
A Case Study into solving Crypters/Packers
in Malware Obfuscation using an SMT

approach
Jason Reaves

ABSTRACT
Obfuscation in malware is commonly employed for any number of reasons but it’s
purpose is ultimately the same, to make the underlying malicious entity go
unnoticed. Crypters and Packers both are heavily employed to bypass common
security measures so ultimately these are just tools. Tools that are utilizing
algorithms in order to take data and turn it into some other data while being able
to reverse the process later, obviously these reversible algorithms can be chained
together as well into ‘layers’. In this paper I explore the idea that it is easier to
think of these layers as a math equation which can be solved. This has the
potential of turning something that can be overwhelming at first, like writing an
unpacker, into a much more manageable problem.

For the purpose of this paper I will refer to packers[9] and crypters[9] both as
packers, the reason being that in the world of malware both are used for
obfuscating the underlying code that is to be executed.

1. Introduction
Packers have evolved greatly over the years, especially with malware needing to
utilize crypters and packers that can bypass any number of obstacles depending
on their targets. For brevity we will focus specifically on crypters that utilize
multiple binary operators to obfuscate their payloads, it seems a natural
progression that researchers will usually move towards finding ways to pivot from
other data in these scenarios such as finding ways to rip out starting values
through various techniques including bruting, select-bruting, regex matching,
nearby static data pivoting or any number of other process for basically finding
values. Instead of finding values I always yearned to be able to instead lean on
math in regards to solving a problem, if I can reverse this routine and describe it in
an adequate manner to write it in a higher level language then I should be able to
describe this routine as a problem that can either be simplified or best case

solved. This line of thought is what eventually led me to find Z3[6] and its
usefulness in subsets of malware research.

2. Finding the problem
The sample we’ll be looking at is specifically the crypter being used by the latest
Locky Ransomware campaigns in late August 2017,
1c80b1ba2c514bc1d32eb5b9909d79812ab8f2944548bc96757c1d992ce6d8ac.
While the object of this paper is not to show how to reverse engineer routines or
malware, we will simply walk through to the relevant portion of code in order to
begin describing our problem. Basically we’re going to find where the routine that
is responsible for decoding the payload. For this crypter a quick glance at the PE
file shows a potentially encoded resource section.

Figure 1 Resource sections

Opening up the file in a debugger shows a bunch of very similar calls at the main
entrypoint[10].

Figure 2 Entry point code

Peeking inside one of these calls shows that they are just jump commands to
OpenMutex. So it is trying to open a mutex with the desired access of
SYNCHRONIZE[8].

Figure 3 Jump command

As long as all the calls return 0 then the code will come to a different function call
that takes us to a different section of the binary that starts to make some
LoadLibrary calls.

Figure 4 Execute next code block

A quick stop at a loop that calls WaitForSingleObject over and over, potentially a
custom sleep routine. Sleep routines are commonly leveraged in malware to
defeat sandbox analysis which will normally only execute a piece of malware for a
set time amount[11].

Figure 5 Custom sleep routine

Moving on a little later we see a call to VirtualAlloc followed by a loop utilizing a
push->ret technique. Unfortunately this isn’t our routine for decoding the payload
but instead the routine for decoding the bytecode layer that will be called
next[12], do we need this layer? Possibly, whether or not we need to decode out
that layer will depend on how the final routine is implemented for decoding out
the payload. If you’d like an example of a slightly more advanced example of a
crypter where we end up having to decode out some of the layers of a crypter I
have a write up on one such crypter[1] where the decoding routine is dynamically
generated and needs to be decoded.

Figure 6 Decode and execute next layer

Heading into that next layer is just your normal code resolving any dependencies
that it needs at runtime[13].

Figure 7 Resolve dependencies

You might notice with this next picture the address change, simply because the
bytecode layer fixes its own dependencies and then allocates a new memory
section and copies itself over before calling the next section of code to be
executed from within itself, kind of an odd way to do it but if you’re the type that
sets breakpoints everywhere you might find yourself with messed up code.
In this next code however we have a call to VirtualAlloc followed by some data
being moved into our newly created memory.

Figure 8 Next execution block to copy data over

Whenever I see something like this in a crypter the first thought that comes to my
mind is “where is this data located in the binary”. A quick check shows it’s the
resource section we had noticed when we were doing our precursory inspection.

Figure 9 Copied data location

The next call after the data is moved is interesting, some hardcoded dword
values, two sub instructions with a load and store in a loop? That looks like an
encoding loop of some kind.

