
A Constraint Based K-Shortest Path Searching
Algorithm for Software Defined Networking

Siddhant Ray
School Of Electronics Engineering

Vellore Institute of Technology, Vellore
Vellore, Tamil Nadu, India

siddhant.r98@gmail.com

Abstract—Software Defined Networking (SDN) is a concept in
the area of computer networks in which the control plane and
data plane of traditional computer networks are separated as
opposed to the mechanism in conventional routers and switches.
SDN aims to provide a central control mechanism in the network
through a controller known as the SDN Controller.[1] The Con-
troller then makes use of various southbound Application Pro-
gramming Interfaces (APIs) to connect to the physical switches
located on the network and pass on the control information,
which used to program the data plane. SDN Controller also
exposes several northbound APIs to connect to the applications
which can leverage the controller to orchestrate the network. The
controller used with regard to this paper is the Open Network
Operating System (ONOS), on which the algorithm in question is
to be deployed. ONOS provides several APIs which is leveraged
to connect the application to the network devices. The typical
network path between any two endpoints is a shortest path
fulfilling a set of constraints. The algorithm developed here is for
optimal K-Shortest path searching in a given network satisfying
specified constraints, controlled by ONOS.

Index Terms—ONOS, OpenFlow, K-Shortest Paths, Yens Al-
gorithm, Constrained Shortest Path First (CSPF), white edges,
white vertices

I. INTRODUCTION

The ONOS SDN controller uses OpenFlow protocol on the
southbound to communicate with the switches for managing
the data plane. The application on the SDN Controller cal-
culates the network paths and translates the network paths
as series of flow entries which is written to control each
switch and its actions. The protocol defines the flows in a
particular required format, which communicates the necessary
information to the southbound devices. Each flow is required
to be associated with a select mechanism which determines
how to process the packet and an action mechanism which
determines what to do. [2] As a part of this study MPLS
Layer 2 VPNs were created to provide E2E service. OpenFlow
supports Multiprotocol Label Switched (MPLS) protocol. The
MPLS is a defined as a layer 2.5 protocol as it uses the
best of both layer 2 and layer 3 forwarding techniques.
The MPLS protocol dispenses with the need of IP packet
forwarding and the huge sizes of IP routing and forwarding
tables. Instead it uses a tag swapping concept which can be
efficiently implemented in the switching hardware. The VPN
services were defined by configuring an end to end single
segment PsuedoWires. The SDN application is called on the

first packet, at that point a PseudoWire (PW) mapped to
MPLS Server Layer Tunnel is computed. After this, a label
stack is pushed on the switches, which determines the routing
mechanism of the packet. The actions of pushing and popping
the labels are written within the flows of the protocol and
the OpenFlow protocol maintains flow tables to effectively
manage the routing. Each flow consists of a forwarding action
on the packet and thus, the need for IP forwarding is removed
till it reaches its destination. The sources and the destination
are both defined as PW edges and ARP is only used on the
PW edges, and never on the intermediate ingress and egress
ports of the nodes. The efficiency of the control plane through
ONOS is significantly greater as it has a complete view of the
network and OpenFlow provides the necessary hooks where
custom applications can be plugged in. A key factor required
in MPLS networks is the presence of multiple paths between
the network nodes. This is done to speed up the fault correction
process in the network if at any point; a link in the current
routing path fails. A point of failure in the network is defined
as a Point of Local Failure. To accommodate these faults,
several backup paths are calculated to ensure quick switching
in the case of localized failure. The standard criterion for any
path selected in a network is for it to have the lowest possible
cost of routing. To determine the various paths for the MPLS
routing protocol, an efficient path searching algorithm needs
to be developed within the ONOS framework. The objective
of this paper mainly lies in devising an efficient path searching
algorithm for the MPLS routing. It aims to find a mechanism
to find the first K shortest paths in the network which can be
used for routing. The shortest path may be defined so on the
basis of any number and type of constraints. The objective
further lies to make the algorithm robust to several points of
failure in the network factoring in the network constraints.
The analysis will be carried out by formulating the algorithm
based on a type of constraint and then further, testing it on
various network topologies in order to determine the real time
feasibility in terms of accuracy and output time.

