-\frac{65}{48}+\frac{5}{96}+\frac{5}{32}(2 \sqrt{2})^{2}\right)}+}+$

Result:

171.92086..
171.92086.. ≈ 172 (Ramanujan taxicab number)

From:
A superfield constraint for $\mathbf{N}=\mathbf{2} \rightarrow \mathbf{N}=\mathbf{0}$ breaking - E. Dudas, S. Ferrara and A. Sagnotti - arXiv:1707.03414v1 [hep-th] 11 Jul 2017

6 Born-Infeld revisited

It is instructive to retrace the steps in [22], enforcing the quadratic constraint of eq. (1.8) while also adding a Fayet-Iliopoulos term. The theory would thus involve, to begin with, four parameters, the complex electric charge e_{c}, the scale m entering the supersymmetry transformations and the constraint (1.8) and the Fayet-Iliopoulos coefficient ξ. On the quadratic constraint, however, the Lagrangian reduces to

$$
\begin{equation*}
\mathcal{L}=-\frac{i}{2} e_{c} F+\frac{i}{2} e_{c}^{\star} \bar{F}+\frac{\xi}{2} D, \tag{6.1}
\end{equation*}
$$

with $e_{c}=e_{1}-i e_{2}$ as above, and it is instructive to work out its bosonic terms in detail. To this end, one first solves for the auxiliary field F from

$$
\begin{equation*}
D^{2} \left\lvert\, 2 F(\bar{F} \mid m) \quad \frac{1}{2} F_{\mu \nu} F^{\mu \nu} \quad \frac{i}{2} F_{\mu \nu} \widetilde{F}^{\mu \nu}=0\right. \tag{6.2}
\end{equation*}
$$

which gives

$$
\begin{equation*}
F=-\frac{m}{2}\left[1-\sqrt{1-\frac{2 D^{2}}{m^{2}}+\frac{1}{m^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 m^{4}}(F \cdot \widetilde{F})^{2}}\right]+\frac{i}{4 m} F_{\mu \nu} \widetilde{F}^{\mu \nu} \tag{6.3}
\end{equation*}
$$

The resulting Lagrangion in cq. (6.1), which now reads

$$
\begin{align*}
\mathcal{L} & =\frac{e_{1}}{4 m} F \cdot \widetilde{F}+\frac{\xi}{2} D \\
& +\frac{m e_{2}}{2}\left[1-\sqrt{1-\frac{2 D^{2}}{m^{2}}+\frac{1}{m^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 m^{4}}(F \cdot \tilde{F})^{2}}\right] \tag{6.4}
\end{align*}
$$

is then to be extremized with respect to D, which gives

$$
\begin{equation*}
D=-\frac{\xi m}{2 e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}} \sqrt{1+\frac{1}{m^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 m^{4}}(F \cdot \widetilde{F})^{2}} \tag{6.5}
\end{equation*}
$$

As a result, the Lagrangian in eq. (6.1) can be finally cast in the form

$$
\begin{align*}
\mathcal{L} & =\frac{e_{1}}{4 m} F \cdot \widetilde{F}-\frac{m e_{2}}{2}\left[\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right] \\
& +\frac{m e_{2}}{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}\left[1-\sqrt{1+\frac{1}{m^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 m^{4}}(F \cdot \widetilde{F})^{2}}\right] \tag{6.6}
\end{align*}
$$

The Maxwell kinetic term contained in this expression is not in conventional form, but this can be recovered letting

$$
\begin{equation*}
F_{\mu \nu} \longrightarrow F_{\mu \nu}\left[\frac{m}{e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}}\right]^{\frac{1}{2}} \tag{6.7}
\end{equation*}
$$

which turns the Lagrangian into

$$
\begin{align*}
\mathcal{L} & =\frac{\theta}{4} F \cdot \widetilde{F}-\frac{m e_{2}}{2}\left[\sqrt{1-\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right] \\
& +\frac{\rho^{2}}{2}\left[1-\sqrt{1+\frac{1}{\rho^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 \rho^{4}}(F \cdot \widetilde{F})^{2}}\right] \tag{6.8}
\end{align*}
$$

Here

$$
\begin{align*}
\rho^{2} & =m e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}} \\
\theta & =\frac{e_{1}}{e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}} \tag{6.9}
\end{align*}
$$

and the four original parameters $\left(m, e_{1}, e_{2}, \xi\right)$ have thus combined into three independent quantities: ρ, θ and the vacuum energy

$$
\begin{equation*}
\mathcal{E}_{0}=\frac{m e_{2}}{2}\left[\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right] \tag{6.10}
\end{equation*}
$$

$$
\begin{align*}
\mathcal{L} & =\frac{\theta}{4} F \cdot \tilde{F}-\frac{m e_{2}}{2}\left[\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right] \\
& +\frac{\rho^{2}}{2}\left[1-\sqrt{1+\frac{1}{\rho^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 \rho^{4}}(F \cdot \tilde{F})^{2}}\right] \\
\rho^{2} & =m e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}} \tag{6.9}\\
\theta & =\frac{e_{1}}{e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}} \tag{6.10}\\
\mathcal{E}_{0} & =\frac{m e_{2}}{2}\left[\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right]
\end{align*}
$$

We have that, from

$$
9^{3}+10^{3}=12^{3}+1
$$

the parameters are free, thence we put
$\mathrm{m}=1, \mathrm{e}_{1}=9, \mathrm{e}_{2}=10, \xi=12$

$$
\begin{align*}
\rho^{2} & =m e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}} \\
\theta & =\frac{e_{1}}{e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}} \tag{6.9}
\end{align*}
$$

$10^{*} \operatorname{sqrt}\left(1+\left(12^{\wedge} 2\right) /\left(2^{*} 10^{\wedge} 2\right)\right)$

Input interpretation:

$10 \sqrt{1+\frac{12^{2}}{2 \times 10^{2}}}$

Result:

$2 \sqrt{43}$

Decimal approximation:

13.11487704860400130468821999527200325585393263976757953973...
$13.114877 \ldots=\rho^{2}$
$9 /\left(\left(\left(10^{*} \operatorname{sqrt}\left(1+\left(12^{\wedge} 2\right) /\left(2^{*} 10^{\wedge} 2\right)\right)\right)\right)\right)$

Input interpretation:

$\frac{9}{10 \sqrt{1+\frac{12^{2}}{2 \times 10^{2}}}}$

Result:

$\frac{9}{2 \sqrt{43}}$

Decimal approximation:

0.686243566496720998501127790450279240131891824173884975916...
$0.686243566496 \ldots=\theta$

Alternate form:

$\frac{9 \sqrt{43}}{86}$

$$
\begin{equation*}
\mathcal{E}_{0}=\frac{m e_{2}}{2}\left[\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right] . \tag{6.10}
\end{equation*}
$$

$\mathrm{m}=1, \mathrm{e}_{1}=9, \mathrm{e}_{2}=10, \xi=12$
$10 / 2^{*}\left[\operatorname{sqrt}\left(1+\left(12^{\wedge} 2\right) /\left(2^{*} 10^{\wedge} 2\right)\right)-1\right]$

Input interpretation:

$\frac{10}{2}\left(\sqrt{1+\frac{12^{2}}{2 \times 10^{2}}}-1\right)$

Result:

$5\left(\frac{\sqrt{43}}{5}-1\right)$

Decimal approximation:

1.557438524302000652344109997636001627926966319883789769865 .
1.5574385243...

