Analyzing a Ramanujan equation: mathematical connections with various parameters of Particle Physics and Cosmology

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

The purpose of this paper is to show how using certain mathematical values and / or constants from a Ramanujan equation, some important parameters of Particle Physics and Cosmology are obtained.

[^0]
https://apod.nasa.gov/apod/ap170510.html

https://wssrmnn.net/index.php/2017/01/23/man-saw-number-pi-dreams/

From: Manuscript Book 2 of Srinivasa Ramanujan
Page 49

$\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right.$

For $\mathrm{x}=2$, we obtain, from the left hand-side:
$\left(1+\left((2)^{\wedge} 6\right) /\left(1^{\wedge} 6\right)\right)\left(1+\left((2)^{\wedge} 6\right) /\left(2^{\wedge} 6\right)\right)\left(1+\left((2)^{\wedge} 6\right) /\left(3^{\wedge} 6\right)\right)\left(1+\left((2)^{\wedge} 6\right) /\left(4^{\wedge} 6\right)\right) \ldots$

Input:

$\left(1+\frac{2^{6}}{1^{6}}\right)\left(1+\frac{2^{6}}{2^{6}}\right)\left(1+\frac{2^{6}}{3^{6}}\right)\left(1+\frac{2^{6}}{4^{6}}\right)$

Exact result:

3350425
23328

Decimal approximation:

143.6224708504801097393689986282578875171467764060356652949...
143.62247085...

Always for $\mathrm{x}=2$, from the right-hand side, we obtain:
$\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)$

Input:

$\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}$

Exact result:

$\frac{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{32 \pi^{3}}$

Decimal approximation:

144.5633911784022539527052223657635096864423475588917203422...
144.56339117...

Alternate forms:

$\frac{\sinh (2 \pi)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}{16 \pi^{3}}$
$-\frac{2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)-\sinh (4 \pi)}{32 \pi^{3}}$
$\frac{\sinh (4 \pi)}{32 \pi^{3}}-\frac{\cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{16 \pi^{3}}$

Alternative representations:

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=\frac{-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}$
$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=\frac{-\cosh (2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}$
$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=\frac{-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)}{32 \pi^{3}}$

Series representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}= \\
& -\frac{-\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}+2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}(2 \pi)^{1+2 k_{1}+2 k_{2}}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}}{32 \pi^{3}}
\end{aligned}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=$

$$
-\frac{i\left(-\sum_{k=0}^{\infty} \frac{\left(\left(4-\frac{i}{2}\right) \pi\right)^{2 k}}{(2 k)!}+2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}} 2^{2 k_{1}-2 k_{2}(4-i)^{2 k_{2}} \pi^{2 k_{1}+2 k_{2}}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}\right)}{32 \pi^{3}}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=$
$\sum_{k=0}^{\infty} \frac{2^{-3+2 k} \pi^{-2+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}$

Integral representations:

```
\(\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=\)
    \(\frac{\int_{0}^{1} \cosh (4 \pi t) d t+\int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}}{8 \pi^{2}}\)
```

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=$
$\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{\pi^{2} / s+s}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{\frac{\pi}{2}}^{2 \sqrt{3} \pi} \sin (t) d t\right)}{32 \pi^{5 / 2} s^{3 / 2}} d s$ for $\gamma>0$
$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=$
$\int_{0}^{1}\left(\frac{\cosh (4 \pi t)}{8 \pi^{2}}+\frac{i \cosh (2 \pi t)}{16 \pi^{5 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) d t$ for $\gamma>0$

Multiple-argument formulas:

```
\(\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=\)
    \(\underline{-4\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right) \cosh (\pi) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}\)
        \(32 \pi^{3}\)
```

```
\(\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=\)
    \(\frac{-4 \cosh (\pi)\left(1-2 \sin ^{2}(\sqrt{3} \pi)\right) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}{32}\)
```

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}=$
$\frac{-2\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right)\left(3 \sinh \left(\frac{2 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{2 \pi}{3}\right)\right)+3 \sinh \left(\frac{4 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{4 \pi}{3}\right)}{32 \pi^{3}}$

Subtracting 5, that is a Fibonacci number, we obtain:
$\left(\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqr} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi} \wedge 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)-5$

Input:

$$
\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}-5
$$

Exact result:

$\frac{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{32 \pi^{3}}-5$

Decimal approximation:

139.5633911784022539527052223657635096864423475588917203422...
$139.56339117 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$$
\begin{aligned}
& \frac{\sinh (2 \pi)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}{16 \pi^{3}}-5 \\
& -5+\frac{\sinh (4 \pi)}{32 \pi^{3}}-\frac{\cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{16 \pi^{3}} \\
& -\frac{160 \pi^{3}-\sinh (4 \pi)+2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{32 \pi^{3}}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5= \\
& -5+\frac{-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}
\end{aligned}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5=$

$$
-5+\frac{-\cosh (2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}
$$

```
\(\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5=\)
    \(-5+\frac{-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)}{32 \pi^{3}}\)
```


Series representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5= \\
& -\frac{160 \pi^{3}-\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}+2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}(2 \pi)^{1+2 k_{1}+2 k_{2}}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}}{32 \pi^{3}}
\end{aligned}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5=$ $-\frac{160 \pi^{3}-i \sum_{k=0}^{\infty} \frac{\left(\left(4-\frac{i}{2}\right) \pi\right)^{2 k}}{(2 k)!}+2 i \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}} 2^{2 k_{1}-2 k_{2}(4-i)^{2} k_{2} \pi^{2} k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}}{32 \pi^{3}}$

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5= \\
& -5+\sum_{k=0}^{\infty} \frac{2^{-3+2 k} \pi^{-2+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5= \\
& -\frac{40 \pi^{2}-\int_{0}^{1} \cosh (4 \pi t) d t+\int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}}{8 \pi^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5= \\
& -5+\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{\pi^{2} / s+s}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{\pi}^{2 \sqrt{3}} \pi \sin (t) d t\right)}{32 \pi^{5 / 2} s^{3 / 2}} d s \text { for } \gamma>0
\end{aligned}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5=$

$$
-5+\int_{0}^{1}\left(\frac{\cosh (4 \pi t)}{8 \pi^{2}}+\frac{i \cosh (2 \pi t)}{16 \pi^{5 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) d t \text { for } \gamma>0
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5= \\
& -5+\frac{-4\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right) \cosh (\pi) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}{32 \pi^{3}}
\end{aligned}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5=$

$$
-5+\frac{-4 \cosh (\pi)\left(1-2 \sin ^{2}(\sqrt{3} \pi)\right) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}{32 \pi^{3}}
$$