Figure 10 Decoding routine

It’s good in these situations to keep track of what and where any hardcoded
values are, such as the one loaded into EDX immediately and then added to a
hardcoded value, turns out both values are hardcoded in the bytecode layer.

Figure 11 Hardcoded value

Further down we see the previously mentioned loop that if you step through a
few times you’ll notice the PE file emerge, so this is the loop that we are
concerned with since we know the file is in a resource section for this particular
sample.

Figure 12 Decoding values

We have one hardcoded value and the previous two hardcoded values added
together to get us the first two values subtracted, afterwords you can see EDX
which contained one of those values is replaced with the previous dword value
from our encoded data. We can construct this as a math routine:

x x824132AC ∆f (x) = − 0 −
Figure 13 Proposed initial function

We know that delta is 0x3c662605 for the first iteration and delta becomes the
previous x as it loops over the data. However when we are looking to decode out
the binary we won’t know the hardcoded value 0x824132ac and we also won’t
know the starting delta value. Simple enough to think of bruting out the values
but that could be a pain, you would need to brute out one value from what you
would expect to see in the first four bytes of a PE file and then try to figure out
what the hardcoded value is from the next 4 bytes. Possible but could take a few
cycles to brute, so instead you could decode out the bytecode layer and then use
YARA[7] and regex patterns to try to find possible values instead to simplify this
process but this approach can be error prone and end up being just as slow as
bruting depending on how you implement it. The other option is to use an SMT
solver, they can solve these types of problems very quickly because we know the
endgame is a PE file and a PE file has a bunch of header data that we can predict.

3. SMT solving an unpacker
We basically did a walkthrough of the routine that decodes out the payload in the
previous section. Up next we’re going to go through how to turn this decoding
routine, which is basically a math problem, into something that can be solved by
an SMT.

Since we know the encoded data is in a resource section we can setup our overall
program pseudocode as thus:

Figure 14 Pseudocode

The gist is we will call a function on every resource section which will handle
setting up our SMT solver by adding in necessary constraints. What are our
constraints? Simply that we know what the output of the decoding should be, a
PE file, and we know the routine involved. This means the process of setting up
our solver and adding constraints is basically just describing a problem and then
letting it solve the problem for us.

Ultimately we have two values that we need to find, a hardcoded subtract
DWORD value and another DWORD value that only gets used for the first iteration
and then replaced with the previous encoded DWORD value. For our problem
these values basically become variables and for simplicity we can use the first 12
bytes of the unpacked PE file of the sample we just went through,
'\x4d\x5a\x90\x00\x03\x00\x00\x00\x04\x00\x00\x00'. If you’re asking “why 12
bytes”, the answer is basically that the more data you have the more likely you
are able to solve the problem for the actual variables. If you only add a constraint
for the first 4 bytes, given that the values we are trying to find are DWORD values
this gives us many possibilities to satisfy the problem. The more data we can add
for constraints then the narrower we can make the list of possible values to
satisfy our problem which in turn gives us a better chance of producing the actual
values we need instead of a possible range of values. Let’s begin setting up our
solver function.

Figure 15 Initial solver function

Here we’ve setup the beginning of our solver function and declared them as
BitVecs which are basically variables, in this case 32 bit variables named sub1 and
sub2 respectively. These will represent our hardcoded subtraction variable and
our initial delta variable that we are trying to find out. The code can seem a bit
weird at first, I found it best to think of these are your variable declarations. How
you use your variables is by taking our math function above and unrolling a few
iterations of the function into their equivalent y=x version which let’s us find the
unknown values we are searching for because we know the y and x or the output
and the input. Let’s take another look at our function.

x x824132AC ∆f (x) = − 0 −
Figure 16 Function

Now let’s replace some of the data to make it use our variables and turn it into
the y=x form.

x csub deltasuby = − h −
Figure 17 Function in yx form

We mentioned earlier that we know the inputs and the outputs already, the
inputs are bytes that can be found inside our sample. The outputs are the first few
bytes of a normal windows
executable(‘\x4d\x5a\x90\x00\x03\x00\x00\x00\x04\x00\x00\x00’), with this
along with the inputs which as aforementioned are bytes that can be found inside
the malware sample we are able to use our mathematical algorithm to find the
values we need. We set this up by adding constraints which are conditions that
will constraint our SMT solver.