Alternate form:

$\sqrt{43}-5$

$$
1+1 /\left(\left(\left(\left(10 / 2^{*}\left[\operatorname{sqrt}\left(1+\left(12^{\wedge} 2\right) /\left(2^{*} 10^{\wedge} 2\right)\right)-1\right]\right)\right)\right)\right)-24^{*} 1 / 10^{\wedge} 3
$$

Input interpretation:

$1+\frac{1}{\frac{10}{2}\left(\sqrt{1+\frac{12^{2}}{2 \times 10^{2}}}-1\right)}-24 \times \frac{1}{10^{3}}$

Result:

$\frac{122}{125}+\frac{1}{5\left(\frac{\sqrt{43}}{5}-1\right)}$

Decimal approximation:

1.618079918016777814019117222090888979329275906660210542770...
$1.618079918016 \ldots$ result that is a very good approximation to the value of the golden ratio $1,618033988749 \ldots$

Alternate forms:

$$
\begin{aligned}
& \frac{2821}{2250}+\frac{\sqrt{43}}{18} \\
& \frac{2821+125 \sqrt{43}}{2250} \\
& \frac{122}{125}+\frac{1}{\sqrt{43}-5}
\end{aligned}
$$

Thence:

$$
\begin{align*}
\mathcal{L} & =\frac{\theta}{4} F \cdot \widetilde{F}-\frac{m e_{2}}{2}\left[\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right] \\
& +\frac{\rho^{2}}{2}\left[1-\sqrt{1+\frac{1}{\rho^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 \rho^{4}}(F \cdot \widetilde{F})^{2}}\right] . \tag{6.8}
\end{align*}
$$

From

$$
6^{3}+8^{3}=9^{3}-1
$$

$$
\mathrm{m}=1, \mathrm{e}_{1}=9, \mathrm{e}_{2}=10, \xi=12,13.114877 \ldots=\rho^{2}, 0.686243566496 \ldots=\theta
$$

$$
(F \cdot \widetilde{F})=6
$$

$$
\left(F_{\mu \nu} F^{\mu \nu}\right)=8
$$

(0.68624356/4)*6-10/2[sqrt(1+(12^2)/(2*10^2))-1]+(13.114877/2)*[1$\left.\left.\operatorname{sqrt(}\left(1+(1 / 13.114877) * 8-1 /\left(4^{*} 13.114877^{\wedge} 2\right)^{*} 6^{\wedge} 2\right)\right)\right]$

Input interpretation:

$$
\begin{aligned}
& \frac{0.68624356}{4} \times 6-\frac{10}{2}\left(\sqrt{1+\frac{12^{2}}{2 \times 10^{2}}}-1\right)+ \\
& \frac{13.114877}{2}\left(1-\sqrt{1+\frac{1}{13.114877} \times 8-\frac{1}{4 \times 13.114877^{2}} \times 6^{2}}\right)
\end{aligned}
$$

Result:

-2.1547506...
-2.1547506...

From which:
((((1/2*-((((0.68624356/4)*6-10/2[sqrt(1+(12^2)/(2*10^2))-1]+(13.114877/2)*[1$\left.\left.\left.\left.\left.\left.\left.\left.\left.\operatorname{sqrt(}\left(1+(1 / 13.114877) * 8-1 /\left(4^{*} 13.114877^{\wedge} 2\right)^{*} 6^{\wedge} 2\right)\right)\right]\right)\right)\right)\right)\right)\right)\right)^{\wedge}\left(\left(5 \pi^{\wedge} 3\right) / 24\right)$

Input interpretation:

$$
\begin{array}{r}
\left(\frac{1}{2} \times(-1)\left(\frac{0.68624356}{4} \times 6-\frac{10}{2}\left(\sqrt{1+\frac{12^{2}}{2 \times 10^{2}}}-1\right)+\right.\right. \\
\left.\left.\frac{13.114877}{2}\left(1-\sqrt{1+\frac{1}{13.114877} \times 8-\frac{1}{4 \times 13.114877^{2}} \times 6^{2}}\right)\right)\right)^{1 / 24\left(5 \pi^{3}\right)}
\end{array}
$$

Result:

1.618376...
1.618376... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Thence:

$$
D=-\frac{\xi m}{2 e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{z}}}} \sqrt{1+\frac{1}{m^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 m^{4}}(F \cdot \tilde{F})^{2}} .
$$

For

$$
m=1, e_{1}=9, e_{2}=10, \xi=12,13.114877 \ldots=\rho^{2}, 0.686243566496 \ldots=\theta
$$

$$
\begin{aligned}
(F \cdot \tilde{F}) & =9, \\
\left(F_{\mu \nu} F^{\mu \nu}\right) & =1
\end{aligned}
$$

$$
12 /\left(2^{*} 10 * \operatorname{sqrt}\left(1+\left(12^{\wedge} 2\right) /\left(2^{*} 10^{\wedge} 2\right)\right)\right) * \operatorname{sqrt}\left(\left(1+1-1 / 4^{*} 9^{\wedge} 2\right)\right)
$$

Input interpretation:

$\frac{12}{2 \times 10 \sqrt{1+\frac{12^{2}}{2 \times 10^{2}}}} \sqrt{1+1-\frac{1}{4} \times 9^{2}}$

Result:

$\frac{3}{2} i \sqrt{\frac{73}{43}}$

Decimal approximation:

$1.954422534116014820842628068262620987840438406211700050005 \ldots i$

Polar coordinates:

```
r\approx1.95442 (radius), }0=9\mp@subsup{0}{}{\circ}\mathrm{ (angle)
D = 1.95442
```

From

$$
2|F|^{2}+D^{2}=m^{2}\left[1-\frac{1}{\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}}\right]
$$

$2 * x^{\wedge} 2+1.9544225 i^{\wedge} 2=\left(1-1 /\left(\left(\operatorname{sqrt}\left(1+\left(12^{\wedge} 2\right) /\left(2 * 10^{\wedge} 2\right)\right)\right)\right)\right)$

Input interpretation:

$2 x^{2}+1.9544225 i^{2}=1-\frac{1}{\sqrt{1+\frac{12^{2}}{2 \times 10^{2}}}}$

Result:

$2 x^{2}-1.95442=1-\frac{5}{\sqrt{43}}$

Plot:

Alternate forms:
$2 x^{2}-2.19193=0$
$2 x^{2}-1.95442=\frac{1}{43}(43-5 \sqrt{43})$
2. $(x-0.98854)(x+0.98854)=\frac{1}{43}(43-5 \sqrt{43})$

Solutions:

$x \approx-1.04688$
$x \approx 1.04688$
1.04688
$2 *(1.04688) \wedge 2+1.9544225 \mathrm{i}^{\wedge} 2=\left(1-1 /\left(\left(\operatorname{sqrt}\left(1+\left(12^{\wedge} 2\right) /\left(2^{*} 10^{\wedge} 2\right)\right)\right)\right)\right)$
$2 *(1.04688)^{\wedge} 2+1.9544225 \mathrm{i}^{\wedge} 2$

Input interpretation:

$2 \times 1.04688^{2}+1.9544225 i^{2}$

Result:

0.2374929688
0.2374929688...
$\left(1-1 /\left(\left(\operatorname{sqrt}\left(1+\left(12^{\wedge} 2\right) /\left(2^{*} 10^{\wedge} 2\right)\right)\right)\right)\right)$

Input interpretation:

Result:

$1-\frac{5}{\sqrt{43}}$

Decimal approximation:

0.237507148336976668332080232833023066520120195362350026759...
0.2375071483...

Alternate forms:

$1-\frac{5 \sqrt{43}}{43}$
$\frac{1}{43}(43-5 \sqrt{43})$
$\frac{\sqrt{43}-5}{\sqrt{43}}$

We have that:

$$
\begin{equation*}
\Lambda^{8}=\operatorname{det}\left(\mathcal{M}^{\dagger} \mathcal{M}\right)=\frac{1}{4}\left[e^{2}+\left(m+\frac{1}{\sqrt{2}} \xi\right)^{2}\right]\left[e^{2}+\left(m-\frac{1}{\sqrt{2}} \xi\right)^{2}\right] \tag{5.13}
\end{equation*}
$$

For $\mathrm{e}=9, \mathrm{~m}=10, \xi=12$
$1 / 4\left(81+\left((10+12 /(\operatorname{sqrt} 2))^{\wedge} 2\right)\right)\left(81+\left((10-12 /(\operatorname{sqrt} 2))^{\wedge} 2\right)\right)$

Input:

$\frac{1}{4}\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)$

Result:

$\frac{35209}{4}$

Decimal form:

8802.25
8802.25
$1 / 5\left(\left(\left(1 / 4\left(81+\left((10+12 /(\operatorname{sqrt} 2))^{\wedge} 2\right)\right)\left(81+\left((10-12 /(\operatorname{sqrt} 2))^{\wedge} 2\right)\right)\right)\right)\right)-29-\mathrm{Pi}+1 /$ golden ratio
Input:
$\frac{1}{5}\left(\frac{1}{4}\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)\right)-29-\pi+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)-\pi$

Decimal approximation:

1728.926441335160101609741943451086135233523139780430657041...
1728.92644133...