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-5= \\
& -5+\frac{-2\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right)\left(3 \sinh \left(\frac{2 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{2 \pi}{3}\right)\right)+3 \sinh \left(\frac{4 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{4 \pi}{3}\right)}{32 \pi^{3}}
\end{aligned}
$$

Now, subtracting π and 18 , that is a Lucas number, and adding the golden ratio, we obtain:
$\left.\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqr} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)-18-\mathrm{Pi}+$ golden ratio

Input:

$\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}-18-\pi+\phi$

Exact result:

$\phi-18-\pi+\frac{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{32 \pi^{3}}$

Decimal approximation:

125.0398325135623555624471658168496449199654873393223773833...
125.03983251 ... result very near to the Higgs boson mass 125.18 GeV

Alternate forms:

$\phi-18-\pi+\frac{\sinh (2 \pi)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}{16 \pi^{3}}$
$\frac{1}{2}(\sqrt{5}-35)-\pi+\frac{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{32 \pi^{3}}$
$\frac{64 \pi^{3}(\phi-18-\pi)-e^{-4 \pi}+e^{4 \pi}-4 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{64 \pi^{3}}$

Alternative representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& -18+\phi-\pi+\frac{-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& -18+\phi-\pi+\frac{-\cosh (2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& -18+\phi-\pi+\frac{-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)}{32 \pi^{3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& \frac{-560 \pi^{3}+16 \sqrt{5} \pi^{3}-32 \pi^{4}+\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}-2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}}(2 \pi)^{1+2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}}{32 \pi^{3}}
\end{aligned}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi=$

$$
\frac{1}{32 \pi^{3}}\left(-560 \pi^{3}+16 \sqrt{5} \pi^{3}-32 \pi^{4}+i \sum_{k=0}^{\infty} \frac{\left(\left(4-\frac{i}{2}\right) \pi\right)^{2 k}}{(2 k)!}-\right.
$$

$$
\left.2 i \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}} 2^{2 k_{1}-2 k_{2}}(4-i)^{2 k_{2}} \pi^{2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}\right)
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi=$

$$
\frac{1}{2}\left(-35+\sqrt{5}-2 \pi+2 \sum_{k=0}^{\infty} \frac{2^{-3+2 k} \pi^{-2+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}\right)
$$

Integral representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& \frac{1}{8 \pi^{2}}\left(-140 \pi^{2}+4 \sqrt{5} \pi^{2}-8 \pi^{3}+\int_{0}^{1} \cosh (4 \pi t) d t+\right. \\
& \left.\int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& \frac{1}{2}\left(-35+\sqrt{5}-2 \pi+2 \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{\pi^{2} / s+s}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{2}^{2 \sqrt{3} \pi} \sin (t) d t\right)}{32 \pi^{5 / 2} s^{3 / 2}} d s\right) \text { for } \gamma>0 \\
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& \frac{1}{2}\left(-35+\sqrt{5}-2 \pi+2 \int_{0}^{1}\left(\frac{\cosh (4 \pi t)}{8 \pi^{2}}+\frac{i \cosh (2 \pi t)}{16 \pi^{5 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) d t\right)
\end{aligned}
$$

$$
\text { for } \gamma>0
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& -18+\phi-\pi+\frac{-4\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right) \cosh (\pi) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}{32 \pi^{3}} \\
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi= \\
& -18+\phi-\pi+\frac{-4 \cosh (\pi)\left(1-2 \sin ^{2}(\sqrt{3} \pi)\right) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}{32 \pi^{3}} \\
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-18-\pi+\phi=-18+\phi-\pi+ \\
& \frac{-2\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right)\left(3 \sinh \left(\frac{2 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{2 \pi}{3}\right)\right)+3 \sinh \left(\frac{4 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{4 \pi}{3}\right)}{32 \pi^{3}}
\end{aligned}
$$

Now, we subtracting 7, that is a Lucas number and $1 / 2$, we obtain:
$\left(\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)-7-1 / 2$

Input:

$\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}-7-\frac{1}{2}$

Exact result:

$\frac{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{32 \pi^{3}}-\frac{15}{2}$

Decimal approximation:

137.0633911784022539527052223657635096864423475588917203422...
137.06339117...

This result is very near to the inverse of fine-structure constant 137,035

Alternate forms:

$\frac{\sinh (2 \pi)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}{16 \pi^{3}}-\frac{15}{2}$
$-\frac{15}{2}+\frac{\sinh (4 \pi)}{32 \pi^{3}}-\frac{\cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{16 \pi^{3}}$
$-\frac{240 \pi^{3}-\sinh (4 \pi)+2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{32 \pi^{3}}$

Alternative representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}= \\
& -\frac{15}{2}+\frac{-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}
\end{aligned}
$$

$$
\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}=
$$

$$
-\frac{15}{2}+\frac{-\cosh (2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}=$
$-\frac{15}{2}+\frac{-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)}{32 \pi^{3}}$

Series representations:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}= \\
& -\frac{240 \pi^{3}-\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}+2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}(2 \pi)^{1+2 k_{1}+2 k_{2}}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}}{32 \pi^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}= \\
& -\frac{240 \pi^{3}-i \sum_{k=0}^{\infty} \frac{\left(\left(4-\frac{i}{2}\right) \pi\right)^{2 k}}{(2 k)!}+2 i \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}} 2^{2 k_{1}-2 k_{2}(4-i)^{2 k_{2}} \pi^{2 k_{1}+2 k_{2}}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}}{32 \pi^{3}}
\end{aligned}
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}=$ $\frac{1}{2}\left(-15+2 \sum_{k=0}^{\infty} \frac{2^{-3+2 k} \pi^{-2+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}\right)$

