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Abstract:  A simple and fast functional model is proposed to approximate energy loss distributions 

of charged particles crossing slabs of matter. The most accepted physical models for treating this 

problem was created by Landau and later improved by Vavilov. Both models depend on complex 

functional forms with exact solutions that are, by far, too CPU intensive to be directly included in 

existing Monte Carlo codes. Several authors have proposed approximations with varying degree of 

accuracy and performance.  This paper presents a compact and efficient form that approximates 

with enough accuracy the Vavilov distribution and its extreme cases of Landau and Gaussian 

shapes. Our functional form could be interpreted as a generalization of the basic Gaussian 

distribution.  Some parameter fits are illustrated with various test cases. Our model also 

represents a simple functional form to use for regression analysis with experimental energy loss 

data. 

 

Introduction:  While crossing a slab of matter a charged particle suffers inelastic interactions and 

releases energy to the medium. Due to the random nature of those interactions, the resulting 

energy of the particle emerging at the end of the slab exhibits a probability distribution. Two basic 

models representing such distributions are in common use inside Monte Carlo (MC) codes: Landau 

[1] and Vavilov [2].  

For a MC code to be used in radiotherapy planning, the need of fast convergence is paramount. In 

order to be fast, electron transport codes implement condensed history steps to avoid the 

simulation of billions of interactions per particle history.  On the other hand, condensed history 

simulations alone is less realistic than individual simulation of interactions.  As an alternative, most 

MC uses condensed history steps representing the vast majority of the events but interactions 

involving high energy transfer are treated individually. Those events over a defined energy 

threshold are usually called “catastrophic” and its physics is simulated explicitly. Events considered 

as catastrophic are knocked-on electrons and bremsstrahlung. The introduction of catastrophic 

events in a code generates some degree of energy loss straggling for the particle, but this 

fluctuation represents only the extreme cases of fluctuations. All other energy loss fluctuations 

below the energy threshold are not treated individually and should be included with one of the 

models by Landau or Vavilov. 

The Landau distribution depends on the universal Landau function: 

 

The validity of Landau’s theory depends on some restrictions. One of its restrictions conflicts with 

MC codes including catastrophic events over a cut-off energy:  there is no upper limit for the 

maximum energy loss for a single interaction in Landau’s model (ES = ∞). 



The Vavilov distribution is more realistic because it contains a maximum limit to the energy 

transfer in a single interaction (ES). 

  

Where x is the path length of the particle and ∆ is the actual energy loss over the condensed 

history step. 

It is useful to describe the energy loss fluctuation as a function of a parameter K defined as: 

K  =  ξ / ES 

K is proportional to the ratio of mean energy loss to the maximum allowed energy transfer in a 

single interaction.  

The parameter K could take values in the interval (0,.., ∞) .  If K → 0, it means that ES is very high 

compared to the mean energy loss.  If K → ∞, it means that ES is very low compared to the mean 

energy loss.  For K → 0, the Vavilov distribution should reproduces Landau’s shape.  On the other 

hand, if for K → ∞, the distribution became symmetric and identical to a Normal distribution. 

Analytic solutions for Landau and Vavilov are too complex and time-consuming for use in MC 

simulation [3]. Several approaches have being proposed to alleviate the time-consumption impact 

on MC codes [4, 5, 6, 7].  

A possible approach is the use of pre-generated tabulated distributions. This approach has several 

drawbacks. While it is a reasonable solution for Landau’s distribution function, it is too costly to 

implement for all possible variation of the K parameter in Vavilov’s distribution. An additional 

performance consideration is that searching into many tables at different address into RAM forces 

the continuous flush of processor’s internal cache, which translate into serious performance 

penalization in modern superscalar CPUs. 

Some authors have used rational functions approximations dividing the distributions in 

subintervals for better agreement [5]. A clever approach by Chibani proposed the use of the 

lognormal distribution [6, 7]. The use of Edgeworth expansion is a well-known method to correct a 

Gaussian distribution and has also being investigated [11]. 

 

 

 

 

 

 



METHOD 

Both, Landau and Vavilov, are skewed distributions, but there is a resemblance between those 

distributions and the normal distribution. Modifications of the normal distribution have been used 

to skew the original shape of the function, as in the case of the human longevity distribution [7]. 

