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Rapidity distribution for the dilaton production in
(b) PbPb collisions at LHC energies. The corresponding predictions for the SM Higgs production 
are also presented for comparison.
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collisions at LHC energies. The corresponding predictions for the SM Higgs production 

are also presented for comparison. 
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From: 

 

Black Hole Dynamics in Einstein-Maxwell-Dilaton Theory 
Eric W. Hirschmann, Luis Lehner, Steven L. Liebling and Carlos Palenzuela 

arXiv:1706.09875v1 [gr-qc] 29 Jun 2017 
 

We have: 

 

 
 

 

We calculate Q, for M = 13.12806e+39  and  α0 = 5000 , from 

 

 
 

We obtain: 

 

((5000*(x)^2))/(13.12806e+39) * 1/ ((1+sqrt((((((1+(5000^2-1) 
*(x)^2))/(13.12806e+39)^2)))))) = 4.82e-7 

 

Input interpretation: 
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Result: 

 

 
 
Plot: 

 

Alternate form: 

 

Alternate form assuming x is positive: 

 

 
Solutions: 

 

 

1.12496*1015 

 

Thence Q = 1.12496e+15 

 

 

Inserting the value of Q in the following expression, we obtain: 
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((5000*(1.12496e+15)^2))/(13.12806e+39) * 1/ ((1+sqrt((((((1+(5000^2-1) 
*(1.12496e+15)^2))/(13.12806e+39)^2)))))) 

 

Input interpretation: 

 
 
 
 
Result: 

 
4.81996...*10-7 = 𝜙ଵ (scalar charge) 

 

 

 

 

From: 

Higgs Inflation 
Javier Rubio - Institut für Theoretische Physik, Ruprecht-Karls-Universität 
Heidelberg, Heidelberg, Germany – REVIEW - published: 22 January 2019 - doi: 
10.3389/fspas.2018.00050 
 
We have that: 
For  ξh = 3;   ξχ = 5 ,  α = 2,  χ = 4,  h = 8, γ = 0.40160966445....   

 

𝑎ത  = 0.10526315789473    a = -0.1578947368421.... Θ = 1.0151802656   

  λ ≤ 10−9. 
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(10^-9 (2.435e+18)^4)/4 ((1+6*0.10526315789473)/(0.10526315789473))^2 

 

Input interpretation: 

 

 
Result: 

 

2.111539777856…*1066 

 

(2.111539777856457304540364 × 10^66)*(1-1.0151802656)^2   

Input interpretation: 
 

 
Result: 

 

Scientific notation: 
 

4.86584205501822 * 1062 = U(Θ) 

 

Now, we have  that: 
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For  ξh = 3;   ξχ = 5 ,  α = 2,  χ = 4,  h = 8, γ = 0.40160966445....   

𝑎ത  = 0.10526315789473    a = -0.1578947368421  Θ = 1.0151802656   

 

exp(2*0.40160966445*x)/(2.435e+18) =  (-0.1578947368421 / 0.10526315789473) 
*((1+6*3)*8^2+(1+6*5)*4^2))/(2.435e+18)^2   

 

Input interpretation: 

 
Result: 

 
 
Alternate form: 

 
 
Alternate form assuming x is real: 

 
 
Real solution: 

 
-42.9342 = Φ 

 

 

exp(2*0.40160966445*(-42.9342))/(2.435e+18) 

 

Input interpretation: 

 
 
Result: 

 
4.33116…*10-34 

 

 

 

(0.1578947368421 / 0.10526315789473) 
*((1+6*3)*8^2+(1+6*5)*4^2)/(2.435e+18)^2   

 



8 
 

Input interpretation: 

 
 
Result: 

 
4.331088801656…*10-34 

 

 

From which: 

 

21*5(((-(-0.1578947368421 / 0.10526315789473) 
*((1+6*3)*8^2+(1+6*5)*4^2)/(2.435e+18)^2)))^1/4 

 

Input interpretation: 

 
 
Result: 

 
4.7900337…*10-7  result very near to the value (4.81996...*10-7 = 𝜙ଵ) of the scalar 
charge obtained from the previous expression  

 

 
 

and: 

 

1/(((-(-0.1578947368421 / 0.10526315789473) 
*((1+6*3)*8^2+(1+6*5)*4^2)/(2.435e+18)^2)))^1/160+2*1/10^3 

 

Input interpretation: 

 
 
Result: 
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1.61829737721863… result that is a very good approximation to the value of the 
golden ratio 1,618033988749... 
 