Integral representations:

```
\(\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}=\)
    \(-\frac{60 \pi^{2}-\int_{0}^{1} \cosh (4 \pi t) d t+\int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}}{8 \pi^{2}}\)
```

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}=$

$$
\frac{1}{2}\left(-15+2 \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{\pi^{2} / s+s}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{\frac{\pi}{2}}^{2 \sqrt{3} \pi} \sin (t) d t\right)}{32 \pi^{5 / 2} s^{3 / 2}} d s\right) \text { for } \gamma>0
$$

$\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}=$

$$
\frac{1}{2}\left(-15+2 \int_{0}^{1}\left(\frac{\cosh (4 \pi t)}{8 \pi^{2}}+\frac{i \cosh (2 \pi t)}{16 \pi^{5 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) d t\right) \text { for } \gamma>0
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}= \\
& -\frac{15}{2}+\frac{-4\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right) \cosh (\pi) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}{32 \pi^{3}}
\end{aligned}
$$

$$
\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}=
$$

$$
-\frac{15}{2}+\frac{-4 \cosh (\pi)\left(1-2 \sin ^{2}(\sqrt{3} \pi)\right) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}{32 \pi^{3}}
$$

$$
\begin{aligned}
& \frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-7-\frac{1}{2}= \\
& -\frac{15}{2}+\frac{-2\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right)\left(3 \sinh \left(\frac{2 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{2 \pi}{3}\right)\right)+3 \sinh \left(\frac{4 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{4 \pi}{3}\right)}{32 \pi^{3}}
\end{aligned}
$$

We observe that The Riemann hypothesis states that every nontrivial complex root of the Riemann zeta function has a real part equal to $1 / 2$

Now, multiplying by 12 , subtracting $5,1 /$ golden ratio and π and adding 3 , where 5 and 3 are Fibonacci numbers, we obtain:
$\left.12^{*}\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \operatorname{sqrt3}\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)-5-1 /$ golden ratio - $\mathrm{Pi}+3$

Input:

$12 \times \frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}-5-\frac{1}{\phi}-\pi+3$

Exact result:

$-\frac{1}{\phi}-2-\pi+\frac{3(\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi))}{8 \pi^{3}}$

Decimal approximation:

1729.001067498487359345795438171516975235390692127519775423...
1729.0010674984...

This result is very near to the mass of candidate glueball $\mathbf{f}_{\mathbf{0}}(\mathbf{1 7 1 0})$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternate forms:

$-\frac{1}{\phi}-2-\pi+\frac{3 \sinh (2 \pi)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}{4 \pi^{3}}$
$\frac{1}{2}(-3-\sqrt{5})-\pi+\frac{3(\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi))}{8 \pi^{3}}$
$-\frac{1}{\phi}-2-\frac{3 e^{-4 \pi}}{16 \pi^{3}}+\frac{3 e^{4 \pi}}{16 \pi^{3}}-\pi-\frac{3 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{4 \pi^{3}}$
$\cosh (x)$ is the hyperbolic cosine function

Alternative representations:

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3= \\
& -2-\pi-\frac{1}{\phi}+\frac{12\left(-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)\right)}{32 \pi^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3= \\
& -2-\pi-\frac{1}{\phi}+\frac{12\left(-\cosh (2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)\right)}{32 \pi^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3= \\
& -2-\pi-\frac{1}{\phi}+\frac{12\left(-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)\right)}{32 \pi^{3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3=-\frac{1}{8(1+\sqrt{5}) \pi^{3}} \\
& \left(32 \pi^{3}+16 \sqrt{5} \pi^{3}+8 \pi^{4}+8 \sqrt{5} \pi^{4}-3 \sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}-3 \sqrt{5} \sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}+\right. \\
& \left.6 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}}(2 \pi)^{1+2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}+6 \sqrt{5} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}}(2 \pi)^{1+2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3=-\frac{1}{1+\sqrt{5}} \\
& 4+2 \sqrt{5}+\pi+\sqrt{5} \pi-\sum_{k=0}^{\infty} \frac{3 \times 2^{-1+2 k} \pi^{-2+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}- \\
& \left.\sqrt{5} \sum_{k=0}^{\infty} \frac{3 \times 2^{-1+2 k} \pi^{-2+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3= \\
& -\frac{1}{1+\sqrt{5}}(4+2 \sqrt{5}+\pi+\sqrt{5} \pi- \\
& \sum_{k=0}^{\infty} \frac{3 i 2^{-3-2 k} \pi^{-3+2 k}\left((8-i)^{2 k}-2(4-i)^{2 k} \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(2 k)!}- \\
& \left.\sqrt{5} \sum_{k=0}^{\infty} \frac{3 i 2^{-3-2 k} \pi^{-3+2 k}\left((8-i)^{2 k}-2(4-i)^{2 k} \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(2 k)!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3= \\
& -\frac{1}{2(1+\sqrt{5}) \pi^{2}}\left(8 \pi^{2}+4 \sqrt{5} \pi^{2}+2 \pi^{3}+2 \sqrt{5} \pi^{3}-3 \int_{0}^{1} \cosh (4 \pi t) d t-\right. \\
& \left.3 \sqrt{5} \int_{0}^{1} \cosh (4 \pi t) d t+2 \int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}\right) \\
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3= \\
& -\frac{1}{(1+\sqrt{5}) \pi}\left(4 \pi+2 \sqrt{5} \pi+\pi^{2}+\sqrt{5} \pi^{2}-\pi \int_{0}^{1} \frac{3(1+2 \cosh (2 \pi t)) \sinh ^{2}(\pi t)}{\pi^{2}} d t-\right. \\
& \sqrt{5} \pi \int_{0}^{1} \frac{3(1+2 \cosh (2 \pi t)) \sinh ^{2}(\pi t)}{\pi^{2}} d t+ \\
& \left.2 \int_{0}^{1} \int_{0}^{1} \cosh \left(2 \pi t_{1}\right) \sin \left(2 \sqrt{3} \pi t_{2}\right) d t_{2} d t_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3=-\frac{1}{1+\sqrt{5}} \\
& \binom{+2 \sqrt{5}+\pi+\sqrt{5} \pi-\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{3 i e^{\pi^{2} / s+s}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{\frac{\pi}{3}}^{2 \sqrt{3} \pi} \sin (t) d t\right)}{8 \pi^{5 / 2} s^{3 / 2}} d s-}{\left.\sqrt{5} \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{3 i e^{\pi^{2} / s+s}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{\frac{\pi}{2}}^{2 \sqrt{3} \pi} \sin (t) d t\right)}{8 \pi^{5 / 2} s^{3 / 2}} d s\right) \text { for } \gamma>0}
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3= \\
& -2-\frac{1}{\phi}-\pi+\frac{3\left(-4\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right) \cosh (\pi) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)\right)}{8 \pi^{3}} \\
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3= \\
& -2-\frac{1}{\phi}-\pi+\frac{3\left(-4 \cosh (\pi)\left(1-2 \sin ^{2}(\sqrt{3} \pi)\right) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)\right)}{8 \pi^{3}} \\
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3=-2-\frac{1}{\phi}-\pi+ \\
& \frac{3\left(-2\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right)\left(3 \sinh \left(\frac{2 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{2 \pi}{3}\right)\right)+3 \sinh \left(\frac{4 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{4 \pi}{3}\right)\right)}{8 \pi^{3}}
\end{aligned}
$$