A. Abbreviations and Acronyms

During the entire course of the paper, several abbreviations
might be use repeatedly. A comprehensive list of the major
abbreviations used is hereby provided.



• SDN Software Defined Networking
• ONOS- Open Network Operating System
• ONF- Open Networking Foundation
• OSPF - Open Shortest Path First
• CSPF - Constrained Shortest Path First
• MPLS- Multiprotocol Label Switching
• LSP- Label Switched Path
• KSP- K-Shortest Paths
• IP- Internet Protocol

II. BACKGROUND KNOWLEDGE OF SDN

A. Architecture of Software Defined Networking

Software Defined Networking as defined by Open
Networking Foundation (ONF) is an architecture that is
dynamic, manageable, cost-effective, and adaptable. This
architecture decouples the network control and forwarding
functions enabling the network control to become directly
programmable and the underlying infrastructure to be
abstracted for applications and network services. [3]

The SDN architecture can be viewed as a three layered
architecture as depicted in the Figure 1:

Fig. 1. Figure 1: Three Layered Architecture:

Data Plane: The lower most layer is the Data Plane. This
stratum consists of forwarding devices in the form of switches
and routers. These devices can be either physical or virtual.
The physical switches are implemented using hardware. Most
of the networking vendors today support e.g. Juniper and
Cisco have support SDN protocols as a part their merchant
switches. These switches are responsible for forwarding,
modifying and dropping packets. It should also be mentioned
that there are several implementations of the data plane in
software. One of the most popular implementations of the
software switch, which runs on common operating systems
such Linux, is known as the Open vSwitch (OvS package)
which has been extensively used during this study. The
policies for applying the rules on the packets are configured
by the control plane over South Bound Interface (SBI). Thus
the control plane can control data planes processing and
forwarding capabilities leveraging the SBI. The OpenFlow
protocol is a foundational element for building SDN solutions

and was defined by ONF. It happens to be one of the protocols
of choice for the controller to control the behaviour of the
forwarding plane. However it is not the only protocol that this
supported over this interface. There are many other protocols
like NETCONF, OVSDB, etc. which can be leveraged by
the controller to orchestrate the forwarding layer. However
OpenFlow is more than a secure control protocol running
over TCP using Transport Layer Security (TLS) between the
Forwarding and the Control Plane. It also defines the packet
forwarding tables, through a mechanism of adding, modifying
and removing packet matching rules and actions which are
implemented in the dataplane. These rules are defined for
entities which are termed as Flows, classified by the tuples in
the packet header. A flow is defined as a set of packet field
values acting as a match (filter) criterion and a set of actions
(instructions). Thus using this architecture the control plane is
able populate the flow table rules in the data plane to enable
wirespeed forwarding. The packets which are unmatched are
forwarded to the controller so that the controller can take the
decision and populate the appropriated flow control rules to
the dataplane.

Control Plane: The Control Plane should be viewed as
the Networking Operating System (NOS). It is primarily
responsible for the following

• Network Topology
• State Information
• Notification and Device(Switch) Management
• Abstraction of Data Plane
• Exposes NBI to the Application Layer

The control plane has been main objective of this study.
The control plane used for this study is the ONOS.

The Northbound Interfaces (NBIs) are defined between
the control plane and the application plane. Using NBIs,
applications can exploit the abstract network views provided
by the Control Plane to express network behaviour and
requirements, and facilitate automation, innovation and
management of SDN networks. The ONF and other standards
bodies are trying to define the standard NBIs and a common
information model.

Application Layer: The Application Layer consists of
business application that consume Consumer Network APIs
for Business Intelligence and Network Optimization.

