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ABSTRACT 
Obfuscation in malware is commonly employed for any number of reasons but it’s 
purpose is ultimately the same, to make the underlying malicious entity go 
unnoticed. Crypters and Packers both are heavily employed to bypass common 
security measures so ultimately these are just tools. Tools that are utilizing 
algorithms in order to take data and turn it into some other data while being able 
to reverse the process later, obviously these reversible algorithms can be chained 
together as well into ‘layers’. In this paper I explore the idea that it is easier to 
think of these layers as a math equation which can be solved. This has the 
potential of turning something that can be overwhelming at first, like writing an 
unpacker, into a much more manageable problem. 
 
 
For the purpose of this paper I will refer to packers[9] and crypters[9] both as 
packers, the reason being that in the world of malware both are used for 
obfuscating the underlying code that is to be executed.  
 

1. Introduction 
Packers have evolved greatly over the years, especially with malware needing to 
utilize crypters and packers that can bypass any number of obstacles depending 
on their targets. For brevity we will focus specifically on crypters that utilize 
multiple binary operators to obfuscate their payloads, it seems a natural 
progression that researchers will usually move towards finding ways to pivot from 
other data in these scenarios such as finding ways to rip out starting values 
through various techniques including bruting, select-bruting, regex matching, 
nearby static data pivoting or any number of other process for basically finding 
values. Instead of finding values I always yearned to be able to instead lean on 
math in regards to solving a problem, if I can reverse this routine and describe it in 
an adequate manner to write it in a higher level language then I should be able to 
describe this routine as a problem that can either be simplified or best case 



solved. This line of thought is what eventually led me to find Z3[6] and its 
usefulness in subsets of malware research. 
 

2. Finding the problem 
The sample we’ll be looking at is specifically the crypter being used by the latest 
Locky Ransomware campaigns in late August 2017, 
1c80b1ba2c514bc1d32eb5b9909d79812ab8f2944548bc96757c1d992ce6d8ac. 
While the object of this paper is not to show how to reverse engineer routines or 
malware, we will simply walk through to the relevant portion of code in order to 
begin describing our problem. Basically we’re going to find where the routine that 
is responsible for decoding the payload. For this crypter a quick glance at the PE 
file shows a potentially encoded resource section. 
 

 
Figure 1 Resource sections 

 
Opening up the file in a debugger shows a bunch of very similar calls at the main 
entrypoint[10]. 
 



 
Figure 2 Entry point code 

 
Peeking inside one of these calls shows that they are just jump commands to 
OpenMutex. So it is trying to open a mutex with the desired access of 
SYNCHRONIZE[8]. 
 



  
Figure 3 Jump command 

 
As long as all the calls return 0 then the code will come to a different function call 
that takes us to a different section of the binary that starts to make some 
LoadLibrary calls. 
 

 
Figure 4 Execute next code block 

 
A quick stop at a loop that calls WaitForSingleObject over and over, potentially a 
custom sleep routine. Sleep routines are commonly leveraged in malware to 
defeat sandbox analysis which will normally only execute a piece of malware for a 
set time amount[11]. 
 

 
Figure 5 Custom sleep routine 



 
Moving on a little later we see a call to VirtualAlloc followed by a loop utilizing a 
push->ret technique. Unfortunately this isn’t our routine for decoding the payload 
but instead the routine for decoding the bytecode layer that will be called 
next[12], do we need this layer? Possibly, whether or not we need to decode out 
that layer will depend on how the final routine is implemented for decoding out 
the payload. If you’d like an example of a slightly more advanced example of a 
crypter where we end up having to decode out some of the layers of a crypter I 
have a write up on one such crypter[1] where the decoding routine is dynamically 
generated and needs to be decoded. 
 

 
Figure 6 Decode and execute next layer 

 
Heading into that next layer is just your normal code resolving any dependencies 
that it needs at runtime[13]. 
 



 
Figure 7 Resolve dependencies 

 
You might notice with this next picture the address change, simply because the 
bytecode layer fixes its own dependencies and then allocates a new memory 
section and copies itself over before calling the next section of code to be 
executed from within itself, kind of an odd way to do it but if you’re the type that 
sets breakpoints everywhere you might find yourself with messed up code. 
In this next code however we have a call to VirtualAlloc followed by some data 
being moved into our newly created memory. 
 