This result is very near to the mass of candidate glueball $f_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Property:

$-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)+\frac{1}{\phi}-\pi$ is a transcendental number

Alternate forms:
$\frac{1}{20}(34619+10 \sqrt{5}-20 \pi)$
$\frac{1}{\phi}+\frac{34629}{20}-\pi$
$\frac{34619}{20}+\frac{\sqrt{5}}{2}-\pi$

Expanded form:

$\frac{34629}{20}+\frac{2}{1+\sqrt{5}}-\pi$

Series representations:

$$
\begin{aligned}
& \frac{\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)}{4 \times 5}-29-\pi+\frac{1}{\phi}= \\
& -\left(\left(-20736 \phi+5472 \phi{\sqrt{z}_{0}^{2}}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}-\right.\right. \\
& 20{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}- \\
& 32181 \phi{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}+ \\
& \left.20 \phi \pi{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}\right) / \\
& \left(20 \phi{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{\left.\left.\left.(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}\right)^{4}\right)\right)}{k!}\right)\right.
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)}{4 \times 5}-29-\pi+\frac{1}{\phi}= \\
& -\left(\left(-20736 \phi+5472 \phi \exp ^{2}\left(i \pi \left\lvert\, \frac{\arg (2-x)}{2 \pi}\right. \|\right) \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}-\right.\right. \\
& \left.20 \exp ^{4}\left(i \pi \left\lvert\, \frac{\arg (2-x)}{2 \pi}\right.\right]\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{4}- \\
& \left.32181 \phi \exp ^{4}\left(i \pi \left\lvert\, \frac{\arg (2-x)}{2 \pi}\right.\right]\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{4}+ \\
& \left.20 \phi \pi \exp ^{4}\left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{4}\right) / \\
& \left.\left(20 \phi \exp ^{4}\left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}\right)^{4}\right)\right) \text { for }(x \in
\end{aligned}
$$

\mathbb{R} and $x<0$)

$$
\begin{aligned}
& \frac{\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)}{4 \times 5}-29-\pi+\frac{1}{\phi}= \\
& -\left(\left(\frac{1}{z_{0}}\right)^{-2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-2-2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(-20736 \phi+5472 \phi\left(\frac{1}{z_{0}}\right)^{\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1+\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}-20\left(\frac{1}{z_{0}}\right)^{2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \\
& z_{0}^{2+2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}- \\
& 32181 \phi\left(\frac{1}{z_{0}}\right)^{2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{2+2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}+20 \phi \pi\left(\frac{1}{z_{0}}\right)^{2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.\left.z_{0}^{2+2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}\right)\right) / \\
& \left.\left(20 \phi\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}\right)\right)
\end{aligned}
$$

$\left(\left(\left(\left((1 / 5)\left(\left(1 / 4\left(81+\left((10+12 /(\text { sqrt2 } 2))^{\wedge} 2\right)\right)\left(81+\left((10-12 /(\text { sqrt2) }))^{\wedge} 2\right)\right)\right)\right)\right)-29-\mathrm{Pi}+1 /\right.\right.\right.$ golden ratio))))) $)^{\wedge} 1 / 15$

Input:

$\sqrt[15]{\frac{1}{5}\left(\frac{1}{4}\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)\right)-29-\pi+\frac{1}{\phi}}$

Exact result:

$\sqrt[15]{\frac{1}{\phi}-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)-\pi}$

Decimal approximation:

1.643810566352190399466617282272459954618902438169146807866...
$1.64381056635 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Property:

$\sqrt[15]{-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)+\frac{1}{\phi}-\pi}$
is a transcendental number

Alternate forms:

$\sqrt[15]{\frac{1}{20}(34619+10 \sqrt{5})-\pi}$
$\sqrt[15]{\frac{34629}{20}+\frac{2}{1+\sqrt{5}}-\pi}$
$\frac{\sqrt[15]{\frac{34619}{5}+2 \sqrt{5}-4 \pi}}{2^{2 / 15}}$

All 15th roots of $1 / \phi-29+1 / 20\left(81+(10-6 \operatorname{sqrt}(2))^{\wedge} 2\right)(81+(10+6$ $\left.\operatorname{sqrt}(2))^{\wedge} 2\right)-\pi$:
$e^{0} \sqrt[15]{\frac{1}{\phi}-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)-\pi} \approx 1.64381$
(real, principal root)
$e^{(2 i \pi) / 15} \sqrt[15]{\frac{1}{\phi}-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)-\pi}$

$$
\approx 1.5017+0.6686 i
$$

$e^{(4 i \pi) / 15} \sqrt[15]{\frac{1}{\phi}-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)-\pi}$
$\approx 1.0999+1.2216 i$
$e^{(2 i \pi) / 5} \sqrt[15]{\frac{1}{\phi}-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)-\pi} \approx 0.5080+1.5634 i$
$e^{(8 i \pi) / 15} \sqrt[15]{\frac{1}{\phi}-29+\frac{1}{20}\left(81+(10-6 \sqrt{2})^{2}\right)\left(81+(10+6 \sqrt{2})^{2}\right)-\pi}$
$\approx-0.17182+1.63481 i$

Series representations:

$$
\begin{aligned}
& \sqrt[15]{\frac{\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)}{4 \times 5}-29-\pi+\frac{1}{\phi}}= \\
& \frac{\frac{1}{2^{2 / 15} \sqrt[15]{5}}\left(\left(\left(20736 \phi-5472 \phi{\sqrt{z_{0}}}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)^{2}+\right.\right.\right.}{20{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)^{4}+} \\
& 32181 \phi{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)^{4}- \\
& \left.20 \phi \pi{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)^{4}\right) / \\
& \left.\left.\left(\phi{\sqrt{z_{0}}}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}\right)\right) \wedge(1 / 15)\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \sqrt[15]{\frac{\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)}{4 \times 5}-29-\pi+\frac{1}{\phi}}=\frac{1}{2^{2 / 15} \sqrt[15]{5}} \\
& \left(\int\left(20736 \phi-5472 \phi \exp ^{2}\left(i \pi \left\lvert\, \frac{\arg (2-x)}{2 \pi}\right.\right]\right) \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+\right. \\
& 20 \exp ^{4}\left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{4}+ \\
& 32181 \phi \exp ^{4}\left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{4}- \\
& \left.20 \phi \pi \exp ^{4}\left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{4}\right) / \\
& \left(\begin{array}{l}
\left.k \exp ^{4}\left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x}^{4}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \wedge \\
(1 / 15)) \operatorname{for}^{4}(x \in \mathbb{R} \text { and } x<0)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[15]{\frac{\left(81+\left(10+\frac{12}{\sqrt{2}}\right)^{2}\right)\left(81+\left(10-\frac{12}{\sqrt{2}}\right)^{2}\right)}{4 \times 5}-29-\pi+\frac{1}{\phi}}= \\
& \frac{1}{2^{2 / 15} \sqrt[15]{5}}\left(\int \left(\left(\frac{1}{z_{0}}\right)^{\left.-2 \arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-2-2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right]}\right.\right. \\
& \left(20736 \phi-5472 \phi\left(\frac{1}{z_{0}}\right)^{\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1+\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}+20\left(\frac{1}{z_{0}}\right)^{\left.2 \arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \\
& z_{0}^{2+2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}+ \\
& 32181 \phi\left(\frac{1}{z_{0}}\right)^{\left.2 \arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{2+2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}-20 \phi \pi\left(\frac{1}{z_{0}}\right)^{2\left\lfloor\arg \left(2-z_{0}\right)(2 \pi)\right\rfloor} \\
& \left.\left.z_{0}^{2+2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)^{4}\right)\right) / \\
& \left.\left.\left(\phi\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}\right)\right) \wedge^{(1 / 15)}\right)
\end{aligned}
$$