This new architecture which is a deviation from the
traditional IP networks by removing the network control
functions from the underlying routers and switches, thereby
promoting the logical centralization of network control and
introduces the network programmability. Thus it promotes
the concept as defined by ONF where network is centrally
managed using a SDN Controller and programmatically
configured by open standards based interfaces. This



programmable aspect of the network opens possibility
of developing applications like Security Applications and
Monitoring Business Applications which leads to better
monetization of the infrastructure.

B. Control Plane : SDN Controller

The SDN Controller is responsible for multiple functions.
To facilitate the agile manipulation of the network by
applications, it is imperative that is able to provide a logical
abstracted view of the network. [4] A typical SDN Controller
e.g. ONOS supports the following functions:

• Topology Service: Retrieve Topology, Node, Link
Edge-Point details so that network connectivity map is
available to the applications

• Connectivity Service: Request and Retrieve P2P,
P2MP, Connectivity. There may be multiple forwarding
technologies can be supported. For this study the P2P
connectivity using PseudoWire (PW) over an MPLS
tunnels was considered.

• Notification Service: Subscription and filtering /
Autonomous event notification. This will ensure that the
SDN Controller is real time view of the state of the
network switches so that it can react in real time in case
of failures or changes in the forwarding layers.

• Path Computation Service: Request for Computation and
Optimization of paths so that the end to end network
path. This was the focus area of the study.

• Network Service: Create, update, and delete network
topologies. The Network Path that was calculated was
programmed to the devices using the Network Services

One of the main functions of the control plane is to
dynamically compute the end to end path between two end
points in the network. For this study the type of service chosen
was a Layer 2 VPN. The path computation algorithm of the
Controller was augmented to calculate the constraint based
shortest path between the two service end points. The con-
straints can be any service intent (parameters like bandwidth
etc.) as depicted in figure 2.

The SDN architecture provides an additional benefit. The
centralization of path computation enables customization of
the control routing policies and algorithms from a single
location in network. This is different from the traditional
networks where the path computation is distributed on the
network elements. Thus we see that the SDN controller enables
the functionality of Path Computation Element (PCE) for
the network it controls. The network applications can enable
the calculation of customisable routing plans based on the

Fig. 2. Figure 2: Functionality of the SDN Controller

constraints. Any network can invoke the path computation
algorithm through the North Bound API to pass the parameters
and constraints. Applying the constraints, the SDN controller
is capable of determining and finding a suitable route for
conveying data between a source and a destination. The
centralized approach is very efficient when multiple paths
are being simlutaneoulsy computed as resource contention is
minimised when using a distributed approach.

C. ONOS Architecture:

The ONS software is written in Java and provides a dis-
tributed SDN applications platform atop Apache Karaf OSGi
container [3]. ONOS can run as a distributed system across
multiple servers, allowing it to use the CPU and memory
resources of multiple servers while providing fault tolerance in
the face of server failure and potentially supporting live/rolling
upgrades of hardware and software without interrupting net-
work traffic. Thus is essentially provides a platform to build
network applications that can be deployed in an Operators
Network. The SDN applications are written are written in Java
as bundles that are loaded into the Karaf OSGi container.

Fig. 3. Figure 3: ONOS Architecture:

The platform provides applications with a number of
high-level abstractions, through which the applications can
learn about the state of the network and through which they
can control the flow of traffic through the network. The



network graph abstraction provides information about the
structure and topology of the network. As a part of this study
the network path calculation module of ONOS was extended
to take in meaningful constraints. In any real networks
constraints are essential as they allow for creating network
paths that support different criterion, e.g. disjoint paths for
path protection switching. The intent is a network-centric
abstraction that gives application programmers the ability to
control network by specifying what they wish to accomplish
rather than specifying how they want to accomplish it and in
some cases can be specified as the constraints. The developed
applications (core extensions) were loaded and unloaded
dynamically, via REST API or GUI, and without the need to
restart the cluster or its individual nodes. ONOS application
management subsystem assumed the responsibility for
distributing the application artefacts throughout the cluster to
assure that all nodes are running the same application software.