 

Furthermore, from the ratio between the two expressions 

 

 
 

and: 

 

 
we obtain: 

 

(((2.111539777856457 × 10^66)*(1-1.0151802656)^2)) 
*(((exp(2*0.40160966445*(-42.9342))/(2.435e+18)))) 

 

Input interpretation: 

 
 
Result: 

 
2.10747…*1029 

 

And performing the 140th  root, we obtain: 

  

(((((((2.111539777856457 × 10^66)*(1-1.0151802656)^2)) 
*(((exp(2*0.40160966445*(-42.9342))/(2.435e+18))))))))^1/140 

 

Input interpretation: 

 
 
Result: 
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1.619778… result that is a good approximation to the value of the golden ratio 
1,618033988749... 
 

 

From: 

 
 

 

 
a = -0.1578947368421;   MP = 2.435e+18 

(2.435e+18)/(2*sqrt(0.1578947368421)) asinh(sqrt(32*0.1578947368421)) 

 

Input interpretation: 

 

 
 
Result: 

 
4.746913025937…*1018 = 𝜙ா 

 

From which: 

 

(((1/10^25*1/32 (567 Catalan - 12 + 192 π - 121 π^2 + 28 π log(3) + π 
log(512)))))((((2.435e+18)/(2*sqrt(0.1578947368421)) 
asinh(sqrt(32*0.1578947368421))))))) 
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Input interpretation: 

 

 
 
 

Result: 

 
4.82900613….*10-7  result very near to the value (4.81996...*10-7 = 𝜙ଵ) of the scalar 
charge obtained from the previous expression  

 

 
 

 

and: 

 

 
 

sqrt(3/2)asinh(4/sqrt3)*(2.435e+18) 

 

Input interpretation: 

 

 

 
 
 
 
Result: 

 

4.6941287624…*1018 
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and again:  

2sqrt2 * (2.435e+18) 

Input interpretation: 

 

 
Result: 

 

6.887220048…*1018 

 

The difference between the two results is: 

2sqrt2 * (2.435e+18) - ((sqrt(3/2)asinh(4/sqrt3)*(2.435e+18))) 

Input interpretation: 

 

 

 
Result: 

 

2.1930912…*1018 

 

From which: 

(((2sqrt2 * (2.435e+18) - ((sqrt(3/2)asinh(4/sqrt3)*(2.435e+18))))))^1/88 + 2*1/10^3 

Input interpretation: 

 

 
 
Result: 

 
1.6179246241723494051…. result that is a very good approximation to the value of 
the golden ratio 1,618033988749... 
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Now, we have that: 

 

From 

 

Input: 

 

Plot: 

 

Alternate form assuming x is real: 

 

 
Alternate form: 

 

Alternate form assuming x is positive: 
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Solution: 

 

58.8235 

 

 

   N = 58.8235 

3.8e+6 * 58.8235^2 *1/10^8 

Input interpretation: 

 
 
Result: 

 
131.4877577855 

 

Or: 

3.8e+6 * 59^2 *1/10^8 

Input interpretation: 

 
 
Result: 

 
132.278 
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From 

 

we obtain: 

sqrt(2/3) * (2.435e+18)/131.4877577855 

Input interpretation: 

 

 
Result: 

 

1.512056489550…*1016  =  𝜙஼ 

 

We have also: 

(6Pi^2)/(((sqrt(2/3) * (2.435e+18)/131.4877577855)))^1/2   

Input interpretation: 

 
 
Result: 

 
4.815783867537...*10-7 = 𝜙ଵ (scalar charge) 

 

 

We note that from the ratio between 

 

And 
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we obtain: 

((((2.435e+18)/(2*sqrt(0.1578947368421)) asinh(sqrt(32*0.1578947368421))))) 
1/(((sqrt(2/3) * (2.435e+18)/131.4877577855))) 

 

Input interpretation: 

 

 
 
Result: 

 
313.9375452402... = 𝜙ா/𝜙஼ 

 

 

From which: 

10^2/((3^3*8)) * ((((2.435e+18)/(2*sqrt(0.1578947368421)) 
asinh(sqrt(32*0.1578947368421))))) 1/(((sqrt(2/3) * (2.435e+18)/131.4877577855))) 
– 8 