Integral representation:

$(1+z)^{a}=\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$
$\Gamma(x)$ is the gamma function
$\operatorname{Re}(z)$ is the real part of z
$|z|$ is the absolute value of z

We take again the previous expression:

$$
\begin{align*}
\mathcal{L} & =\frac{\theta}{4} F \cdot \widetilde{F}-\frac{m e_{2}}{2}\left[\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right] \\
& +\frac{\rho^{2}}{2}\left[1-\sqrt{1+\frac{1}{\rho^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 \rho^{4}}(F \cdot \widetilde{F})^{2}}\right] . \tag{6.8}
\end{align*}
$$

From

$$
\begin{aligned}
& 6^{3}+8^{3}=9^{3}-1 \\
& 135^{3}+138^{3}=177^{3}-1 \\
& 791^{3}+8 / 2^{3}=1010^{3}-1 \\
& \mathrm{~m}=1, \mathrm{e}_{1}=135, \mathrm{e}_{2}=138, \xi=172,183.945644=\rho^{2}, 0.7339124589=\theta \\
& (F \cdot \tilde{F})=791, \\
& \left(F_{\mu \nu} F^{\mu \nu}\right)=812
\end{aligned}
$$

$$
\mathrm{m}=1, \mathrm{e}_{1}=135, \mathrm{e}_{2}=138, \xi=172
$$

$$
\begin{align*}
\rho^{2} & =m e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}} \\
\theta & =\frac{e_{1}}{e_{2} \sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}} \tag{6.9}
\end{align*}
$$

$138^{*} \operatorname{sqrt}\left(1+\left(172^{\wedge} 2\right) /\left(2^{*} 138^{\wedge} 2\right)\right)$

Input:

$138 \sqrt{1+\frac{172^{2}}{2 \times 138^{2}}}$

Result:

$2 \sqrt{8459}$

Decimal approximation:

183.9456441452202477241349614425794028359128831087364669235...
183.945644...
$135 /\left(\left(\left(138^{*} \operatorname{sqrt}\left(1+\left(172^{\wedge} 2\right) /\left(2^{*} 138^{\wedge} 2\right)\right)\right)\right)\right)$
Input:
$\frac{135}{138 \sqrt{1+\frac{172^{2}}{2 \times 138^{2}}}}$

Result:

$\frac{135}{2 \sqrt{8459}}$

Decimal approximation:

0.733912458907812195376469434766172697211497789918413022658
$0.7339124589 \ldots$.

Alternate form:

$\frac{135 \sqrt{8459}}{16918}$

Now:

$$
\begin{aligned}
& \mathcal{L}=\frac{\theta}{4} F \cdot \widetilde{F}-\frac{m e_{2}}{2}\left[\sqrt{1+\frac{\xi^{2}}{2 e_{2}^{2}}}-1\right] \\
&+\frac{\rho^{2}}{2}\left[1-\sqrt{1+\frac{1}{\rho^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4 \rho^{4}}(F \cdot \widetilde{F})^{2}}\right] \\
& \mathrm{m}=1, \mathrm{e}_{1}=135, \mathrm{e}_{2}=138, \xi=172,183.945644=\rho^{2}, 0.7339124589=\theta \\
&(F \cdot \widetilde{F})=791, \\
&\left(F_{\mu \nu} F^{\mu \nu}\right)=812 \\
& \quad(0.7339124589 / 4)^{*} 791-138 / 2\left[\operatorname{sqrt}\left(1+\left(172^{\wedge} 2\right) /\left(2 * 138^{\wedge} 2\right)\right)-1\right]+(183.945644 / 2)^{*}[1- \\
&\left.\operatorname{sqrt}\left(\left(1+(1 / 183.945644) * 812-1 /\left(4^{*} 183.945644 \wedge 2\right)^{*} 791^{\wedge} 2\right)\right)\right]
\end{aligned}
$$

Input interpretation:

$$
\begin{aligned}
& \frac{0.7339124589}{4} \times 791-\frac{138}{2}\left(\sqrt{1+\frac{172^{2}}{2 \times 138^{2}}}-1\right)+ \\
& \frac{183.945644}{2}\left(1-\sqrt{1+\frac{1}{183.945644} \times 812-\frac{1}{4 \times 183.945644^{2}} \times 791^{2}}\right)
\end{aligned}
$$

Result:

132.30880...
132.30880...
$(0.7339124589 / 4) * 791-138 / 2\left[\operatorname{sqrt}\left(1+\left(172^{\wedge} 2\right) /\left(2^{*} 138^{\wedge} 2\right)\right)-1\right]+(183.945644 / 2) *[1-$ $\left.\operatorname{sqrt}\left(\left(1+(1 / 183.945644) * 812-1 /\left(4^{*} 183.945644 \wedge 2\right) * 791 \wedge 2\right)\right)\right]+5$

Input interpretation:

$$
\begin{aligned}
& \frac{0.7339124589}{4} \times 791-\frac{138}{2}\left(\sqrt{1+\frac{172^{2}}{2 \times 138^{2}}}-1\right)+ \\
& \frac{183.945644}{2}\left(1-\sqrt{1+\frac{1}{183.945644} \times 812-\frac{1}{4 \times 183.945644^{2}} \times 791^{2}}\right)+5
\end{aligned}
$$

Result:

137.30880..
137.3088...

This result is very near to the inverse of fine-structure constant 137,035
$(0.7339124589 / 4) * 791-138 / 2\left[\operatorname{sqrt}\left(1+\left(172^{\wedge} 2\right) /\left(2^{*} 138^{\wedge} 2\right)\right)-1\right]+(183.945644 / 2) *[1-$ $\left.\operatorname{sqrt}\left(\left(1+(1 / 183.945644) * 812-1 /\left(4^{*} 183.945644 \wedge 2\right)^{*} 791^{\wedge} 2\right)\right)\right]+7$

Input interpretation:

$\frac{0.7339124589}{4} \times 791-\frac{138}{2}\left(\sqrt{1+\frac{172^{2}}{2 \times 138^{2}}}-1\right)+$
$\frac{183.945644}{2}\left(1-\sqrt{1+\frac{1}{183.945644} \times 812-\frac{1}{4 \times 183.945644^{2}} \times 791^{2}}\right)+7$

Result:

139.30880...
139.3088... result practically equal to the rest mass of Pion meson 139.57 MeV

Input interpretation:

$$
\begin{aligned}
& \frac{0.7339124589}{4} \times 791-\frac{138}{2}\left(\sqrt{1+\frac{172^{2}}{2 \times 138^{2}}}-1\right)+ \\
& \frac{183.945644}{2}\left(1-\sqrt{1+\frac{1}{183.945644} \times 812-\frac{1}{4 \times 183.945644^{2}} \times 791^{2}}\right)-7
\end{aligned}
$$

Result:

125.30880...
$125.3088 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson:
125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Now, we analyze the following equation:

$$
\begin{equation*}
Z=\frac{(\bar{F}+m) \psi \psi-i \sqrt{2} D \psi \lambda+F \lambda \lambda}{\left[D^{2}+2 F(\bar{F}+m)\right]} \tag{2.3}
\end{equation*}
$$

For $\bar{F}=135, \mathrm{~F}=138, \mathrm{D}=172, \mathrm{~m}=791, \psi=6$ and $\lambda=8$
$\left(\left((135+791) * 36-\mathrm{i}^{*} \mathrm{sqrt2}{ }^{*} 172 * 48+138 * 64\right)\right) /((172 \wedge 2+2 * 138(135+791)))$