III. PATH COMPUTATION

Borrowing the definition from RFC 4655 a Path
Computation Element (PCE) is an entity that is capable
of computing a network path or route based on a network
graph, and of applying computational constraints during
the computation. The PCE entity is an application that can
be located within a network node or component, on an
out-of-network server, for example in SDN Controller. The
computation algorithm operates on the following

• A topology map (the Traffic Engineering Database
TE DB) learnt from the network through a passive
participation in the IGP.

• A connectivity graph formed by Nodes and Links
describing the network

• Link and Node constraints which are referred to as
metrics

The traffic engineering capabilities mandates that flows
are routed across the network based on the resources a flow
requires. To achieve this path computation engine needs
to weigh the resources that are available on each link of
the connectivity path and return a path that comprises of a
collection individual links that has the resource capability
to service the requirements for that flow. This brings in the
concept of the constraints. Thus in network traffic engineering
is viewed as mapping the flows over a physical topology.
The shortest-path algorithm is very widely used because of
its efficiency and stability. However networks are aware of
Quality of Service (QoS). So it is imperative to find paths
between a source destination pair that are different from the
shortest path(s) returned by a minimum distance algorithm
(Min-Dist1). This is because the shortest path may be highly
congested while alternate paths between the source and the

destination are running at relatively lower utilization. In
addition, since flows now have different QoS requirements,
a single path may not be able to satisfy requirements of all
flows between two end points.

To achieve this ONOS SDN controller generates a network-
wide MPLS LSP database (LSP DB). The PCE application
computes the path and use information stored in the LSP DB
to establish LSPs over the optimized path. [5]

The study was carried out in the following environment of
ONOS SDN Controller.

Fig. 4. Figure 4: Path Computation Application

1) The path request was received in the SDN Controller
through an API. The request was received for the
calculation of a number of network paths for which
specific constraints were specified. Example Node
Disjoint Paths for establishing protected paths in the
network.

2) The PCE Manager application was responsible for
handling the request to and from the North Bound
Interface.

3) The network topology was learnt by the SDN controller.
In the OpenFlow Environment the Traffic Engineering
TE Database was built up by the functionality provided
by the ONOS SDN Controller. This provided the
network topology on which the Path Computation
Algorithm was run.

4) The CSPF Services Application computed the path
and reserved the bandwidth in the TE-DB. Multiple
Paths were computed based on the constraints that
were provided by a business application. The algorithm
under study was implemented as part of this application.

5) Once the Paths were computed they were programmed
in the network using the south bound interface of the



SDN controller

IV. ALGORITHM OVERVIEW

A computer network can typically be modelled as a dual
sided directed graph. Thus calculating the path between any
two nodes of the network is analogous to finding the path
between two vertices of the graph. Over the course of time,
several graph path searching algorithms have been developed
each with the objective of finding the shortest path between a
given pair of nodes. For graphs, like computer networks, the
constraints or the weights of the edges are usually non zero
and positive quantities, computer networks do not generally
have negative quantities as weights or constraints. For shortest
path searching in such a case, the most famous algorithm
is the Dijkstra’s path searching algorithm for graphs with
non- negative weights. Dijkstra’s algorithm returns the single
shortest possible path between a pair of nodes in a graph.
The worst case time complexity in the big O notation, of
the Dijkstra’s algorithm is O(V2) where V represents the
number of nodes and E the number of edges. However, using
the concept of a Fibonacci Heap, it can be shown that the
complexity of the algorithm reduces to O(E +VlogV) if the
graph is represented in an adjacency list form.

The Dijkstra’s algorithm only returns a single possible
shortest path between a pair of network nodes. The problem
at hand requires us to find a K number of shortest paths in
the networks, which can then be used in conjunction with a
series of constraints in order to provide the required set of
paths. The classic implementation of the K- Shortest Paths in
a given graph is the Yen’s Algorithm.[6] The Yen’s algorithm
returns the first K shortest loopless paths in a given graph in
increasing order. Since the paths in computer networks are
also required to be loopless, the choice of Yen’s K Shortest
path algorithm serves the purpose well in the scenario.[7] The
alternative classical implementation of K Shortest Paths is the
Eppstein’s algorithm. However, the Eppstein’s algorithm does
not return only loopless paths, it returns paths containing loops
which is not feasible in the case of computer networks.[8]
For further discussion, the standard algorithm used in K
shortest pathing searching will be based on the Yen model
and not the Eppstein model. The Yen’s model will be used as
a reference for deriving the algorithm in question in this paper.