 
Figure 8 Next execution block to copy data over 

 
Whenever I see something like this in a crypter the first thought that comes to my 
mind is “where is this data located in the binary”. A quick check shows it’s the 
resource section we had noticed when we were doing our precursory inspection. 
 

 
Figure 9 Copied data location 

 



The next call after the data is moved is interesting, some hardcoded dword 
values, two sub instructions with a load and store in a loop? That looks like an 
encoding loop of some kind. 
 

 
Figure 10 Decoding routine 

 
It’s good in these situations to keep track of what and where any hardcoded 
values are, such as the one loaded into EDX immediately and then added to a 
hardcoded value, turns out both values are hardcoded in the bytecode layer. 
 

 
Figure 11 Hardcoded value 

 



Further down we see the previously mentioned loop that if you step through a 
few times you’ll notice the PE file emerge, so this is the loop that we are 
concerned with since we know the file is in a resource section for this particular 
sample. 
 

 
Figure 12 Decoding values 

We have one hardcoded value and the previous two hardcoded values added 
together to get us the first two values subtracted, afterwords you can see EDX 
which contained one of those values is replaced with the previous dword value 
from our encoded data.  We can construct this as a math routine: 
 

x x824132AC ∆f (x) =  − 0 −   
Figure 13 Proposed initial function 

 
We know that delta is 0x3c662605 for the first iteration and delta becomes the 
previous x as it loops over the data. However when we are looking to decode out 
the binary we won’t know the hardcoded value 0x824132ac and we also won’t 
know the starting delta value. Simple enough to think of bruting out the values 
but that could be a pain, you would need to brute out one value from what you 
would expect to see in the first four bytes of a PE file and then try to figure out 
what the hardcoded value is from the next 4 bytes. Possible but could take a few 
cycles to brute, so instead you could decode out the bytecode layer and then use 
YARA[7] and regex patterns to try to find possible values instead to simplify this 
process but this approach can be error prone and end up being just as slow as 
bruting depending on how you implement it. The other option is to use an SMT 
solver, they can solve these types of problems very quickly because we know the 
endgame is a PE file and a PE file has a bunch of header data that we can predict. 
 

3. SMT solving an unpacker 
We basically did a walkthrough of the routine that decodes out the payload in the 
previous section. Up next we’re going to go through how to turn this decoding 
routine, which is basically a math problem, into something that can be solved by 
an SMT. 
 



Since we know the encoded data is in a resource section we can setup our overall 
program pseudocode as thus: 
 

 
 

 
 
 
 
 
 
 
 

Figure 14 Pseudocode 

 
The gist is we will call a function on every resource section which will handle 
setting up our SMT solver by adding in necessary constraints. What are our 
constraints? Simply that we know what the output of the decoding should be, a 
PE file, and we know the routine involved. This means the process of setting up 
our solver and adding constraints is basically just describing a problem and then 
letting it solve the problem for us. 
 
Ultimately we have two values that we need to find, a hardcoded subtract 
DWORD value and another DWORD value that only gets used for the first iteration 
and then replaced with the previous encoded DWORD value. For our problem 
these values basically become variables and for simplicity we can use the first 12 
bytes of the unpacked PE file of the sample we just went through, 
'\x4d\x5a\x90\x00\x03\x00\x00\x00\x04\x00\x00\x00'. If you’re asking “why 12 
bytes”, the answer is basically that the more data you have the more likely you 
are able to solve the problem for the actual variables. If you only add a constraint 
for the first 4 bytes, given that the values we are trying to find are DWORD values 
this gives us many possibilities to satisfy the problem. The more data we can add 
for constraints then the narrower we can make the list of possible values to 
satisfy our problem which in turn gives us a better chance of producing the actual 
values we need instead of a possible range of values. Let’s begin setting up our 
solver function. 
 



 
Figure 15 Initial solver function 

 
Here we’ve setup the beginning of our solver function and declared them as 
BitVecs which are basically variables, in this case 32 bit variables named sub1 and 
sub2 respectively. These will represent our hardcoded subtraction variable and 
our initial delta variable that we are trying to find out. The code can seem a bit 
weird at first, I found it best to think of these are your variable declarations. How 
you use your variables is by taking our math function above and unrolling a few 
iterations of the function into their equivalent y=x version which let’s us find the 
unknown values we are searching for because we know the y and x or the output 
and the input. Let’s take another look at our function. 
 

x x824132AC ∆f (x) =  − 0 −   
Figure 16 Function 

 
Now let’s replace some of the data to make it use our variables and turn it into 
the y=x form. 
 

x csub deltasuby =  − h −   
Figure 17 Function in yx form 

 
 
We mentioned earlier that we know the inputs and the outputs already, the 
inputs are bytes that can be found inside our sample. The outputs are the first few 
bytes of a normal windows 
executable(‘\x4d\x5a\x90\x00\x03\x00\x00\x00\x04\x00\x00\x00’), with this 
along with the inputs which as aforementioned are bytes that can be found inside 
the malware sample we are able to use our mathematical algorithm to find the 
values we need. We set this up by adding constraints which are conditions that 
will constraint our SMT solver. 