 
Input interpretation: 

 

 
 
Result: 
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137.3414561297… result practically equal to the golden angle value 137.5 and very 
near to the inverse of fine-structure constant 137.035 

 

 

 

and: 

 

10^2/((3^3*8)) * ((((2.435e+18)/(2*sqrt(0.1578947368421)) 
asinh(sqrt(32*0.1578947368421))))) 1/(((sqrt(2/3) * (2.435e+18)/131.4877577855))) 
- 7-3 

 

Input interpretation: 

 

 
 
Result: 

 
135.3414561297… result practically equal to the rest mass of  Pion meson 134.9766 
MeV 
 

 

 

10^2/((3^3*8)) * ((((2.435e+18)/(2*sqrt(0.1578947368421)) 
asinh(sqrt(32*0.1578947368421))))) 1/(((sqrt(2/3) * (2.435e+18)/131.4877577855))) 
- 18-2 

 

Input interpretation: 
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Result: 

 
125.3414561297… result very near to the Higgs boson mass 125.18 GeV 

 

 

 

1/2(((10^2/((3^3*8)) * ((((2.435e+18)/(2*sqrt(0.1578947368421)) 
asinh(sqrt(32*0.1578947368421))))) 1/(((sqrt(2/3) * (2.435e+18)/131.4877577855))) 
-18+1/golden ratio))) 

 

Input interpretation: 

 

 
 

 
Result: 

 
63.97974505923… ≈ 64 

 

27*1/2(((10^2/((3^3*8)) * ((((2.435e+18)/(2*sqrt(0.1578947368421)) 
asinh(sqrt(32*0.1578947368421))))) 1/(((sqrt(2/3) * (2.435e+18)/131.4877577855))) 
-18+1/golden ratio)))+8/5 

 

Input interpretation: 
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Result: 

 
1729.053116599… 

 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729  (taxicab number) 

 

 

(((27*1/2(((10^2/((3^3*8)) * ((((2.435e+18)/(2*sqrt(0.1578947368421)) 
asinh(sqrt(32*0.1578947368421))))) 1/(((sqrt(2/3) * (2.435e+18)/131.4877577855))) 
-18+1/golden ratio)))+8/5)))^1/15 - (21+5)/10^3 

 

Input interpretation: 

 

 
 

 
Result: 

 
1.617818595343… result that is a very good approximation to the value of the golden 
ratio 1,618033988749... 
 

 

 

For 
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And  

 
 

From (2.8), we obtain: 

 

-131.4877577855/(1+6*131.4877577855) 

Input interpretation: 

 
 
 
 
Result: 

 
a = -0.166455676584917684985  

 

For a = -0.166455676584917684985 from (2.22), we obtain: 

 

(((2*(2.435e+18)*(1-6*(-0.166455676584917684985)))))/(sqrt(-
0.166455676584917684985))    

 

Input interpretation: 

 
 
Result: 

 
 
Polar coordinates: 

 
2.3858*1019 = 𝜙஼ 

 

From which: 

 



21 
 

Pi^(2/7)*1/((((((2*(2.435e+18)*(1-6*(-0.16645567658)))))/(sqrt(-
0.16645567658)))))^1/3    

 

Input interpretation: 

 
 
 
Result: 

 
 
Polar coordinates: 

 
4.81761*10-7 = 𝜙ଵ (scalar charge) 

 

and: 

 

(7*1/10^2)i - ((((((2*(2.435e+18)*(1-6*(-0.16645567658)))))/(sqrt(-
0.16645567658)))))^1/93 

 

Input interpretation: 

 

 
 
Result: 

 
 
Polar coordinates: 

 
1.6184 result that is a very good approximation to the value of the golden ratio 
1,618033988749... 
 

 

 



22 
 

From: 

Can massless wormholes mimic a Schwarzschild black hole in the strong field 
lensing? Ramil N. Izmailov and Eduard R. Zhdanov† Amrita Bhattacharya,‡ 
Alexander A. Potapov, K.K. Nandi - arXiv:1909.13052v1 [gr-qc] 28 Sep 2019 
 
We have that: 
 

 
 

 
 

 
 
From: 
 

 
For Ms = 8.35422e+36, we obtain: 
 
((3sqrt3)*(4.2*10^6 * 1.9891*10^30))/2 
 
Input interpretation: 
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Result: 

 
2.17049…*1037 = q 

 
 