The Yen’s Algorithm uses a shortest path searching
algorithm for obtaining the first shortest path in the network.
It may be any shortest path algorithm; in this case, the
Dijkstra’s algorithm is used. After finding the first shortest
path, it recursively calls the Dijkstra’s algorithm to find the
next shortest path. It defines a root path and spur path at each
stage, both being derived from the previous shortest path, by
removing one edge at a time. The Dijkstra’s algorithm is then
used on the spur paths to generate the next possible shortest
paths, the shortest of which becomes the required path. This

process is carried out recursively to find K paths.

The following formulation is the pseudo code of the Yen’s
K Shortest Path algorithm.

Number of paths: K

function KSP (Graph, source, destination, K):

A[0] = Dijkstra(Graph, source, destination);
//Determine the shortest path from the source to the sink.

B = [];
// Initialize the set to store the potential kth shortest path.

foreach k in K do
// The spur node ranges from the first node to the

next to last node in the previous k-shortest path.

foreach i in 0 to (A[k 1]) 2: do
// Spur node is retrieved from the previous
k-shortest path, k 1.

spurNode = A[k-1].node(i);
// The spur node ranges from the first node to the
next to last node in the previous k-shortest path.

rootPath = A[k-1].nodes(0, i);
foreach path p in A do

if rootPath == p.nodes(0, i): then
remove p.edge(i,i + 1) from Graph;
// Remove the links that are part of the
previous shortest paths which share the
same root path.

else
continue;

foreach node rootPathNode in rootPath
except spurNode: do

remove rootPathNode from Graph;
// Calculate the spur path from the spur
node to the sink.

spurPath = Dijkstra(Graph, spurNode,
destination);

// Entire path is made up of the root path and
spur path.

totalPath = rootPath + spurPath;
// Add the potential k-shortest path to the
heap.



B.append(totalPath);
// Add back the edges and nodes that were

removed from the graph.

restore edges to Graph;
restore nodes in rootPath to Graph;

if B is empty:
// This handles the case of there being no spur
paths, or no spur paths left.
// This could happen if the spur paths have

already been exhausted (added to A),

break;

B.sort();
// Sort the potential k-shortest paths by cost.
path.
A[k] = B[0];
// Add the lowest cost path becomes the k-shortest
B.pop();
//Remove the first element from the set B

return A;

The Yens algorithm makes KT calls to the Dijkstra’s
algorithm where T is the length of the spur paths. The worst
case time complexity of the Dijkstra’s algorithm as mentioned
earlier, was O(N2) where N is the number of nodes but was
shown to be reduced to O(M + NlogN) using a Fibonacci
heap, where M is the number of edges.[9]

Thus T can have a best case value of O(logN) and a worst
case value of N. Thus the worst case time complexity for Yens
algorithm is O(KN(M + NlogN)). If the Fibonacci heap is not
used in the Dijkstra call, the worst case time complexity of
Yen’s algorithm increases to O(KN3).

V. MODIFICATIONS IN THE ALGORITHM
INVOLVING CONSTRAINTS

Practical applications of K shortest paths in computer
networks may often require the paths to incorporate a certain
number of constraints, in addition to being the shortest
possible paths in terms of routing costs. We will now try
to modify the existing Yens algorithm in incorporate a set
of constraints while calculating the paths and returning only
those paths which satisfy the given constraints.