Input:

$\frac{(135+791) \times 36-i \sqrt{2} \times 172 \times 48+138 \times 64}{172^{2}+2 \times 138(135+791)}$

Result:

$\frac{42168-8256 i \sqrt{2}}{285160}$

Decimal approximation:

$0.1478748772618880628419133118249403843456305232150371721 \ldots$ -
$0.04094454752052276870145441894752162763596300674397560419 \ldots i$

Polar coordinates:

```
r\approx0.153439 (radius), }0\approx-15.476\mp@subsup{7}{}{\circ}\mathrm{ (angle)
```

0.153439

Alternate forms:

$3(1757-344 i \sqrt{2})$
35645
$\frac{5271}{35645}-\frac{1032 i \sqrt{2}}{35645}$
5271-1032 $i \sqrt{2}$
35645

Minimal polynomial:

$1270566025 x^{2}-375769590 x+29913489$
$21 * 1 /((((((135+791) * 36-i * s q r t 2 * 172 * 48+138 * 64)) /$
$\left.\left.\left.\left(\left(172^{\wedge} 2+2 * 138(135+791)\right)\right)\right)\right)\right)+1 /$ golden ratio

Input:

$21 \times \frac{1}{\frac{(135+791) \times 36-i \sqrt{2} \times 172 \times 48+138 \times 64}{172^{2}+2 \times 138(135+791)}}+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}+\frac{5988360}{42168-8256 i \sqrt{2}}$

Decimal approximation:

132.517749698943379800762277446784670882504116244237464560... +
36.5212419975502898766181507218225864113032403221358363944... i

Polar coordinates:

```
r\approx137.458 (radius), }0\approx15.4079\mp@subsup{9}{}{\circ}\mathrm{ (angle)
```

137.458

This result is very near to the inverse of fine-structure constant 137,035

Alternate forms:

$\frac{873471989+171666320 i \sqrt{2}+3323721 \sqrt{5}}{6647442}$
$\frac{1}{\phi}+\frac{438397855}{3323721}+\frac{85833160 i \sqrt{2}}{3323721}$
$873471989+\sqrt{5(-11776683047651119+228228381110688 i \sqrt{10})}$
6647442

Minimal polynomial:

$11047121285841 x^{4}-5806354385502138 x^{3}+1173871680970551979 x^{2}-$ $107989112788086355722 x+3821293216766910151201$

Series representations:

```
\(\frac{\frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{}}+\frac{1}{\phi}=}{\frac{172^{2}+2 \times 138(135+791)}{\phi}-\frac{249515}{-1757+344 i \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}}\)
    for \(\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.\) and \(\left.\left.-\infty<z_{0} \leq 0\right)\right)\)
```

```
\(\frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times(135 \times 791)}}+\frac{1}{\phi}=\)
```

$\frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times(135 \times 791)}}+\frac{1}{\phi}=$
$172^{2}+2 \times 138(135+791)$
$172^{2}+2 \times 138(135+791)$
1249515
1249515
$\phi \quad-1757+344 i \exp \left(\pi \mathcal{A}\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}$

```
    \(\phi \quad-1757+344 i \exp \left(\pi \mathcal{A}\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\)
```

 for \((x \in \mathbb{R}\) and \(x<0)\)
 $\frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times 138(135+791)}}+\frac{1}{\phi}=\frac{1}{\phi}+$ 5988360
$42168-8256 i\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}$
$21 * 1 /((((() 135+791) * 36-i * \operatorname{sqrt2} * 172 * 48+138 * 64)) /$ $\left.\left.\left.\left(\left(172^{\wedge} 2+2 * 138(135+791)\right)\right)\right)\right)\right)+$ golden ratio ${ }^{\wedge} 2$

Input:

$21 \times \frac{1}{\frac{(135+791) \times 36-i \sqrt{2} \times 172 \times 48+138 \times 64}{172^{2}+2 \times 138(135+791)}}+\phi^{2}$

Result:

$\phi^{2}+\frac{5988360}{42168-8256 i \sqrt{2}}$

Decimal approximation:

$$
\begin{aligned}
& 134.517749698943379800762277446784670882504116244237464560 \ldots+ \\
& 36.5212419975502898766181507218225864113032403221358363944 \ldots i
\end{aligned}
$$

Polar coordinates:

```
r\approx139.387 (radius), }0\approx15.189\mp@subsup{5}{}{\circ}\mathrm{ (angle)
```

139.387 result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$$
\frac{1773533746+343332640 i \sqrt{2}+6647442 \sqrt{5}}{13294884}
$$

$\phi^{2}+\frac{438397855}{3323721}+\frac{85833160 i \sqrt{2}}{3323721}$
$\phi^{2}+\frac{249515 i}{344 \sqrt{2}+1757 i}$

Minimal polynomial:

$11047121285841 x^{4}-5894731355788866 x^{3}+1208974938194424991 x^{2}-$ $112754629272475736206 x+4042013556655989661121$

Expanded form:

$\frac{3}{2}+\frac{\sqrt{5}}{2}+\frac{5988360}{42168-8256 i \sqrt{2}}$

Series representations:

$$
\begin{aligned}
& \frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times 138(135+791)}+\phi^{2}=} \\
& \phi^{2}-\frac{249515}{-1757+344 i \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

```
\(\frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times 138(135+791)}}+\phi^{2}=\)
    \(\phi^{2}-\longrightarrow 249515\)
    \(-1757+344 i \exp \left(\pi \mathcal{A}\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\)
```

 for \((x \in \mathbb{R}\) and \(x<0)\)
 $\frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times 138(135+791)}}+\phi^{2}=\phi^{2}+$
$42168-8256 i\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}$
$21^{*} 1 /(((((135+791) * 36-i * s q r t 2 * 172 * 48+138 * 64)) /$
$\left.\left.\left.\left(\left(172^{\wedge} 2+2^{*} 138(135+791)\right)\right)\right)\right)\right)-11-1 /$ golden ratio

Input:

$21 \times \frac{1}{\frac{(135+791) \times 36-i \sqrt{2} \times 172 \times 48+138 \times 64}{172^{2}+2 \times 138(135+791)}}-11-\frac{1}{\phi}$
i is the imaginary unit ϕ is the golden ratio

Result:

$-\frac{1}{\phi}-11+\frac{5988360}{42168-8256 i \sqrt{2}}$

Decimal approximation:

$120.281681721443590104353103778053394647063497884625938836 \ldots+$
$36.5212419975502898766181507218225864113032403221358363944 \ldots i$

Polar coordinates:

$r \approx 125.704$ (radius), $\theta \approx 16.8899^{\circ}$ (angle)
125.704 result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$$
\begin{aligned}
& \frac{806997569+171666320 i \sqrt{2}-3323721 \sqrt{5}}{6647442} \\
& -\frac{1}{\phi}+\frac{401836924}{3323721}+\frac{85833160 i \sqrt{2}}{3323721} \\
& -\frac{1}{\phi}-11+\frac{249515 i}{344 \sqrt{2}+1757 i}
\end{aligned}
$$

Minimal polynomial:

$11047121285841 x^{4}-5364469534068498 x^{3}+1006309322176992439 x^{2}-$ $86209396999182593542 x+2853093373810458063881$

Series representations:

$$
\begin{aligned}
& \frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times 138(135+791)}}-11-\frac{1}{\phi}= \\
& -11-\frac{1}{\phi}-\frac{249515}{-1757+344 i \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}
\end{aligned}
$$

$$
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

$$
\begin{aligned}
& \frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times 138(135+791)}-11-\frac{1}{\phi}=} \\
& -11-\frac{1}{\phi}-\frac{249515}{-1757+344 i \exp \left(\pi \mathcal{A}\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$
$\frac{21}{\frac{(135+791) 36-i(\sqrt{2} 172 \times 48)+138 \times 64}{172^{2}+2 \times 138(135+791)}}-11-\frac{1}{\phi}=-11-\frac{1}{\phi}+$
$42168-8256 i\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}$