With regard the number 12, we observe that twelve is the smallest weight for which a cusp form exists. This cusp form is the discriminant $\Delta(q)$ whose Fourier coefficients are given by the Ramanujan τ-function and which is (up to a constant multiplier) the 24th power of the Dedekind eta function. This fact is related to a constellation of interesting appearances of the number twelve in mathematics ranging from the value of the Riemann zeta function at -1 i.e. $\zeta(-1)=-1 / 12$, the fact that the abelianization of $\operatorname{SL}(2, Z)$ has twelve elements, and even the properties of lattice polygons.

From the same previous formula, with the same data, adding 55, that is a Fibonacci number, we obtain:
$12 *\left(\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \operatorname{sqrt} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)-5-1 /$ golden ratio $-\mathrm{Pi}+3+55$

Input:

$$
12 \times \frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}-5-\frac{1}{\phi}-\pi+3+55
$$

$\sinh (x)$ is the hyperbolic sine function ϕ is the golden ratio

Exact result:

$$
-\frac{1}{\phi}+53-\pi+\frac{3(\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi))}{8 \pi^{3}}
$$

Decimal approximation:

1784.001067498487359345795438171516975235390692127519775423...
$1784.0010674984 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ 1785.16 GeV), that is a supersymmetrical particle of Gluon

Alternate forms:

$-\frac{1}{\phi}+53-\pi+\frac{3 \sinh (2 \pi)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}{4 \pi^{3}}$
$\frac{1}{2}(107-\sqrt{5})-\pi+\frac{3(\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi))}{8 \pi^{3}}$
$-\frac{1}{\phi}+53-\frac{3 e^{-4 \pi}}{16 \pi^{3}}+\frac{3 e^{4 \pi}}{16 \pi^{3}}-\pi-\frac{3 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}{4 \pi^{3}}$

Alternative representations:

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55= \\
& 53-\pi-\frac{1}{\phi}+\frac{12\left(-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)\right)}{32 \pi^{3}}
\end{aligned}
$$

$$
\frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55=
$$

$$
53-\pi-\frac{1}{\phi}+\frac{12\left(-\cosh (2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)\right)}{32 \pi^{3}}
$$

$$
\frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55=
$$

$$
53-\pi-\frac{1}{\phi}+\frac{12\left(-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)\right)}{32 \pi^{3}}
$$

Series representations:

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55=-\frac{1}{8(1+\sqrt{5}) \pi^{3}} \\
& \left(-408 \pi^{3}-424 \sqrt{5} \pi^{3}+8 \pi^{4}+8 \sqrt{5} \pi^{4}-3 \sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}-3 \sqrt{5} \sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}+\right. \\
& \left.6 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}}(2 \pi)^{1+2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}+6 \sqrt{5} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}}(2 \pi)^{1+2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}\right)
\end{aligned}
$$

$\frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55=$

$$
\begin{aligned}
& -\frac{1}{1+\sqrt{5}}(-51-53 \sqrt{5}+\pi+\sqrt{5} \pi- \\
& \sum_{k=0}^{\infty} \frac{3 \times 2^{-1+2 k} \pi^{-2+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}- \\
& \left.\sqrt{5} \sum_{k=0}^{\infty} \frac{3 \times 2^{-1+2 k} \pi^{-2+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}\right)
\end{aligned}
$$

$\frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55=$

$\sum_{k=0}^{\infty} \frac{3 i 2^{-3-2 k} \pi^{-3+2 k}\left((8-i)^{2 k}-2(4-i)^{2 k} \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-5} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(2 k)!}-$
$\left.\sqrt{5} \sum_{k=0}^{\infty} \frac{3 i 2^{-3-2 k} \pi^{-3+2 k}\left((8-i)^{2 k}-2(4-i)^{2 k} \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-5} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(2 k)!}\right)$

Integral representations:

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55= \\
& -\frac{1}{2(1+\sqrt{5}) \pi^{2}}\left(-102 \pi^{2}-106 \sqrt{5} \pi^{2}+2 \pi^{3}+2 \sqrt{5} \pi^{3}-3 \int_{0}^{1} \cosh (4 \pi t) d t-\right. \\
& \left.3 \sqrt{5} \int_{0}^{1} \cosh (4 \pi t) d t+2 \int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}\right) \\
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55= \\
& -\frac{1}{(1+\sqrt{5}) \pi}\left(-51 \pi-53 \sqrt{5} \pi+\pi^{2}+\sqrt{5} \pi^{2}-\pi \int_{0}^{1} \frac{3(1+2 \cosh (2 \pi t)) \sinh ^{2}(\pi t)}{\pi^{2}} d t-\right. \\
& \sqrt{5} \pi \int_{0}^{1} \frac{3(1+2 \cosh (2 \pi t)) \sinh ^{2}(\pi t)}{\pi^{2}} d t+ \\
& \left.2 \int_{0}^{1} \int_{0}^{1} \cosh \left(2 \pi t_{1}\right) \sin \left(2 \sqrt{3} \pi t_{2}\right) d t_{2} d t_{1}\right) \\
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55=-\frac{1}{1+\sqrt{5}} \\
& \left(-51-53 \sqrt{5}+\pi+\sqrt{5} \pi-\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{3 i e^{\pi^{2} / s+s}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{2}^{2} \sqrt{3} \pi \sin (t) d t\right)}{8 \pi^{5 / 2} s^{3 / 2}} d s-\right. \\
& \left.\sqrt{5} \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{3 i e^{\pi^{2} / s+s}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{2}^{2 \sqrt{3} \pi} \sin (t) d t\right)}{8 \pi^{5 / 2} s^{3 / 2}} d s\right) \text { for } \gamma>0
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55= \\
& 53-\frac{1}{\phi}-\pi+\frac{3\left(-4\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right) \cosh (\pi) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)\right)}{8 \pi^{3}} \\
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55= \\
& 53-\frac{1}{\phi}-\pi+\frac{3\left(-4 \cosh (\pi)\left(1-2 \sin ^{2}(\sqrt{3} \pi)\right) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)\right)}{8 \pi^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12(\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3}))}{4 \pi^{3} 2^{3}}-5-\frac{1}{\phi}-\pi+3+55=53-\frac{1}{\phi}-\pi+ \\
& \frac{3\left(-2\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right)\left(3 \sinh \left(\frac{2 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{2 \pi}{3}\right)\right)+3 \sinh \left(\frac{4 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{4 \pi}{3}\right)\right)}{8 \pi^{3}}
\end{aligned}
$$

Now, performing the $48^{\text {th }}$ root of the expression and subtracting $34+\pi$ - golden ratio (where 34 is a Fibonacci number), dividing them by 10^{4}, and, multiplying the whole expression by $1 / 10^{52}$, we obtain:
$1 / 10^{\wedge} 52^{*}\left(\left(\left(\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}{ }^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)^{\wedge} 1 / 48-\right.\right.$ (34+Pi-golden ratio)* $\left.1 / 10^{\wedge} 4\right)$))

Input:

$$
\frac{1}{10^{52}}\left(\sqrt[48]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}}-(34+\pi-\phi) \times \frac{1}{10^{4}}\right)
$$

Exact result:

$$
\frac{\phi-34-\pi}{10000}+\frac{\sqrt[48]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{2^{5 / 48 \sqrt[16]{\pi}}}
$$

100

Decimal approximation:

$1.1056255628659321573975469988253837403417099690389799 \ldots \times 10^{-52}$
$1.1056255628 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternate forms:

$-\frac{67}{200}+$	
	$\frac{1}{4000 \sqrt{5}}-$
	$(\sqrt[48]{100}+$
$(\sqrt{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}) /$	

$(100$

$$
\left.2^{5 / 48} \sqrt[16]{\pi}\right)
$$

$$
\frac{\frac{1}{2}(\sqrt{5}-67)-\pi}{10000}+\frac{\sqrt[48]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{2^{5 / 48} \sqrt[16]{\pi}}
$$

100
$\left(\sqrt[8]{2} \sqrt[16]{\pi}(\phi-34-\pi)+10000 \sqrt[48]{-e^{-4 \pi}+e^{4 \pi}-4 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}\right) /$
$(100$ $\sqrt[8]{2} \sqrt[16]{\pi})$

Alternative representations:

$\frac{-\frac{34-\phi+\pi}{10^{4}}+\sqrt[48]{\frac{-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)}{32 \pi^{3}}}}{10^{52}}$

Series representations:

$$
\frac{\sqrt[48]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}}-\frac{34+\pi-\phi}{10^{4}}}{10^{52}}=\left(-67 \sqrt[16]{\pi}+\sqrt{5} \sqrt[16]{\pi}-2 \pi^{17 / 16}+\right.
$$

(200 $\sqrt[16]{\pi})$

$$
-67 \sqrt[16]{\pi}+\sqrt{5} \sqrt[16]{\pi}-2 \pi^{17 / 16}+10000 \times 2^{43 / 48}
$$

$$
\left.\sqrt[48]{-i\left(-\sum_{k=0}^{\infty} \frac{\left(\left(4-\frac{i}{2}\right) \pi\right)^{2 k}}{(2 k)!}+2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}} 2^{2 k_{1}-2 k_{2}}(4-i)^{2 k_{2}} \pi^{2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}\right)}\right)
$$

(200

$$
\sqrt[16]{\pi})
$$

$$
\frac{\sqrt[48]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}}-\frac{34+\pi-\phi}{10^{4}}}{10^{52}}=\left(-67 \sqrt[16]{\pi}+\sqrt{5} \sqrt[16]{\pi}-2 \pi^{17 / 16}+\right.
$$

$(200$

$$
\sqrt[16]{\pi})
$$

Integral representations:

$$
\begin{aligned}
& \frac{\sqrt[48]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}}-\frac{34+\pi-\phi}{10^{4}}}{10^{52}}= \\
& \left(-67 \sqrt[24]{\pi}+\sqrt{5} \sqrt[24]{\pi}-2 \pi^{25 / 24}+10000 \times 2^{15 / 16}\right. \\
& \left.\sqrt[48]{\int_{0}^{1} \cosh (4 \pi t) d t+\int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}}\right) /
\end{aligned}
$$

(200

$$
\sqrt[24]{\pi})
$$

(200 $\sqrt[16]{\pi}$) for $\gamma>0$

$$
\begin{aligned}
(-67 \sqrt[16]{\pi} & +\sqrt{5} \sqrt[16]{\pi}-2 \pi^{17 / 16}+10000 \times 2^{43 / 48} \\
& \left.\sqrt[48]{\int_{0}^{1}\left(4 \pi \cosh (4 \pi t)+2 i \sqrt{\pi} \cosh (2 \pi t) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) d t}\right) /
\end{aligned}
$$

(200 $\sqrt[16]{\pi}$) for $\gamma>0$

Multiple-argument formulas:

$\overline{100}$
$\frac{\sqrt[48]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}-\frac{34+\pi-\phi}{10^{4}}}}{10^{52}}=$

$$
\frac{-34+\phi-\pi}{10000}+\frac{\sqrt[48]{-4 \cosh (\pi)\left(1-2 \sin ^{2}(\sqrt{3} \pi)\right) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}}{2^{5 / 48} \sqrt[16]{\pi}}
$$