For the purpose of convenience, the constraints will be
treated as two sets of white edges and white vertices each.
The idea is that the set of white edges and vertices is the set
of those edges and vertices which must be included in every
path returned by the algorithm. It may so happen that this
results sometimes in a list of paths which are less than K in
size. However, practically speaking, constraints are of much

greater importance as opposed to a mere number of paths.
Based on the fact that network solutions almost always require
a set of constraints to be applied on the paths calculated for
packet forwarding, this is not a very significant problem. If
required, a number greater than K may be entered to return
K paths but the additional benefit is that the constraints will
be applied on each path, which is of utmost importance.

The concept involved is similar to the analogy of the
Constrained Shortest Path First (CSPF) routing protocol as
opposed to the Open Shortest Path First (OSPF) routing
protocol. In OSPF, the first open path is immediately selected
as the path for routing IP packets whereas in CSPF, the
route is determined on the basis of constraints the network is
subject to. A similar concept of layer 3 routing protocols is
now being extended to the layer 2.5 MPLS protocol, which
is extensively used in SDN. [10]

The set of white edges and white vertices will act as
constraints for our system. Any constraint applied in terms
of hop count, latency, bandwidth limitations or distance
vectors, will all be converted in two sets of white vertices
and white edges for the network graph. The sets of white
vertices and edges must be included in each path found in
the algorithm. If a path calculated does not include these two
sets of constraints, the path will not be considered as a valid
path in the network graph.

The following formulation is the pseudo code of the modi-
fied Yens algorithm in order to incorporate the constraints.

whiteEdges = set of white edges;
whiteVertices= set of white vertices;

function KSP (Graph, source, destination, K,
whiteEdges, whiteVertices):

A[0] = Dijkstra(Graph, source, destination);
//Determine the shortest path from the source to the sink.

flag=true;

if A[0].edges().donotcontain(whiteEdges): then
flag=false;
// Check if the first path contains the white edges

if flag==true then
if if A[0].vertices().donotcontain(whiteVertices) then

flag=false;
// Check if the first path contains the white
vertices



if flag==true then
C[0] = A[0];
//Add the path to the final paths only if it satisfies the

constraints
flag=true;
// Reset the flag condition for the next k iterations

B = [];
// Initialize the set to store the potential kth shortest path.

foreach k in K do
// The spur node ranges from the first node to the

next to last node in the previous k-shortest path.

foreach i in 0 to (A[k 1]) 2: do
// Spur node is retrieved from the previous

k-shortest path, k 1.

spurNode = A[k-1].node(i);
// The spur node ranges from the first node to the

next to last node in the previous k-shortest path.

rootPath = A[k-1].nodes(0, i);
foreach path p in A do

if rootPath == p.nodes(0, i): then
remove p.edge(i,i + 1) from Graph;
// Remove the links that are part of the

previous shortest paths which share the
same root path.

else
continue;

foreach node rootPathNode in rootPath
except spurNode: do

remove rootPathNode from Graph;
// Calculate the spur path from the spur

node to the sink.

spurPath = Dijkstra(Graph, spurNode,
destination);

// Entire path is made up of the root path and
spur path.

totalPath = rootPath + spurPath;
// Add the potential k-shortest path to the

heap.

B.append(totalPath);
// Add back the edges and nodes that were

removed from the graph.

restore edges to Graph;
restore nodes in rootPath to Graph;

if B is empty:
// This handles the case of there being no spur
paths, or no spur paths left.
// This could happen if the spur paths have
already been exhausted (added to A),

break;

B.sort();
// Sort the potential k-shortest paths by cost.
path.

if B[0].edges().donotcontain(whiteEdges): then
flag=false;
// Check if the first path contains the white
edges

if flag==true then
if B[0].vertices().donotcontain(whiteVertices)

then
flag=false;
// Check if the first path contains the white
vertices

if flag==true then
C[k] = B[0];
// Add the next path to the final set only if the
constraints are satisfied

A[k] = B[0];
// Add the next path to the iterating list for the
next turn

flag=true;
// Reset the flag condition

B.pop();
//Remove the first element from the set B

return C;

VI. TESTING THE MODIFIED ALGORITHM

The framework, utilities and algorithms for ONOS are all
implemented in Java 8. Thus, for the purpose of testing the
new algorithm, an environment was set up in a Java Standard
Environment in order to obtain the required results of the
testing phase. The following steps were steps were executed
to testing the new, modified algorithm.