 
From 
 

 
we obtain: 
 
 
(2.17049e+37)/x = (3sqrt3)/4 
 
Input interpretation: 

 

Result: 

 

Plot: 

 

Alternate form assuming x is real: 

 

 
Alternate form assuming x is positive: 
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1.67084 * 1037 = Rs 

Solution: 

 

Integer solution: 

 

 
 
For  Σ = 0.001,   q = 2.17049e+37,  Rs = 1.67084e+37, we obtain: 

-2,718908349319529856 / 1,837121684299621192   
 
 

 
 
-[8((2.17049e+37)/(1.67084e+37)) ln ((2.17049e+37)/(1.67084e+37))] * 1 / 
sqrt((((((0.001)/(1.67084e+37))^2+2((2.17049e+37)/(1.67084e+37))^2)))) 
 
Input interpretation: 

 

 
 
Result: 

 
-1.47998… = bR   this result is very near to the following sum of two Ramanujan 
mock theta functions values: 
 
1.1424432422   +   0.346471936 =  1.4889151782  
 
Indeed: 
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𝟐𝝓(−𝒒𝟐) − 𝒇(𝒒) = 0.34647193607819.... 
 
 
 

 
 
From the first expression, we obtain: 
 

 
 

 
 
f(q) = 1.1424432422... 
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we have that: 
 

 
 
 
 
 
ln((Pi^2)/2) 
 
Input: 

 

 

 
Decimal approximation: 

 

1.596312591138855…. =  log ቀ
ଶఉ೘

௬೘
ቁ 

Alternate form: 
 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 

 

 

 
 
-Pi+3ln2 
 
Input: 

 

 

Decimal approximation: 

 

-1.06215111190995731….. =  𝑏ത 

Alternate form: 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 

 

 

 
 
ln(16)-2lnPi 
 
Input: 

 

 

Decimal approximation: 

 

0.4831289505… = bR  
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Alternate forms: 

 

 

 

 
 
Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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From: 
 
2M = 2m*-i ;   for Ms = 8.35422e+36 , we obtain: 
 
2*(8.35422e+36) = 2*x(-i) 
 
Input interpretation: 

 

 
 
Result: 

 
 
Alternate form: 

 
 
Complex solution: 

 
8.35422e+36 i = m 
 
 
From: 
 

 
 
For m = 8.35422e+36i ;  x = 2M = 2*8.35422e+36 , we obtain: 
 
sqrt(1/2)*(Pi/2 – 2 tan^-1((2*(8.35422e+36))/(8.35422e+36i))) 
 
Input interpretation: 

 

 
 

 
Result: 
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Polar coordinates: 
 

3.42152 = 𝜙(𝑥) = exotic scalar field 
 
 
Now, we have that: 
 

 
 
From: 
 

 
 
We obtain: 
 
((2.17049e+37)/(1.67084e+37)) 
 
Input interpretation: 

 
 
Result: 

 
1.2990412008331138…… 
 
 
((3sqrt3)/4)  
 
Input: 

 
 
Exact result: 
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Decimal approximation: 

 
1.29903810567665797…… 
 
For 
 

 
 
((2.17049e+37)/(1.67084e+37))* 1 / 
sqrt((((((0.001)/(1.67084e+37))^2+2((2.17049e+37)/(1.67084e+37))^2)))) 
 
Input interpretation: 

 
 
Result: 

 
0.7071067811865.... = 𝑎ത  

 

 
 
For -1.47998… = bR;  𝑎ത = 0.7071067811865.... 

 

 
 
-Pi-1.47998+0.7071067811865 ln(2) 
 
 Input interpretation: 

 

 

Result: 
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-4.13144… =  𝑏ത 

 
 
 
Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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From: 
 

    (75) 
 
We obtain: 
 
Pi/(4*-4.13144^2) * (3*(2.17049e+37)^2 – 0.001^2)  
 
Input interpretation: 

 

 
Result: 

 

-6.50315…*1073 

 
 
sqrt(((3*(2.17049e+37)^2 – 0.001^2)))  
 
Input interpretation: 

 
 
Result: 

 
3.75940…*1037 = M0 

 
All 2nd roots of 1.41331×10^75: 

 

 
 
(the leading order deflection by the massless EMD wormhole obtained in [24] using 
the Gauss-Bonnet method (75). which reveals, following Schwarzschild formula, that 
the effective gravitating mass is M0 and not merely q.) 
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2.17049 * 1037  = q 
 
(when dilaton is switched off, Σ = 0, the metric (29-31) reduces to the famous 
Einstein-Rosen bridge [32] and in this case, the mass is proportional to just q).  
 