 second_delta = struct.unpack_from('<I', input)[0]
 s.add((BitVecVal(struct.unpack_from('<I',input)[0], 32) - hc_sub) - delta_sub
== BitVecVal(struct.unpack_from('<I',output)[0], 32))
 s.add((BitVecVal(struct.unpack_from('<I',input[4:])[0], 32) - hc_sub) -
second_delta == BitVecVal(struct.unpack_from('<I',output[4:])[0], 32))
 s.add((BitVecVal(struct.unpack_from('<I',input[8:])[0], 32) - hc_sub) -
BitVecVal(struct.unpack_from('<I', input[4:])[0], 32) ==
BitVecVal(struct.unpack_from('<I',output[8:])[0], 32))
 return(s)

Figure 18 Setup SMT constraints

Now we can loop through every resource section and look for one that satisfies
our constraints in the solver.

for rsrc in rsrcs:
 #Try z3 solvers
 a = bytearray(rsrc)
 for poss_decode in possible_decodes:
 s = solve_doublesub(a, poss_decode)
 if s.check() == sat:
 m = s.model()
 for d in m.decls():
 if d.name() == 'sub1':
 sub1 = m[d].as_long()
 elif d.name() == 'sub2':
 sub2 = m[d].as_long()
 print("Satisfied!")
 print("Sub1 Value: "+hex(sub1))
 print("Sub2 Value: "+hex(sub2))

Figure 19 Try to find the encoded file

4. Conclusion and Future Work

In this paper I detailed a concept on how to approach looking at packers but creating an
unpacker in this manner is not something feasible for every variant that exists, it is possible to
do in one off scenarios where a researcher is tracking a specific malware family using a packer
and wants to find what other families might either be used by the same group(for example a
private packer or not sold) or perhaps what other groups are using the same packer(for
example a public packer that is sold as a service). Either discovery tells a different story that can
be useful for a researcher trying to paint a better picture over the workings of a threat group
that might be leveraging malware[1,2]

There are some ways that current software could leverage some of the concepts presented in
this paper however, auto unpacking solutions have existed for a number of years and they
normally rely on a combination of sandboxes or virtual machines with specific loaded modules
or software designed to look for binaries that are decoded and rebuilt into memory
sections[3,4,5,14]. The concept here specifically of leveraging the decoding routines themselves
could be used to expand the usefulness of these existing automated systems for finding
interesting code sections that might not be detected via normal means. The main idea being
that if the malware is decoding something then it’s potentially useful to someone so if you can
find that specific routine you can harvest everything it decodes in an automated manner
without having to guess later what was or wasn’t decoded. Such a system would need a way to
heuristically detect where these routines are, a way to detect when they are executed and a
way to dump or store the decoded data after they have finished running.

Figure 20 Overview of preprocessing packed files

It might also be beneficial for automated systems to detect signatures for the decoded data and
then in the event of a miss for the decode routine but a detection on a decoded data signature
determining in the execution where this signature fired so the address of the routine can be
stored and potentially the entire execution restarted while monitoring this routine to harvest
all decoded data.

Figure 21 Overview of preprocessing packed files with finding routine during initial execution

This allows the possibility of harvesting more data from malware in an automated fashion but
also being able to determine the most interesting routines to harvest which are the ones
responsible for decoding data, these routines could then be passed to an engine designed for
auto generating detecting binary detection rules or also stored for further review by
researchers/analysts.

Future research will involve the heuristic static detection of malware and interesting routines
that this concept could be leveraged against and a process of auto generating SMT solvers.

5. References

1: Reaves, Jason. MAN1: Tracking the Crypter and the Actor,
https://vixra.org/abs/1902.0257.
2: Reaves, Jason. “GandCrab Overview and Crypter Reuse.” Random RE, 1 Feb. 2018,
sysopfb.github.io/malware/2018/02/01/gandcrab-overview.html.
3: https://cuckoosandbox.org/
4: https://www.unpac.me/
5: https://github.com/hasherezade/pe-sieve
6: https://github.com/Z3Prover/z3
7: https://virustotal.github.io/yara/
8: https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-openmutexw
9: Nachreiner, Corey. “How Hackers Hide Their Malware: The Basics.” Dark Reading, Dark
Reading, 30 Aug. 2017,
www.darkreading.com/how-hackers-hide-their-malware-the-basics/a/d-id/1329722.
10: Karl-Bridge-Microsoft. “PE Format - Win32 Apps.” Win32 Apps | Microsoft Docs,
docs.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-image-only.
11: https://attack.mitre.org/techniques/T1497/
12: https://attack.mitre.org/techniques/T1406/

13: Sikorski, Michael, and Andrew Honig. Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software.
14: https://cape.contextis.com/