A. Compiling the ONOS source code:

The source code of ONOS was taken from the open
source platform; a new test file was added to the same,
which contained the modified K Shortest Path searching
algorithm. The entire code for the same was written in Java
8, by defining appropriate interfaces, classes and methods.
The source code was then compiled into the ONOS API



using the BUCK build tool. The BUCK build tool is a
similar building tool as compared to CMAKE in C++,
which is used for Java applications. Once compiled, the
ONOS code was successfully converted into a set of runtime
APIs. These runtime APIs were exposed to a test environment.

The Apache Maven tool was used as the project manage-
ment platform in the testing phase. The Maven contains a .m2
repository for managing and running the compiled code on the
ONOS controller. Once the program written within the source
code was compiled, the results were stored in the form of Java
Archive files (.jars). These new files were then pushed into
the Maven repository, which could then be used as runtime
APIs. The Maven platform provided a coherent and organized
method to deploy the application on the ONOS SDN controller
and run the simulations for the testing phase.

B. Emulating the network virtually for testing

In the real world scenario of SDN, the SDN controller
connects to physical switches of the computer network using
its southbound protocols like the OpenFlow, in order to pass
the control information to the data plane. However, for testing
purpose in this scenario, there was no access to physical
network switches. In order to overcome this, a software
emulator platform of the name Mininet was used. Mininet is
the standard network emulator to test applications on ONOS
by providing a virtual network. Mininet is a framework
written in Python which allows one to define virtual switches,
links and hosts using automated scripts. The SDN controller
treats these virtual switches as physical ones and passes the
control information to the data plane of the switches, using
the OpenFlow interface. In this test scenario, several Mininet
network topologies were used to simulate a real time physical
network. Mininet supports parametrized topologies. With the
help of Python code, flexible topologies were created that
were used for verifying the algorithm.

C. Setting up a Testing Class and Framework

A test class was created to incorporate and map the
physical topology of the network into a network graph. The
class and the environment were defined in Java. The test
class included a call of the modified algorithms method
which was defined and compiled along with the source code
of the ONOS. The lists of white edges and white vertices
were populated over and over again, including different sets
of constrained edges and vertices each time. This was done
in several phases by populating the constraints data and
dynamically filling the datasets by retrieving values from the
network topology. ONOS provides an inbuilt support for the
Apache Karaf framework which was used to view the data
logs and the results of the testing phase of the algorithm.
In order to build the test class and environment, the Apache
Maven framework was used, to return a built class file in the
form of an OAR snapshot. On creating the file in the required

Fig. 5. Figure 5: The Test Setup

form, it was deployed on the ONOS runtime APIs compiled
from the source code. This was used with various topologies
were set up in the environment with the use of Mininet. [11]

D. Running the algorithm on the network

The final phase of the testing included calling the modified
algorithms method and the original K shortest path algorithm
on various network topologies. To test the algorithms, several
pairs of sources and destination vertices were defined on the
network topologies created using Mininet, which were passed
into the algorithms method. The resultant paths were noted at
every stage and consistencies in the results was also studied.
It was seen that the time taken to execute both the algorithms
was roughly the same as the new modifications do not add
to the time complexity of the original Yen’s algorithm. The
constraints on the network changed several times in terms of
the sets of white edges and white vertices.

On studying the logged results of the algorithm, it was
seen that all the paths returned in the final stage included the
required white edges and vertices. The exercise was repeated
several times widely varying the constraint based white edges
and vertices in order to check the robustness of the algorithm.

In a nutshell, while keeping the time complexity of the
original algorithm the same, the constraints were included
into the system in order to only return paths, in which the
constraints held true.