The ratio between M0  and  q  
 
 

 
 

 
is equal to: 
 
sqrt(((3*(2.17049e+37)^2 – 0.001^2))) / ((3sqrt3)*(4.2*10^6 * 1.9891*10^30))/2 
  
Input interpretation: 

 
 

Result: 

 
Input interpretation: 

 

1.7320507879 ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q of  the wormhole 
 

 

Rational approximation: 

 

Possible closed forms: 
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We note that: 
 
(-1/2+i/2(sqrt3))-(-1/2-i/2(sqrt3)) 
 
Input: 
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Result: 

 
Decimal approximation: 

 
Polar coordinates: 

 
1.73205 

 
This result is very near to the ratio between M0  and  q, that is equal to 1.7320507879 
≈ √3 
 
 

With regard √3 , we note that is a fundamental value of the formula structure that we 
need to calculate a Cubic Equation 
 
 
In algebra, a cubic equation in one variable is an equation of the form 
 

 
 
in which a is nonzero 
 
We note that, from the above equation, applying the following substitution, 
 
 

 
 we obtain the following form 
 

 
 
Where 
 

     
 
We obtain an equation where the solutions are 
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and where u and v are the roots 
 

 
From which we have that: 
 

 
Thence, the formula for calculate the solutions of a cubic equation, is: 
 

 
For the fundamental theorem of algebra a cubic equation must have 3 solutions, 
therefore we must also evaluate the complex results of the roots. Now it is necessary 
to calculate whether the quantity under the square roots, which we will call  , is 
positive or negative.  
 
 
If  

 
 
We calculate the two real numbers u and v that are equals to: 
 

 
 
and the solutions of equation are: 
 

 
 
Thence, there are two real numbers: 
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and six results 
 

 
 
and the solutions of cubic equation that are 
 

 
 
We note that in the previous analyzed expressions, we have obtained 
 

  =   =  
 
=  
 

 
 
that is 
 

 
 
with u1 = 1 and v1 = -1. 
 
With regard the cubic equations, we have the following section. 
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Cubic Equation 

 

The most general cubic equation (equation of third degree): 

 

                                                  023  qpxrxx     (1) 

 

can be reduced in the following form: 

 

                                                      03  qpxx     (2) 

 

Indeed: 

                                      zxuvuxvxxzxvxux 2    

                            zuvxvuzzxuvxxvuxzxuvxvux 2232  

                        zuvxvuzuvxzvux  23 .    (2b) 

 

Thence: 

                                         023  zuvxvuzuvxzvux     (3) 

 

Putting: 

                                                        













quvz

puvvuz

rzvu

    (4) 

 

because the term r  become null, is necessary and sufficient that  vuz  . Thence: 
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                                          023  zuvxvuzuvxzvux ;  

                                    023  uvvuxvuvuuvxvuvux ; 

                                023  uvvuxvuuvx ; 

                             02 22223  uvvuxvuvuuvx ; 

                            02 22223  uvvuxvuvuuvx ; 

                              0223  vuuvxvuuvx ; 

 

                                                0223  vuuvxvuvux     (5) 

 

Putting: 

                                                      
 







qvuuv

pvuvu 22

    (6) 

 

the      0223  vuuvxvuvux , become: 

 

                                                         03  qpxx     (7) 

 

From the  022  vuvu , we obtain two quadratic equations (of second degree): 

 

                                                             1)  022  vuvu ;     

           


























2

3

2

1

2

3

2

1

2

3

2

1

2

3

2

4 22222 i
v

i
v

i
vv

vvvvv
u ; 
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                                                               2) 022  uuvv ; 

 

 

          


























2

3

2

1

2

3

2

1

2

3

2

1

2

3
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Now, we take the eq. (6). We have that: 
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thence: 
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                                                   puv 3 ;    
3

p
uv      (8) 

 

Indeed, we have, for example: 
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  
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  puvuvuv  ;    puv 3 ;    
3

p
uv  . 