Our proposed model for the probability distribution function, representing Landau and Vavilov is: 

    equ.1 

where  

                                                                     equ.2 

The proposed model has five parameters for fitting the shape of any energy fluctuation 

distribution, from the ideal Landau case to Vavilov, including the extreme case of a “pure” 

Gaussian form. 

The parameter u is a translation governing the distribution mean, N is a normalization or scale 

factor and the other three parameters adjust the variance and skewness of the resulting 

distribution. 

The parameters of the proposed model were fitted to analytical solutions of Landau and Vavilov. A 

non-linear regression method was implemented for fitting the parameters. A different set of the 

five parameters should be fitted for any value of K and particle speed in the Vavilov distribution 

function. 

The Landau’s distribution was generated implementing the solutions by Börsch-Supan [3]. Our 

results were compared with those published [3] before its use. The exact implementation of 

Landau demonstrated that was too time consuming for inclusion in MC codes. 

Our Vavilov exact solution was based on the original paper [2], complemented with some ideas 

presented by Seltzer and Berger [7]. Our implementation is improved because we used a better 

approximations of the sine and cosine integrals, based in the Padé approximants for the argument 

in the range [0..4]  and the use of Chebyshev-Padé expansions of the auxiliary functions for 

arguments x > 4.0 [9,10].  Our sine and cosine integral are accurate to better than 10-16 for the 

whole range. As expected, the computation time for exact Vavilov is exceedingly large for direct 

inclusion in MC codes. 

 

  



Results and discussion.  

 

Figure 1 presents a plot of Landau distribution based on the evaluation method by Börsch-

Supan[3].   

 

 

 

    Fig. 1 

  



Figure 2 presents the overlaid plot of Börsch-Supan and the fitting model evaluation. The blue 

curve is Börsch-Supan while the fitting model is red. The optimum parameters were: N=0.179159, 

u = 0.390788, A = 2.202571, B = -0.223021, C=-0.000175. Only a few traces of the red curve are 

visible because of the remarkable proximity between the exact distribution and the proposed 

approximation. 

 

 

Fig. 2  

Figure 2 shows that the correspondence between a rigorous evaluation of Landau’s distribution 

and our fitting model is good for most simulations purposes.  

 

 

 



Figure 3 shows the Vavilov distribution for electrons in Water. The initial energy is 10 MeV, Es is 

0.2 Mev and K 0.128.  The curve in blue is Vavilov, the red is our model. The optimum parameters 

were: N=0.98735, u = 0.4713, A = 0.04898, B = 0.32578, C=-0.282869. 

 

     Fig. 3 

 

 

 

 

 

 

 

 



Figure 4 shows Vavilov exact distribution overlapped with the implementation of Rotondi and 

Montagna [13] model.  The implementation of Rotondi and Montagna was taken from CERNlib 

and translated into C99. The physical conditions are the same as those in figure 3. The blue trace is 

Vavilov and the red is Rotondi and Montagna. The model reproduces very well the Vavilov 

distribution at its central region.  At the right tail (region of high energy loss) there is a step that 

almost ignores the possibility of energy losses with probabilities bellow 1%. As the documentation 

said, the error increases toward both tail, but in our experiments bigger errors were found on the 

high energy tail. 

  

   Fig. 4 

 

 



 

Figure 5 shows the same test case from figure 3, but it compares Vavilov with Log-normal and our 

model.  Vavilov curve is blue, Log-Normal is red and our model in yellow. This test case has the 

same conditions as one from Chibani work [7] using the log-normal distribution. 

 

 

    Fig. 5 

 

 

 

 

 

 

 

 

 



 

Figure 6 shows the Vavilov distribution for electrons in Water. The initial energy is 10 MeV, Es is 

0.1 Mev and K 0.266.  This test case has the same conditions as one from Chibani work [7] using 

the log-normal distribution. The curve in blue is Vavilov, the red is our model, it is almost a perfect 

superposition. The optimum parameters were: N=99762, u = 0.48339, A = 0.043564, B = 0.250287, 

C=-0.415041. 