 
 

    second_delta = struct.unpack_from('<I', input)[0] 
    s.add((BitVecVal(struct.unpack_from('<I',input)[0], 32) - hc_sub) - delta_sub 
== BitVecVal(struct.unpack_from('<I',output)[0], 32)) 
    s.add((BitVecVal(struct.unpack_from('<I',input[4:])[0], 32) - hc_sub) - 
second_delta == BitVecVal(struct.unpack_from('<I',output[4:])[0], 32)) 
    s.add((BitVecVal(struct.unpack_from('<I',input[8:])[0], 32) - hc_sub) - 
BitVecVal(struct.unpack_from('<I', input[4:])[0], 32) == 
BitVecVal(struct.unpack_from('<I',output[8:])[0], 32)) 
    return(s) 

Figure 18 Setup SMT constraints 

 
Now we can loop through every resource section and look for one that satisfies 
our constraints in the solver. 
 
 

for rsrc in rsrcs: 
  #Try z3 solvers 
  a = bytearray(rsrc) 
  for poss_decode in possible_decodes: 
  s = solve_doublesub(a, poss_decode) 
  if s.check() == sat: 
  m = s.model() 
  for d in m.decls(): 
  if d.name() == 'sub1': 
  sub1 = m[d].as_long() 
  elif d.name() == 'sub2': 
  sub2 = m[d].as_long() 
  print("Satisfied!") 
  print("Sub1 Value: "+hex(sub1)) 
  print("Sub2 Value: "+hex(sub2)) 

Figure 19 Try to find the encoded file 

 
 
 



4. Conclusion and Future Work 
 
In this paper I detailed a concept on how to approach looking at packers but creating an 
unpacker in this manner is not something feasible for every variant that exists, it is possible to 
do in one off scenarios where a researcher is tracking a specific malware family using a packer 
and wants to find what other families might either be used by the same group(for example a 
private packer or not sold) or perhaps what other groups are using the same packer(for 
example a public packer that is sold as a service). Either discovery tells a different story that can 
be useful for a researcher trying to paint a better picture over the workings of a threat group 
that might be leveraging malware[1,2] 
 
There are some ways that current software could leverage some of the concepts presented in 
this paper however, auto unpacking solutions have existed for a number of years and they 
normally rely on a combination of sandboxes or virtual machines with specific loaded modules 
or software designed to look for binaries that are decoded and rebuilt into memory 
sections[3,4,5,14]. The concept here specifically of leveraging the decoding routines themselves 
could be used to expand the usefulness of these existing automated systems for finding 
interesting code sections that might not be detected via normal means. The main idea being 
that if the malware is decoding something then it’s potentially useful to someone so if you can 
find that specific routine you can harvest everything it decodes in an automated manner 
without having to guess later what was or wasn’t decoded. Such a system would need a way to 
heuristically detect where these routines are, a way to detect when they are executed and a 
way to dump or store the decoded data after they have finished running. 
 

 
Figure 20 Overview of preprocessing packed files 

 
 
 
It might also be beneficial for automated systems to detect signatures for the decoded data and 
then in the event of a miss for the decode routine but a detection on a decoded data signature 
determining in the execution where this signature fired so the address of the routine can be 
stored and potentially the entire execution restarted while monitoring this routine to harvest 
all decoded data. 
 



 
Figure 21 Overview of preprocessing packed files with finding routine during initial execution 

 
 
This allows the possibility of harvesting more data from malware in an automated fashion but 
also being able to determine the most interesting routines to harvest which are the ones 
responsible for decoding data, these routines could then be passed to an engine designed for 
auto generating detecting binary detection rules or also stored for further review by 
researchers/analysts. 
 
Future research will involve the heuristic static detection of malware and interesting routines 
that this concept could be leveraged against and a process of auto generating SMT solvers. 
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