 

Now: 
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that for the (8b) and for sign + , for example, become: 
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1 33 ;    quv  33 ;     

 

                                                          qvu  33     (9) 

 

Finally, we have: 
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           thence:        
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p
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    (10) 

 

We obtain the same result putting in the (2)  vux  . Indeed, we have: 

 

                                               03  qpxx ;     vux   

 

                         03  qvupvu ;     033 3223  qvupvuvvuu ; 

                          0333  qvupvuuvvu ;     

 

from this equation, we obtain: 

 

                         qvu  33 ;        vupvuuv 3 ;      thence, in conclusion: 
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From the relations (10) and (11), we obtain the sum and the product of 3u  and 3v . We 
have that 3u  and 3v  must be roots of the following quadratic equation: 
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3
2 p

qtt  ;    (12) 

 

This equation is defined the “resolving” of the cubic equation (2). Thence, we have: 
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2742

32 pqq
 . 

 

Thence, we have that: 
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3
2

32
3

1

pqq
vt

pqq
ut




  ;      (13) 

 

from this, we obtain: 
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                                                         3
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2742
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u  ; 

 

if      
3

p
uv  ;    

u

p
v

3
 ,   we obtain: 
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2742
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p
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

 . 

 

From the  vux  ,  we obtain: 

 

                                   3
32

2742

pqq
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3
32

2742
3

pqq

p



 .    (14) 

 

The expression (14) is the “resolving” formula of the cubic equation (2), from this we 
have the three roots in correspondence of the three values of the cubic radical. If  

0p  the eq. (2) become the binomial equation  03  qx , solved from the formula  
3 qx  . 

The expression (14) is written generally in the “Cardano” or “Tartaglia” form: 

 

                                     x 3
32

2742

pqq
 3

32

2742

pqq
 .    (15) 

 

The solution that Cardano gives of the cubic equation of type  qpxx 3 , leads to the 

following formula: 
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while for the cubic equation of type qpxx  23 , we have the following formula: 

 

                               3

32

3

32

232232

qpqqpq
x 



























  .    (15c) 

 
We have that the above result 
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Considering:  
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Thence: 
 

  ⇒ 
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Now, we have that: 
 
From 
 

 
Input interpretation: 

 
 
Result: 

 
4.34098...*1037 

 

 

 
 
From: 

 
 
for L = 0.5 ,  m = 4.34098e+37 ,  E = 8 , we obtain: 
 
-1/(2*0.5^4*(4.34098e+37)^4)*((0.5^2-(4.34098e+37)^2(1-(8)^2)))^3 
 
Input interpretation: 

 

 
Result: 

 

-3.769530010516…*1081 
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From which, we obtain: 
 
[-((( -1/(2*0.5^4*(4.34098e+37)^4)*((0.5^2-(4.34098e+37)^2(1-(8)^2)))^3)))]^((((3 
(2/(7*11))^(1/3) e)/(5*7*11 π^(2/3))))) 
 
Input interpretation: 

 
 
Result: 

 
1.7320508424.....≈  √3 that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 
 
Possible closed forms: 

 

 

 

 

 

 
 
 
From: 
 

 
 
for Rs = 1.67084e+37 , L = 0.5 ,  m = 4.34098e+37 ,  E = 8 , we obtain: 
 
1/2+(((0.5^2+(4.34098e+37)^2*(8^2-1)))) / ((((2*(1.67084e+37)^2)))) – 
(0.5^2*(4.34098e+37)^2)/(2*(1.67084e+37)^4) 
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Input interpretation: 

 
 
Result: 

 
213.1260132242.... 
 
 
From which: 
 
((((1/2+(((0.5^2+(4.34098e+37)^2*(8^2-1)))) / ((((2*(1.67084e+37)^2)))) – 
(0.5^2*(4.34098e+37)^2)/(2*(1.67084e+37)^4)))))^(((11/96 + 19/(96 e) - e/32))) 
 
Input interpretation: 

 
 
Result: 

 
1.732050908.....≈  √3 that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 
 
Possible closed forms: 
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From: 
 
Cubic Polynomials, Linear Shifts, and Ramanujan Cubics. 
Gregory Dresden, Prakriti Panthi, Anukriti Shrestha, Jiahao Zhang 
September 6, 2017 - arXiv:1709.00534v2 [math.NT] 5 Sep 2017 
 
 
We have that: 
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From (10), we obtain: 
 
cos((5Pi)/(18)) 
 
Input: 

 

Exact result: 

 

Decimal approximation: 

 

0.642787609... 