From:

$$
\begin{align*}
& {\left[D^{2}+2 F(\bar{F}+m)-\frac{1}{2} F_{\mu \nu} F^{\mu \nu}-\frac{i}{2} F_{\mu \nu} \widetilde{F}^{\mu \nu}-2 i \psi \sigma^{\mu} \partial_{\mu} \bar{\psi}-2 i \lambda \sigma^{\mu} \partial_{\mu} \bar{\lambda}+Z \square \bar{Z}\right] Z} \\
& =(\bar{F}+m) \psi \psi-i \sqrt{2} \psi\left(D+i \sigma^{\mu \nu} F_{\mu \nu}\right) \lambda+F \lambda \lambda . \tag{2.5}
\end{align*}
$$

For
$\left(\sigma^{\mu \nu} F_{\mu \nu}\right)=9$
$\bar{F}=135, \mathrm{~F}=138, \mathrm{D}=172, \mathrm{~m}=791, \psi=6$ and $\lambda=8$, we obtain:
$(135+791) * 36-\mathrm{i} * \mathrm{sqrt2} 26(172+\mathrm{i} * 9) 8+138 * 64$

Input:

$(135+791) \times 36-i \sqrt{2} \times 6(172+i \times 9) \times 8+138 \times 64$

Exact result:

$42168+(432-8256 i) \sqrt{2}$

Decimal approximation:

42778.9402589451770610823295288585895699420982501628415676...
11675.7471709522727229067421070752673366712110031120832921... i

Polar coordinates:

$r \approx 44343.7$ (radius), $\theta \approx-15.266^{\circ}$ (angle)
44343.7

Alternate forms:
$24(1757+(18-344 i) \sqrt{2})$
$-24 i(1757 i+(344+18 i) \sqrt{2})$
Minimal polynomial:
$x^{4}-168672 x^{3}+10940740992 x^{2}-322853396576256 x+$
3663944241108553728
$\operatorname{sqrt}((((135+791) * 36-\mathrm{i} * \mathrm{sqrt2} 26(172+\mathrm{i} * 9) 8+138 * 64)))-76+$ golden ratio

Input:

$$
\sqrt{(135+791) \times 36-i \sqrt{2} \times 6(172+i \times 9) \times 8+138 \times 64-76+\phi}
$$

Exact result:

$$
\phi-76+\sqrt{42168+(432-8256 i) \sqrt{2}}
$$

Decimal approximation:

134.331482577916897623999106386387693061362325656568153849... -
$27.9707590715318357153253213572442425781931173813346658711 \ldots i$

Alternate forms:

$$
\phi-76+2 \sqrt{-6 i(1757 i+(344+18 i) \sqrt{2})}
$$

$$
-76+\sqrt{42168+(432-8256 i) \sqrt{2}}+\frac{1}{2}(1+\sqrt{5})
$$

$$
\frac{1}{2}(-151+\sqrt{5}+4 \sqrt{6(1757+(18-344 i) \sqrt{2})})
$$

Minimal polynomial:

```
\mp@subsup{x}{}{16}+1208\mp@subsup{x}{}{15}+346676\mp@subsup{x}{}{14}-115576608\mp@subsup{x}{}{13}-65522373478\mp@subsup{x}{}{12}+
    3470130909400 x 11 +5110426217831920 x 10 -5 391769084098744 x -
    240941606544823322909 x
    7359544784245025267163760 x 6 - 248998063268748510137121016 x 5 -
    133003829033117584189840197478 x }\mp@subsup{x}{}{4}
    10207582510085013596119294083936 x
    932043793 368646797512487391971572 x 2-
    138735865948840903501100014118326040x+
    4616372529171231109523019237787501441
```


Expanded form:

$-\frac{151}{2}+\frac{\sqrt{5}}{2}+\sqrt{42168+(432-8256 i) \sqrt{2}}$

Series representations:

$$
\begin{aligned}
& \sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138 \times 64}-76+\phi= \\
& -76+\phi+\sqrt{42167-48 i(172+9 i) \sqrt{2}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(42167-48 i(172+9 i) \sqrt{2})^{-k}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138 \times 64}-76+\phi=-76+\phi+ \\
& \sqrt{42167-48 i(172+9 i) \sqrt{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}(42167-48 i(172+9 i) \sqrt{2})^{-k}}{k!}
\end{aligned}
$$

$$
\sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138 \times 64}-76+\phi=
$$

$$
-76+\phi+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(42168-48 i(172+9 i) \sqrt{2}-z_{0}\right)^{k} z_{0}^{-k}}{k!}
$$

$$
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

Input interpretation:

$134.331482577916897+i \times(-27.970759071531835)$

Result:

134.331482577916897... -
27.970759071531835... i

Polar coordinates:

$r=137.212647283764886$ (radius), $\theta=-11.762170759128570^{\circ}$ (angle)
137.212647283764886

This result is very near to the inverse of fine-structure constant 137,035

Possible closed forms:

$\frac{388290 \pi^{2}-3156623}{1601 \pi}+i\left(-\frac{9417}{44}-\frac{1137}{4 \pi}+\frac{3873 \pi}{44}\right) \approx$ $134.3314825779168991886929767-27.97075907153183446266001440 i$

```
\(\frac{388290 \pi^{2}-3156623}{1601 \pi}-\frac{158849594 i \pi}{17841515} \approx\)
    134.3314825779168991886929767 - \(27.97075907153183451482321348 i\)
\(\frac{388290 \pi^{2}-3156623}{1601 \pi}-\)
    \(i \pi\) root of \(551 x^{3}-3734 x^{2}-10658 x+2007\) near \(x=8.90337 \approx\)
```

$134.3314825779168991886929767-27.97075907153183876528510341 i$
$\operatorname{sqrt}((((135+791) * 36-\mathrm{i} * \mathrm{sqrt} 2 * 6(172+\mathrm{i} * 9) 8+138 * 64)))-76+\mathrm{Pi}+1 /$ golden ratio

Input:

```
\(\sqrt{(135+791) \times 36-i \sqrt{2} \times 6(172+i \times 9) \times 8+138 \times 64-76+\pi+\frac{1}{\phi}}\)
```


Exact result:

$\frac{1}{\phi}-76+\sqrt{42168+(432-8256 i) \sqrt{2}}+\pi$

Decimal approximation:

136.473075231506690862461749769667195945559495055943259670... -
$27.9707590715318357153253213572442425781931173813346658711 \ldots i$

Input interpretation:

$136.473075231506690862461749769667195945559495055943259670+$ $i \times(-27.9707590715318357153253213572442425781931173813346658711)$

Result:

136.47307523150669086246174976966719594555949505594325967... -
$27.9707590715318357153253213572442425781931173813346658711 \ldots i$

Polar coordinates:

```
r=139.309955229991246681571343365965596406271069522996953127 (radius)
    , 0=-11.5826196186533517274809410373457047541531860383565244065
    (angle)
```

$139.30995522 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$-76+\sqrt{42168+(432-8256 i) \sqrt{2}}+\frac{1}{\phi}+\pi$ is a transcendental number

Alternate forms:

$\frac{1}{\phi}-76+2 \sqrt{-6 i(1757 i+(344+18 i) \sqrt{2})}+\pi$
$-76+\sqrt{42168+(432-8256 i) \sqrt{2}}+\frac{2}{1+\sqrt{5}}+\pi$
$\underline{1+(-76+2 \sqrt{-6 i(1757 i+(344+18 i) \sqrt{2}})}+\pi) \phi$
ϕ