100

Performing the $10^{\text {th }}$ root, we obtain:
$\left(\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqr} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)^{\wedge} 1 / 10$

Input:

$\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}}$

Exact result:

$\frac{\sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}}$

Decimal approximation:

1.644393807894373365341173754128337749773438326198684708086...
$1.64439380789 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms:
$\frac{\sqrt[10]{-e^{-4 \pi}+e^{4 \pi}-4 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{2^{3 / 5} \pi^{3 / 10}}$
$\frac{\sqrt[10]{\sinh (4 \pi)-\sinh (2 \pi-2 i \sqrt{3} \pi)-\sinh (2 \pi+2 i \sqrt{3} \pi)}}{\sqrt{2} \pi^{3 / 10}}$
$\frac{10}{\frac{1}{2}\left(e^{4 \pi}-e^{-4 \pi}\right)-\frac{1}{2}\left(e^{2 \pi}-e^{-2 \pi}\right)\left(e^{-2 i \sqrt{3} \pi}+e^{2 i \sqrt{3} \pi}\right)}$
$\sqrt{2} \pi^{3 / 10}$

All 10th roots of $(\sinh (4 \pi)-2 \cos (2 \operatorname{sqrt}(3) \pi) \sinh (2 \pi)) /\left(32 \pi^{\wedge} 3\right)$:
$\frac{e \sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}} \approx 1.6444$ (real, principal root)
$\frac{e^{(i \pi) / 5} \sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}} \approx 1.3303+0.9666 i$
$\frac{e^{(2 i \pi / 55} \sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}} \approx 0.5081+1.5639 i$
$e^{(3 i \pi) / 5} \sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}$

$$
\sqrt{2} \pi^{3 / 10}
$$

$\frac{e^{(4 i \pi) / 5} \sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}} \approx-1.3303+0.9666 i$

Alternative representations:

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}= \\
& \sqrt[10]{\frac{-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}}
\end{aligned}
$$

$$
\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}=
$$

$$
\sqrt[10]{\frac{-\cosh (2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}}
$$

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}= \\
& \sqrt[10]{\frac{-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)}{32 \pi^{3}}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}= \\
& \frac{10}{\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}-2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}(2 \pi)^{1+2 k_{1}+2 k_{2}}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}} \\
& \sqrt{2} \pi^{3 / 10}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}= \\
& \frac{10}{-i\left(-\sum_{k=0}^{\infty} \frac{\left(\left(4-\frac{i}{2}\right) \pi\right)^{2 k}}{(2 k)!}+2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}} 2^{2 k_{1}-2 k_{2}(4-i)^{2} k_{2} \pi^{2} k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}\right)} \\
& \sqrt{2} \pi^{3 / 10}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}= \\
& \sqrt[10]{\sum_{k=0}^{\infty} \frac{4^{1+k} \pi^{1+2 k}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \text { Res }_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{(1+2 k)!}}
\end{aligned}
$$

Integral representations:

Multiple-argument formulas:

$\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}=\frac{\sqrt[10]{(-\cos (2 \sqrt{3} \pi)+\cosh (2 \pi)) \sinh (2 \pi)}}{2^{2 / 5} \pi^{3 / 10}}$

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}= \\
& \frac{\sqrt[10]{i\left(2 \prod_{k=0}^{3} \sinh \left(\pi+\frac{i k \pi}{4}\right)+\cos (2 \sqrt{3} \pi) \prod_{k=0}^{1} \sinh \left(\pi+\frac{i k \pi}{2}\right)\right)}}{(2 \pi)^{3 / 10}}
\end{aligned}
$$

Now, adding $27 / 10^{3}$ to the previous expression, and multiplying all by $1 / 10^{27}$, we obtain:
$1 / 10^{\wedge} 27^{*}\left(\left(\left(\left(\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)^{\wedge} 1 / 10+\right.\right.\right.$ 27/10^3)))

Input:

$\frac{1}{10^{27}}\left(\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}}+\frac{27}{10^{3}}\right)$

Exact result:

$\frac{\frac{27}{1000}+\frac{\sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}}}{1000000000000000000000000000}$

Decimal approximation:

$1.6713938078943733653411737541283377497734383261986847 \ldots \times 10^{-27}$
$1.671393807894 \ldots * 10^{-27}$ result practically equal to the value of the formula:
$m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-27} \mathrm{~kg}$
that is the holographic proton mass (N. Haramein)

Alternate forms:

$\frac{27}{1000000000000000000000000000000}+$
$\frac{\sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{1000000000000000000000000000 \sqrt{2} \pi^{3 / 10}}$
$\frac{27 \pi^{3 / 10}+500 \sqrt{2} \sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{1000000000000000000000000000000 \pi^{3 / 10}}$
$27 \times 2^{3 / 5} \pi^{3 / 10}+1000 \sqrt[10]{-e^{-4 \pi}+e^{4 \pi}-4 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}$
$1000000000000000000000000000000 \times 2^{3 / 5} \pi^{3 / 10}$

Alternative representations:

Series representations:

$$
\begin{aligned}
& \frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}+\frac{27}{10^{3}}}}{10^{27}}= \\
& 27 \pi^{3 / 10}+500 \sqrt{2} \sqrt[10]{\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}-2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}}(2 \pi)^{1+2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}}
\end{aligned}
$$

$1000000000000000000000000000000 \pi^{3 / 10}$

Integral representations:

```
\(\frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}+\frac{27}{10^{3}}}}{10^{27}}=\left(27 \sqrt[5]{\pi}+500 \times 2^{7 / 10}\right.\)
    \(\left.\sqrt[10]{\int_{0}^{1} \cosh (4 \pi t) d t+\int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}}\right) /\)
\((1000000000000000000000000000000 \sqrt[5]{\pi})\)
```