Conversion from radians to degrees: 
 

Reference triangle for angle (5 π)/18 radians: 

 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 

 

 

 

 
Multiple-argument formulas: 
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and: 
 
2cos((Pi)/(18))-sqrt3 cos((4Pi)/(18)) 
 
Input: 

 

Exact result: 

 

Decimal approximation: 

 

0.642787609… 

Alternate forms: 

 

 

 

Minimal polynomial: 
 

 
Alternative representations: 

 

 

 

Series representations: 
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Integral representations: 

 

 

 

 

 
Multiple-argument formulas: 

 

 

 

 
 
From which, we obtain also: 
 
-((((0.6427876096865393)-2cos((Pi)/(18))))) * 1/(((cos((4Pi)/(18))))) 
 
Input interpretation: 

 



57 
 

Result: 

 

1.732050807568877 ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 

Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 
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Multiple-argument formulas: 

 

 

 

 
 
1.732050807568877 
 
Input interpretation: 

 

Possible closed forms: 
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From: Manuscript Book 2 of Srinivasa Ramanujan 
 
 
Now, we have that: 
 
Page 299 
 

 
 
[(((((2(sqrt3-1))^1/3 – 1)))/((((2(sqrt3+1))^1/3 + 1))))]^8 
 
Input: 

 
 
Exact result: 

 
 
Decimal approximation: 

 
3.363510512601…*10-11 
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Alternate forms: 

 

 

 
 
Minimal polynomial: 

 
 
 
From which: 
 
[(((((2(x-1))^1/3 – 1)))/((((2(sqrt3+1))^1/3 + 1))))]^8 = 3.363510512601*10^-11 
 
Input interpretation: 

 
 
Result: 
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Plot: 

 
 
Numerical solutions: 

 

 

1.73205080756887... = √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 
 
 
 

 
 
 
sqrt273 ((15sqrt7-11sqrt13)/sqrt2)^4 ((sqrt13+3)/2)^12 ((sqrt7+sqrt3)/2)^12 
(2+sqrt3)^6 
 
Input: 

 
 
Result: 

 
 
Decimal approximation: 

 
9.1824737518…*107 
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Alternate forms: 

 

 

 
 
Minimal polynomial: 

 
 
 
From which: 
 
sqrt273 ((15sqrt7-11sqrt13)/sqrt2)^4 ((sqrt13+3)/2)^12 ((sqrt7+x)/2)^12 (2+sqrt3)^6 
= 9.1824737518e+7 
 
Input interpretation: 

 
 

Result: 

 
Alternate forms: 
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Real solutions: 

 

 

 
1.7320508076 = √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 

 

Complex solutions: 
 

 

 

 

 
 
 
and: 
 
(((sqrt273 ((15sqrt7-11sqrt13)/sqrt2)^4 ((sqrt13+3)/2)^12 ((sqrt7+sqrt3)/2)^12 
(2+sqrt3)^6)))^(((-1208 - 1009 π + 497 π^2)/(223 + 1187 π + 1383 π^2))) 
 
Input: 
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Exact result: 

 
 
Decimal approximation: 

 
1.7320504255… ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 

 

 

Alternate form: 

 
 
Integral representation: 

 
 
 
Page 300 
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sqrt141(4sqrt3+sqrt47)^3((7+sqrt47)/sqrt2)^2(((((18+9sqrt3)/4)^1/2-
((14+9sqrt3)/4)^1/2)))^12 
 
Input: 

 
 
Result: 

 
Decimal approximation: 

 
0.003022671022… 

 

Alternate forms: 

 

 

 
 
Minimal polynomial: 

 
 
 
 
From which: 
 
(((sqrt141(4sqrt3+sqrt47)^3((7+sqrt47)/sqrt2)^2(((((18+9sqrt3)/4)^1/2-
((14+9sqrt3)/4)^1/2)))^12))) * e^(2Pi) 
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Input: 

 
 
Exact result: 

 
 
Decimal approximation: 

 
1.61861510978…. result that is a very good approximation to the value of the golden 
ratio 1,618033988749... 
 