VII. CONCLUSION

The objective of this paper was to develop a constraint
based K Shortest Path searching algorithm which could be
deployed in Software Defined Networks (SDN). The idea was
initially drawn from the concept of CSPF routing using in IP



packet forwarding in the layer 3 of the traditional computer
network. However, most of the SDN environments involved,
in this case ONOS, mainly rely on the layer 2.5 protocol of
MPLS to forward the data packets, a similar concept has been
successfully extended to the core path searching algorithm
used in the process. By incorporating the constraints, within
the algorithm itself, it propagates ease of use and flexibility
of the same. Any modifications further can be made within
the source of the framework with relative ease. Also, in
the process of modifying the algorithm, no additional time
complexity was introduced into the same. In addition to this,
the solution set size for the number of paths returned in the
result set is significantly smaller. If further searching is now
required on the solution set, the time taken will be reduced by
a huge amount, leading to greater efficiency in applications
where the algorithm is used.

The base algorithm used for further development is the
Yens K Shortest Path searching algorithm. The results of the
modified algorithms testing phase show that it can calculate the
required paths of the constraint based scenario with a similar
efficiency of the original Yen’s K Shortest Path searching
algorithm for graphs. The modified algorithm holds the door
open and provided further scope of improvement as and when
deemed necessary in the SDN framework. Further research can
be undertaken to improve the efficiency and computation of the
algorithm to an even greater extent. However, as of now, a real
time constraint based K Shortest Path searching algorithm has
successfully been created for use and deployment in Software
Defined Network platforms and is being deployed in process of
being commercially deployed in Service Providers Networks.

VIII. ACKNOWLEDGEMENTS

This work has been supported by the ALTRAN Technolo-
gies Ltd, as part of a summer internship program, voluntarily
taken up as an addition to the curriculum of the Vellore
Institute of Technology. The author would like to thank Mr.
Saket Bharadwaj and Mr Suhail Ahmad Khan , Technical
Leaders at ALTRAN for their support and guidance.

REFERENCES

[1] SDN: Software Defined Networks- An Authoritative Review of Network
Programmability Technologies, Thomas Nadeau and Ken Gray

[2] Software-Defined Networking Using OpenFlow: Protocols, Applications
and Architectural Design Choices, Wolfgang Braun and Michael Menth
Future Internet 2014, 6, 302-336; doi:10.3390/fi6020302

[3] https://en.wikipedia.org/wiki/ONOS

[4] https://wiki.onosproject.org/display/ONOS/Wiki+Home

[5] RFC A Path Computation Element (PCE)-Based Architecture.

[6] Yens K Shortest Path Algorthim, 1970, Yen, Jin Y. (1970). ”An
algorithm for finding shortest routes from all source nodes to a given
destination in general networks”. Quarterly of Applied Mathematics.
27 (4): 526530. MR 0253822

[7] Yen, Jin Y. (1970). ”An algorithm for finding shortest routes from all
source nodes to a given destination in general networks”. Quarterly of
Applied Mathematics. 27 (4): 526530. MR 0253822

[8] Eppstein, David (1998). ”Finding the k Shortest Paths” (PDF). SIAM
J. Comput. 28 (2): 652673. doi:10.1137/S0097539795290477

[9] Fredman, Michael Lawrence; Tarjan, Robert E. (1984). Fibonacci heaps
and their uses in improved network optimization algorithms. 25th
Annual Symposium on Foundations of Computer Science. IEEE. pp.
338346. doi:10.1109/SFCS.1984.715934

[10] MPLS Fundamentals, By Luc De Ghein Nov 21, 2006 (ISBN 1-58705-
197-4)

[11] ”ON.Lab Delivers Software for New Open Source SDN Network
Operating System - ONOS”. PR Newswire. 2014-12-04. Retrieved
2016-06-08.

The author Siddhant Ray is currently in his 4th
academic year, pursuing his B. Technology in Elec-
tronics and Communication Engineering from the
Vellore Institute of Technology (VIT), Vellore, In-
dia. His areas of research interest include computer
networks, machine learning, blockchain and digital
communication.