$\frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}+\frac{27}{10^{3}}}}{10^{27}}=$
$\frac{27 \pi^{3 / 10}+500 \sqrt{2} \sqrt[10]{\left.\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{\pi^{2} / s+s} \sqrt{\pi}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{\pi}^{2} \sqrt{3} \pi\right.}{2} \sin (t) d t\right)}}{1000000000000000000000000000000 \pi^{3 / 10}} d s$

```
\(\frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}+\frac{27}{10^{3}}}}{10^{27}}=\left(27 \pi^{3 / 10}+500 \sqrt{2}\right.\)
\(\sqrt[10]{\left.\int_{0}^{1}\left(4 \pi \cosh (4 \pi t)+2 i \sqrt{\pi} \cosh (2 \pi t) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) d t\right) /}\)
\(\left(1000000000000000000000000000000 \pi^{3 / 10}\right)\) for \(\gamma>0\)
```


Multiple-argument formulas:

With regard the number 27, we have that: (from Wikipedia) "The fundamental group of the complex form, compact real form, or any algebraic version of E_{6} is the cyclic group $\boldsymbol{Z} / 3 \boldsymbol{Z}$, and its outer automorphism group is the cyclic group $\boldsymbol{Z} / 2 \boldsymbol{Z}$. Its fundamental representation is 27-dimensional (complex), and a basis is given by the 27 lines on a cubic surface. The dual representation, which is inequivalent, is also 27-dimensional. In particle physics, E_{6} plays a role in some grand unified theories".

Subtracting $(34+8) / 10^{3}$ (where 34 and 8 are Fibonacci numbers) and multiplying all by $1 / 10^{19}$, we obtain:
$1 / 10^{\wedge} 19^{*}\left(\left(\left(\left(\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3 * 2 \wedge 3\right)\right)\right)\right)\right)^{\wedge} 1 / 10-\right.\right.\right.$ $\left.\left.\left.(34+8) / 10^{\wedge} 3\right)\right)\right)$

Input:

$\frac{1}{10^{19}}\left(\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}}-\frac{34+8}{10^{3}}\right)$

Exact result:

10000000000000000000

Decimal approximation:

$1.6023938078943733653411737541283377497734383261986847 \ldots \times 10^{-19}$
$1.602393807894 \ldots * 10^{-19}$ result practically equal to the elementary charge

Alternate forms:

$\frac{\sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{10000000000000000000 \sqrt{2} \pi^{3 / 10}}-\frac{21}{5000000000000000000000}$

$5000000000000000000000 \times 2^{3 / 5} \pi^{3 / 10}$

Alternative representations:

$$
\begin{aligned}
& \frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}-\frac{34+8}{10^{3}}}}{-\frac{10^{19}}{10^{3}}+\sqrt[10]{\frac{-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}}}= \\
& 10^{19}
\end{aligned}
$$

$\frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}-\frac{34+8}{10^{3}}}}{10^{19}}=$

$$
\frac{-\frac{42}{10^{3}}+\sqrt[10]{\frac{-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)}{32 \pi^{3}}}}{10^{19}}
$$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}-\frac{34+8}{10^{3}}}}{10^{19}}= \\
& \frac{-21 \pi^{3 / 10}+250 \sqrt{2} \sqrt{10} \sqrt{\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}-2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}(2 \pi)^{1+2} k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}}}{5000000000000000000000 \pi^{3 / 10}} \\
& \sqrt[10]{\frac{10}{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}}-\frac{34+8}{10^{3}}}=\left(-21 \pi^{3 / 19}+250 \sqrt{2}\right. \\
& \left.\sqrt{-\sum_{k=0}^{\infty} \frac{\left(\left(4-\frac{i}{2}\right) \pi\right)^{2 k}}{(2 k)!}+2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}} 2^{2 k_{1}-2 k_{2}(4-i)^{2 k_{2}} \pi^{2 k_{1}+2 k_{2}}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}}\right) / /
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}-\frac{34+8}{10^{3}}}}{10^{19}}=\left(-21 \sqrt[5]{\pi}+250 \times 2^{7 / 10}\right. \\
& \left.\sqrt[10]{\int_{0}^{1} \cosh (4 \pi t) d t+\int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}}\right) / \\
& (5000000000000000000000 \sqrt[5]{\pi})
\end{aligned}
$$

$\frac{-21 \pi^{3 / 10}+250 \sqrt{2} \sqrt[10]{\int_{-i \infty+\gamma}^{i \infty \infty \gamma \gamma}-\frac{i e^{\pi^{2} / s+5} \sqrt{\pi}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{\frac{\pi}{2}}^{2} \sqrt{3} \pi \sin (t) d t\right.}{2}} d s}{s^{3 / 2}}$

$$
5000000000000000000000 \pi^{3 / 10}
$$

$$
\frac{\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} 2^{3}}-\frac{34+8}{10^{3}}}}{10^{19}}=\left(-21 \pi^{3 / 10}+250 \sqrt{2}\right] \sqrt[10]{\left.\int_{0}^{1}\left(4 \pi \cosh (4 \pi t)+2 i \sqrt{\pi} \cosh (2 \pi t) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) d t\right) /}
$$

$$
\left(5000000000000000000000 \pi^{3 / 10}\right) \text { for } \gamma>0
$$

Multiple-argument formulas:

In conclusion, subtracting $26 / 10^{3}$, where 26 is the dimensions number of a bosonic string, we obtain:
$\left(\left(\left(\left(\left(\left(\sinh (4 \mathrm{Pi})-2 \sinh (2 \mathrm{Pi}) \cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right) /\left(\left(4 \mathrm{Pi}^{\wedge} 3^{*} 2^{\wedge} 3\right)\right)\right)\right)\right)^{\wedge} 1 / 10-26^{*} 1 / 10^{\wedge} 3$
Input:
$\sqrt[10]{\frac{\sinh (4 \pi)-(2 \sinh (2 \pi)) \cos (2 \pi \sqrt{3})}{4 \pi^{3} \times 2^{3}}}-26 \times \frac{1}{10^{3}}$

Exact result:

$\frac{\sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}}-\frac{13}{500}$

Decimal approximation:

1.618393807894373365341173754128337749773438326198684708086...
1.618393807894... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$$
\begin{aligned}
& \frac{250 \sqrt{2} \sqrt[10]{\sinh (4 \pi)-2 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}-13 \pi^{3 / 10}}{500 \pi^{3 / 10}} \\
& -\frac{13}{500}+\frac{\sqrt[10]{\sinh (4 \pi)-\sinh (2 \pi-2 i \sqrt{3} \pi)-\sinh (2 \pi+2 i \sqrt{3} \pi)}}{\sqrt{2} \pi^{3 / 10}} \\
& \frac{500 \sqrt[10]{-e^{-4 \pi}+e^{4 \pi}-4 \cos (2 \sqrt{3} \pi) \sinh (2 \pi)}-13 \times 2^{3 / 5} \pi^{3 / 10}}{500 \times 2^{3 / 5} \pi^{3 / 10}}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}-\frac{26}{10^{3}}= \\
& -\frac{26}{10^{3}}+\sqrt[10]{\frac{-\cosh (-2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}}
\end{aligned}
$$

$$
\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}-\frac{26}{10^{3}}=
$$

$$
-\frac{26}{10^{3}}+\sqrt[10]{\frac{-\cosh (2 i \pi \sqrt{3})\left(-e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-4 \pi}+e^{4 \pi}\right)}{32 \pi^{3}}}
$$

$$
\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}-\frac{26}{10^{3}}=
$$

$$
-\frac{26}{10^{3}}+\sqrt[10]{\frac{-2 i \cosh (-2 i \pi \sqrt{3}) \cos \left(\frac{\pi}{2}+2 i \pi\right)+i \cos \left(\frac{\pi}{2}+4 i \pi\right)}{32 \pi^{3}}}
$$

Series representations:

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-\frac{26}{10^{3}}=} \\
& \frac{-13 \pi^{3 / 10}+250 \sqrt{2} \sqrt[10]{\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}}-2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-3)^{k_{1}(2 \pi)^{1+2 k_{1}+2 k_{2}}}\left(2 k_{1}\right)!\left(1+2 k_{2}\right)!}{500 \pi^{3 / 10}}}{4 \pi^{3} 2^{3}} \\
& \frac{10}{\frac{-13 \pi^{3 / 10}+250 \sqrt{2} \sqrt[10]{\sum_{k=0}^{\infty} \frac{4^{1+k_{\pi^{1+2 k}}\left(4^{k}-\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-5} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}}{(1+2 k)!}}}{500 \pi^{3 / 10}}}
\end{aligned}
$$

$$
\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}-\frac{26}{10^{3}}=
$$

$$
\frac{-13 \pi^{3 / 10}+250 \sqrt{2} \sqrt[10]{\sum_{k=0}^{\infty} \frac{(4 \pi)^{1+2 k}}{(1+2 k)!}+2 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{2}}(2 \pi)^{1+2 k_{1}}\left(-\frac{\pi}{2}+2 \sqrt{3} \pi\right)^{1+2 k_{2}}}{\left(1+2 k_{1}\right)!\left(1+2 k_{2}\right)!}}}{500 \pi^{3 / 10}}
$$

Integral representations:

$$
\left.\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-\frac{26}{10^{3}}=\frac{1}{500 \sqrt[5]{\pi}}\left(-13 \sqrt[5]{\pi}+250 \times 2^{7 / 10}\right.} \sqrt[10]{\int_{0}^{1} \cosh (4 \pi t) d t+\int_{0}^{1} \int_{0}^{1} \cos \left(\frac{1}{2}(1-4 \sqrt{3}) \pi t_{2}\right) \cosh \left(2 \pi t_{1}\right) d t_{2} d t_{1}}\right) .
$$

$$
\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}-\frac{26}{10^{3}}=
$$

$$
-13 \pi^{3 / 10}+250 \sqrt{2} \sqrt[10]{\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{\pi^{2} / s+s} \sqrt{\pi}\left(e^{\left(3 \pi^{2}\right) / s}+\int_{2}^{2} \sqrt{3} \pi \sin (t) d t\right.}{2}} d s
$$

$$
500 \pi^{3 / 10}
$$

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-\frac{26}{10^{3}}=\frac{1}{500 \pi^{3 / 10}}\left(-13 \pi^{3 / 10}+\right.} \\
& 250 \sqrt{2} \sqrt[10]{\left.\int_{0}^{1}\left(4 \pi \cosh (4 \pi t)+2 i \sqrt{\pi} \cosh (2 \pi t) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) d t\right)}
\end{aligned}
$$

for $\gamma>0$

Multiple-argument formulas:

$$
\begin{aligned}
& \sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}-\frac{26}{10^{3}}=} \\
& -\frac{13}{500}+\frac{\sqrt[10]{-4\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right) \cosh (\pi) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}}
\end{aligned}
$$

$$
\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}-\frac{26}{10^{3}}=
$$

$$
-\frac{13}{500}+\frac{\sqrt[10]{-4 \cosh (\pi)\left(1-2 \sin ^{2}(\sqrt{3} \pi)\right) \sinh (\pi)+2 \cosh (2 \pi) \sinh (2 \pi)}}{\sqrt{2} \pi^{3 / 10}}
$$

$$
\sqrt[10]{\frac{\sinh (4 \pi)-\cos (2 \pi \sqrt{3}) 2 \sinh (2 \pi)}{4 \pi^{3} 2^{3}}}-\frac{26}{10^{3}}=-\frac{13}{500}+
$$

$$
\frac{\sqrt[10]{-2\left(-1+2 \cos ^{2}(\sqrt{3} \pi)\right)\left(3 \sinh \left(\frac{2 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{2 \pi}{3}\right)\right)+3 \sinh \left(\frac{4 \pi}{3}\right)+4 \sinh ^{3}\left(\frac{4 \pi}{3}\right)}}{\sqrt{2} \pi^{3 / 10}}
$$

Conclusions

We highlight as in the development of this equation we have always utilized the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role to obtain the final results of the analyzed expression.

Furthermore, the Fibonacci and Lucas numbers are fundamental values that can be considered "constants", such as π and the golden ratio , that is, recurring numbers in various contexts: in the spiral arms of galaxies, as well as in Nature in general. This means that in the universe there is a mathematical order that has such constants as its foundation. Mathematics is therefore language, that is, as it was defined by philosophers, the "Logos" of the universe and all its laws that govern it. In other words, the universe, in addition to an observable physical reality, is also a mathematical and geometric entity.

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