Series representations:

$$
\begin{aligned}
& \sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138} \times 64 \\
& -76+\pi+\frac{1}{\phi}= \\
& -76+\frac{1}{\phi}+\pi+\sqrt{42167-48 i(172+9 i) \sqrt{2}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(42167-48 i(172+9 i) \sqrt{2})^{-k}
\end{aligned}
$$

$$
\begin{array}{r}
\sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138 \times 64}-76+\pi+\frac{1}{\phi}=-76+\frac{1}{\phi}+\pi+ \\
\sqrt{42167-48 i(172+9 i) \sqrt{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}(42167-48 i(172+9 i) \sqrt{2})^{-k}}{k!}
\end{array}
$$

$$
\sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138 \times 64}-76+\pi+\frac{1}{\phi}=
$$

$$
-76+\frac{1}{\phi}+\pi+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(42168-48 i(172+9 i) \sqrt{2}-z_{0}\right)^{k} z_{0}^{-k}}{k!}
$$

$$
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

$\operatorname{sqrt(}(((135+791) * 36-\mathrm{i} * \mathrm{sqrt2} * 6(172+\mathrm{i} * 9) 8+138 * 64)))-76-11+1 /$ golden ratio

Input:

$\sqrt{(135+791) \times 36-i \sqrt{2} \times 6(172+i \times 9) \times 8+138 \times 64}-76-11+\frac{1}{\phi}$

Exact result:

$\frac{1}{\phi}-87+\sqrt{42168+(432-8256 i) \sqrt{2}}$

Decimal approximation:

$122.331482577916897623999106386387693061362325656568153849 \ldots$ -
$27.9707590715318357153253213572442425781931173813346658711 \ldots i$

Input interpretation:

$\begin{aligned} & 122.331482577916897623999106386387693061362325656568153849+ \\ & i \times(-27.9707590715318357153253213572442425781931173813346658711)\end{aligned}$

Result:

122.331482577916897623999106386387693061362325656568153849
$27.9707590715318357153253213572442425781931173813346658711 \ldots i$

Polar coordinates:

$r=125.488465576517692683332238328224217191369265342459825980$ (radius)
, $\theta=-12.8791309301633948619443573576222302779012121876264002912^{\circ}$ (angle)
$125.4884655 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{1}{\phi}-87+2 \sqrt{-6 i(1757 i+(344+18 i) \sqrt{2})}$

$$
-87+\sqrt{42168+(432-8256 i) \sqrt{2}}+\frac{2}{1+\sqrt{5}}
$$

$$
1+(-87+2 \sqrt{-6 i(1757 i+(344+18 i) \sqrt{2})}) \phi
$$

Minimal polynomial:

```
x 16}+1400\mp@subsup{x}{}{15}+581396\mp@subsup{x}{}{14}-38102400\mp@subsup{x}{}{13}-78021964582\mp@subsup{x}{}{12}
    7009911998600 x 11 +4896762418955920 x 10}+608911425815805000 \mp@subsup{x}{}{9}
    208125114950840552381 x - 21024829632030485104200 \mp@subsup{x}{}{7}+
    6499087370545245487041424 x + 261099074041134820576622600 x 5 -
    132329443147684294901286606982 x4}
    3716622609687606981270942868800 x +
    1182573387274351073036068558362164 x 2 -
    112891336700223187140006648129183800 x+
    3100597130804053943766635399215593889
```


Series representations:

$$
\begin{aligned}
& \sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138 \times 64}-76-11+\frac{1}{\phi}= \\
& -87+\frac{1}{\phi}+\sqrt{42167-48 i(172+9 i) \sqrt{2}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(42167-48 i(172+9 i) \sqrt{2})^{-k}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138 \times 64}-76-11+\frac{1}{\phi}=-87+\frac{1}{\phi}+ \\
& \sqrt{42167-48 i(172+9 i) \sqrt{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}(42167-48 i(172+9 i) \sqrt{2})^{-k}}{k!}
\end{aligned}
$$

$$
\sqrt{(135+791) 36-i(\sqrt{2} 6(172+i 9) 8)+138 \times 64}-76-11+\frac{1}{\phi}=
$$

$$
-87+\frac{1}{\phi}+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(42168-48 i(172+9 i) \sqrt{2}-z_{0}\right)^{k} z_{0}^{k}}{k!}
$$

$$
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

From:

Two-Field Born-Infeld with Diverse Dualities

S. Ferrara, A. Sagnotti and A. Yeranyan - arXiv:1602.04566v3 [hep-th] 8 Jul 2016

In addressing generalized dualities, it is convenient to rely on "master actions" that combine the dynamical curvature $F_{\alpha \beta}$ and the auxiliary field $V_{\alpha \beta}$ with their complex conjugates. For the one field systems of interest in this section, these are built integrating over space time the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}(\phi+\bar{\phi})-2 h(F \cdot V+\bar{F} \cdot \bar{V})+h^{2}(\nu+\bar{\nu})+E(\nu, \bar{\nu}) . \tag{2.12}
\end{equation*}
$$

These rest on generic Lorentz-invariant interaction terms $E(\nu, \bar{\nu})$, and extend slightly the result of the second paper in [39], since they also involve the duality-invariant scalar "lapse function" $h(a)$, which will prove very useful in the following. The BI action is a special case, and is recovered if

$$
\begin{align*}
& E=2 a \frac{1+a}{(1-a)^{2}}, \tag{2.13}\\
& h=\frac{\sqrt{2}}{1-a} . \tag{2.14}
\end{align*}
$$

From:

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}(\phi+\bar{\phi})-2 h(F \cdot V+\bar{F} \cdot \bar{V})+h^{2}(\nu+\bar{\nu})+E(\nu, \bar{\nu}) \\
& q^{3}+10^{3}=12^{3}+1 \\
& \sigma^{3}+8^{3}=9^{3}-1 \\
& 135^{3}+138^{3}=17 ?^{3}-1 \\
& \bar{\phi}=6 ; \phi=8 ; F=9 ; \bar{F}=10 ; V=12 ; \bar{V}=135 ; v=138 ; \bar{v}=172 \\
& E=2 a \frac{1+a}{(1-a)^{2}}, \\
& h=\frac{\sqrt{2}}{1-a} .
\end{aligned}
$$

For $\mathrm{a}=3$, we obtain:
$2 * 3\left((1+3) /(1-3)^{\wedge} 2\right)$

Input:

$2 \times 3 \times \frac{1+3}{(1-3)^{2}}$

Result:

6
6
sqrt2/(1-3)

Input:

$\frac{\sqrt{2}}{1-3}$

Result:

$-\frac{1}{\sqrt{2}}$

Decimal approximation:

$-0.70710678118654752440084436210484903928483593768847403658$.
$-0.7071067811 \ldots$

$$
\mathcal{L}=\frac{1}{2}(\phi+\bar{\phi})-2 h(F \cdot V+\bar{F} \cdot \bar{V})+h^{2}(\nu+\bar{\nu})+E(\nu, \bar{\nu}) .
$$

For $\bar{\phi}=6 ; \phi=8 ; F=9 ; \bar{F}=10 ; V=12 ; \bar{V}=135 ; v=138 ; \bar{v}=172$
$1 / 2(8+6)-2 *(-0.7071067811) *(9 * 12+10 * 135)+(-$
$0.7071067811)^{\wedge} 2^{*}(138+172)+6 *(138,172)$

Input interpretation:

$\frac{1}{2}(8+6)-2 \times(-0.7071067811)(9 \times 12+10 \times 135)+$ $(-0.7071067811)^{2}(138+172)+6(138,172)$

Result:

\{3051.92, 3255.92\}

Difference:

$3255.92-3051.92=204$

Ratio:

$\frac{3051.92}{3255.92}=0.937345$
0.937345

Note that:
(0.937345) ${ }^{\wedge} 1 / 128$

Input interpretation:

$\sqrt[128]{0.937345}$

Result:

0.99949463...
$0.99949463 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Total:

$3051.92+3255.92=6307.85$

Vector length:

4462.65

Normalized vector:

(0.683881, 0.729594)

Angles between vector and coordinate axes:

horizontal: $46.8523^{\circ} \mid$ vertical: 43.1477°

Polar coordinates:

$r=4462.65$ (radius), $\quad \theta=46.8523^{\circ}$ (angle)
4462.65
$3 *(((1 / 2)(8+6)-2 *(-0.7071067811) *(9 * 12+10 * 135)+(-$
$\left.\left.\left.0.7071067811)^{\wedge} 2 *(138+172)+6^{*}(138,172)\right)\right)\right)+610+5+1 /$ golden ratio

Input interpretation:

$$
\begin{aligned}
& 3\left(\frac{1}{2}(8+6)-2 \times(-0.7071067811)(9 \times 12+10 \times 135)+\right. \\
& \left.(-0.7071067811)^{2}(138+172)+6(138,172\}\right)+610+5+\frac{1}{\phi}
\end{aligned}
$$

Result:

\{9771.39, 10383.4 \}

Difference:

$10383.4-9771.39=612$

Ratio:

$\frac{9771.39}{10383.4}=0.94106$
0.94106

Note that:
(0.94106) ${ }^{\wedge} 1 / 64$

Input:

$\sqrt[64]{0.94106}$

Result:

0.99905126 ..
$0.99905126 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Total:

$9771.39+10383.4=20154.8$

Vector length:

14258.1

Normalized vector:

(0.68532, 0.728242)

Angles between vector and coordinate axes:
horizontal: 46.7393° | vertical: 43.2607°

Polar coordinates:
$r=14258.1$ (radius), $\theta=46.7393^{\circ}$ (angle)
$14258.1 \approx 14258$ (Ramanujan taxicab number)
$1 / 4(((1 / 2(8+6)-2 *(-0.7071067811) *(9 * 12+10 * 135)+(-$
$\left.\left.\left.0.7071067811)^{\wedge} 2 *(138+172)+6^{*}(138,172)\right)\right)\right)-18 * 4-$ golden ratio ${ }^{\wedge} 2$

Input interpretation:

$\frac{1}{4}\left(\frac{1}{2}(8+6)-2 \times(-0.7071067811)(9 \times 12+10 \times 135)+\right.$
$\left.(-0.7071067811)^{2}(138+172)+6(138,172)\right)-18 \times 4-\phi^{2}$

Result:

(688.363, 739.363)

Difference:

$739.363-688.363=51$
Ratio:
$\frac{688.363}{739.363}=0.931022$
0.931022

Note that:
$(0.931022)^{\wedge} 1 / 128$

Input interpretation:

$\sqrt[128]{0.931022}$

Result:

0.99944178...
$0.99944178 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Total:

$688.363+739.363=1427.73$

Vector length:

1010.2

Normalized vector:

(0.681414, 0.731899)

Angles between vector and coordinate axes:

horizontal: 47.0458° | vertical: 42.9542°

Polar coordinates:
$r=1010.2$ (radius), $\theta=47.0458^{\circ}$ (angle)
$1010.2 \approx 1010$ (Ramanujan taxicab number)

Conclusions

Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})}
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}=\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with $64,128,256,512,1024$ and $4096=64^{2}$
(Modular equations and approximations to $\boldsymbol{\pi}-S$. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372)

DILATON VALUE CALCULATIONS 0.989117352243

from:

Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan

Quarterly Journal of Mathematics, XLV, 1914, 350-372

We have that:

5. Since G_{n} and g_{n} can be expressed as roots of algebraical equations with rational coefficients, the same is true of G_{n}^{24} or g_{n}^{24}. So let us suppose that

$$
1=a g_{n}^{-24}-b g_{n}^{-48}+\cdots
$$

or

$$
g_{n}^{24}=a-b g_{n}^{-24}+\cdots .
$$

But we know that

$$
\begin{array}{r}
64 e^{-\pi \sqrt{n}} g_{n}^{24}=1-24 e^{-\pi \sqrt{n}}+276 e^{-2 \pi \sqrt{n}}-\cdots, \\
64 g_{n}^{24}=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots, \\
64 a-64 b g_{n}^{-24}+\cdots=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots, \\
64 a-4096 b e^{-\pi \sqrt{n}}+\cdots=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots,
\end{array}
$$

that is

$$
\begin{equation*}
e^{\pi \sqrt{n}}=(64 a+24)-(4096 b+276) e^{-\pi \sqrt{n}}+\cdots \tag{13}
\end{equation*}
$$

Similarly, if

$$
1=a G_{n}^{-24}-b G_{n}^{-48}+\cdots,
$$

then

$$
\begin{equation*}
e^{\pi \sqrt{n}}=(64 a-24)-(4096 b+276) e^{-\pi \sqrt{n}}+\cdots \tag{14}
\end{equation*}
$$

From (13) and (14) we can find whether $e^{\pi \sqrt{n}}$ is very nearly an integer for given values of n, and ascertain also the number of 9 's or 0 's in the decimal part. But if G_{n} and g_{n} be simple quadratic surds we may work independently as follows. We have, for example,

$$
g_{22}=\sqrt{(1+\sqrt{2})}
$$

Hence

$$
\begin{aligned}
64 g_{22}^{24} & =e^{\pi \sqrt{22}} & 241276 e^{-\pi \sqrt{22}} & \cdots \\
64 g_{22}^{-24} & = & & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{aligned}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)-e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots-64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{\tau}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots \\
64 G_{37}^{-24}= & 1096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{3 i}{ }^{24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978
$$

Similarly, from

$$
g_{58}-\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain

$$
64\left(g_{58}^{24} \mid g_{58}^{-24}\right)=e^{\pi \sqrt{58}} \quad 24\left|4372 e^{-\pi \sqrt{58}}\right| \cdots=64\left\{\left.\left(\frac{5+\sqrt{29}}{2}\right)^{12} \right\rvert\,\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\} .
$$

Нене

$$
e^{\pi \sqrt{58}}=24591257751.09909982 \ldots
$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

Now, we have that:
From the following vacuum equations:

$$
\begin{aligned}
& T e^{\gamma_{E} \phi}=-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
& 16 k^{\prime} e^{2 C}=\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
&\left(A^{\prime}\right)^{2}-k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

We have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore with respect to the exponential of the vacuum equation, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.
phi $=-\mathrm{Pi}^{*} \operatorname{sqrt}(18)+6 \mathrm{C}$, for $\mathrm{C}=1$, we obtain:
$\exp ((-\mathrm{Pi} * \mathrm{sqrt}(18))$

Input:

$\exp (-\pi \sqrt{18})$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:

$1.6272016226072509292942156739117979541838581136954016 \ldots \times 10^{-6}$
$1.6272016 \ldots * 10^{-6}$

Now:
$e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}$
$e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}$
$\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{-6}$
$0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}$
$\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}$
$\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)$
Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...
$0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}$

Dividing both sides by 0.000244140625 , we obtain:
$\frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}}$
$e^{-6 C+\phi}=0.0066650177536$
$\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right)^{*} 1 / 0.000244140625$
Input interpretation:
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
0.00666501785..
$e^{-6 C+\phi}=0.0066650177536$
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}=$
$e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625}$
$=0.00666501785 \ldots$
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
$-5.010882647757 \ldots$

Now:

$$
-6 C+\phi=-5.010882647757 \ldots
$$

For $\mathrm{C}=1$, we obtain:
$\phi=-5.010882647757+6=\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

Acknowledgments

We would like to thank Professor Augusto Sagnotti theoretical physicist at Scuola Normale Superiore (Pisa - Italy) for his very useful explanations and his availability.

References

Sub-critical Closed String Field Theory in D Less Than 26 - Michio Kaku -arXiv:hep-th/9311173v1 29 Nov 1993

A superfield constraint for $\mathbf{N}=\mathbf{2} \rightarrow \mathbf{N}=\mathbf{0}$ breaking - E. Dudas, S. Ferrara and A. Sagnotti - arXiv:1707.03414v1 [hep-th] 11 Jul 2017

Two-Field Born-Infeld with Diverse Dualities

S. Ferrara, A. Sagnotti and A. Yeranyan - arXiv:1602.04566v3 [hep-th] 8 Jul 2016

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

[^1]: for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