 

 

    Fig 6 

 

 

 

 

 

 



 

 

 

Figure 7 shows the fit of the model to experimental data for protons by Hancock et. al. [8]. Curve 

in blue follows the experimental data (range of error not shown) and the red curve is our model. 

We could not access the original data by Hancock et. al., the blue curve is the product of a 

digitalization from figure 2a at referenced paper [8]. 

 

    Fig. 7. 

 

 

 



 

 

The idea proposed by Tabata et. al. [5], of using rational function approximation, was also tested. 

The original paper investigated only the use of rational fractions for Landau distributions, but we 

try the same method with some Vavilov cases.  Figure 8 shows a Vavilov distribution for electrons 

in Water. The blue curve is the exact Vavilov distribution, the yellow curve is our model and the 

red curve is the rational function approximation. The rational function used had nine coefficients, 

four for the numerator and five for the polynomial denominator. It is necessary to split the range 

of energy loss, at less, into two subintervals; the position of the maximum of the distribution was 

the division of the domain. Therefore, this approximation needs 18 parameters for any case of the 

Vavilov distribution. As figure 8 shows, care must be taken with both ends of the range because 

oscillations of the distribution are common, even taking negative values. Our model (yellow) 

follows closely the exact Vavilov distribution, the only region with apparent differentiation 

between our model and Vavilov is close to the maximum. 

 

 

    Fig. 8 

 



The execution time needed to compute a Vavilov distribution was the main motivation of this and 

other works, so let us illustrate the issue with some results. All our numerical experiments used an 

Intel i7-4930K CPU at 3.40 GHz. The next table presents the results. 

Function Model Time to compute 1 point in 
distribution [s] 

Landau exact  (estimated better 
than 10-5 ) 

2.983E-3 

Vavilov exact  (estimated better 
than 10-5 ) 

1.696E-2 

Log-Normal 5.911E-8 

Rational function  2.157E-8 

Our model (GenNormal) 2.092E-8 

Rotondi/Montagna 
From CERNlib 

2.105E-8 

 

The implementation of all the models is in C99. The compiler used on the experiments was Intel 

C++ Composer XE 2013, SP1 [12].   

Landau and Vavilov exact implementation had the Simpson’s integration parallelized using 

OpenMP, but no other optimization technique was employed. Our Generalized Normal model, the 

Log-normal model and the rational functions did not gain with parallelization. 

As the figures demonstrate, a direct implementation of either Landau or Vavilov are not feasible 

for most applications. A typical MC code with one million initial electron tracks in water may 

evaluate 100 million times the energy loss distribution. Assuming that the time for evaluation is 

equal to the number in the table it will take (it is more than that) 471 hours of CPU time only for 

Vavilov computation.  The same task could take only 2 seconds using our model. 

The Log-normal implementation takes 2.8 more CPU time than our generalized normal 

distribution. This should be the result of a logarithm not present in our model.  

The rational function and our model shows equivalent execution time, but the need of 18 

parameters and the risk of having oscillatory values at both ends renders the method as not 

recommended.  

The Rotondi and Montagna method has equivalent execution time with our model, but our model 

has a much simpler functional form and is better for experimental data fitting. 

As several of these models use transcendental functions, the resulting CPU times depends on the 

implementation of those transcendental functions in the compiler library. Some modern 

implementation of the exponential function, based in SSEx/AVX technologies, are very efficient, as 

it is the case with Intel compilers (C, C++ and FORTRAN). 

 

 



 

 

Conclusion: 

A functional form, simple and easy to evaluate, is presented to approximate the behavior of 

energy loss fluctuation of charged particles crossing slabs of matter. The model could be 

interpreted as a generalization of the original Gaussian distribution, a generalization that 

introduces and control skewness. We have experimented with several test cases, including 

theoretical distributions from Vavilov and Landau’s model as well as measurements results 

published by other authors. Due to its simplicity the model is a good candidate for use as a 

regression function with experimental measurements of energy loss. 

 

NOTE: Source code is available upon request from the author, Including Landau and Vavilov exact 

computations and the regression method to fit our model parameters.   
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