Property: 

 
 
Alternate forms: 
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and: 

 

(((sqrt141(4sqrt3+sqrt47)^3((7+sqrt47)/sqrt2)^2(((((18+9sqrt3)/4)^1/2-
((14+9sqrt3)/4)^1/2)))^12)))*24^2-(3^2)/10^3 

 

Input: 

 
 
Exact result: 

 
Decimal approximation: 

 
1.73205850878… ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 

 

Alternate forms: 
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Minimal polynomial: 

 
 

 

Page 301 

 

 
 

sqrt117((sqrt13-3)/2)^6(sqrt13-2sqrt3)^4((((sqrt(4+sqrt3)+(3)^1/4))/2)^24 

 
Input: 

 
Result: 
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Decimal approximation: 

 
9.20801603789… 

 

Alternate forms: 
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Minimal polynomial: 

 
 
 
 
From which: 
 
((sqrt117((sqrt13-3)/2)^6(sqrt13-2sqrt3)^4((((sqrt(4+sqrt3)+(3)^1/4))/2)^24)))^1/4-
(8+2)*1/10^3 
 
Input: 

 
 
Result: 

 
 
Decimal approximation: 

 
1.7319733909… ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 

 

Alternate forms: 

 
 
 

 



74 
 

 

 

Observations  

 
From: 
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8mpSjRs1BDeremA 
 
Ramanujan's statement concerned the deceptively simple concept of partitions—the 
different ways in which a whole number can be subdivided into smaller numbers. 
Ramanujan's original statement, in fact, stemmed from the observation of patterns, 
such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575 
and so on are all divisible by 5. Note that here the n's come at intervals of five units. 
 
Ramanujan posited that this pattern should go on forever, and that similar patterns 
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all 
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11. 
 
Then, in nearly oracular tone Ramanujan went on: "There appear to be 
corresponding properties," he wrote in his 1919 paper, "in which the moduli are 
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other 
than these three." (Primes are whole numbers that are only divisible by themselves or 
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by 
5^3 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125. 
In the past methods developed to understand partitions have later been applied to 
physics problems such as the theory of the strong nuclear force or the entropy of 
black holes. 
 
From Wikipedia 
 
In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki 
Yukawa, is an interaction between a scalar field ϕ and a Dirac field ψ. The Yukawa 
interaction can be used to describe the nuclear force between nucleons (which 
are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa 
interaction is also used in the Standard Model to describe the coupling between 
the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion 
particles). Through spontaneous symmetry breaking, these fermions acquire a mass 
proportional to the vacuum expectation value of the Higgs field.  
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Can be this the motivation that from the development of the Ramanujan’s equations 
we obtain results very near to the dilaton mass calculated as a type of Higgs boson: 
125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV and practically equal to 
the rest mass of  Pion meson 139.57 MeV 

 

 

Note that: 

 

Thence: 

 

And 

 

That are connected with 64, 128, 256, 512, 1024 and 4096 = 642 

 
(Modular equations and approximations to π - S. Ramanujan - Quarterly Journal of 
Mathematics, XLV, 1914, 350 – 372) 
 
 
All the results of the most important connections are signed in blue throughout the 
drafting of the paper. We highlight as in the development of the various equations we 
use always the constants π, ϕ, 1/ϕ, the Fibonacci and Lucas numbers, linked to the 
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golden ratio, that play a fundamental role in the development, and therefore, in the 
final results of the analyzed expressions. 
 
In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, called 
the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 
0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses 
the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two 
consecutive Fibonacci numbers tends to the golden ratio as n increases. 
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci and Lucas 
numbers form a complementary pair of Lucas sequences  

The beginning of the sequence is thus: 

 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 

3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...  

 

The Lucas numbers or Lucas series are an integer sequence named after the 
mathematician François Édouard Anatole Lucas (1842–91), who studied both that sequence and 
the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form 
complementary instances of Lucas sequences. 

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each 
term is the sum of the two previous terms, but with different starting values. This produces a 
sequence where the ratios of successive terms approach the golden ratio, and in fact the terms 
themselves are roundings of integer powers of the golden ratio.[1] The sequence also has a variety 
of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers 
two terms apart in the Fibonacci sequence results in the Lucas number in between. 

The sequence of Lucas numbers is: 

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 
24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 
4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803…… 

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the 
Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all 
Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to 
the golden ratio. 

 

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are: 

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... 
(sequence A005479 in the OEIS). 

 
In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden 
ratio.[1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every 
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quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms 
of spiral galaxies[3] - golden spirals are one special case of these logarithmic spirals 

 

 

We note how the following three values: 137.508 (golden angle), 139.57-134.9766 (masses of 
the two Pions – Pi mesons) and 125.18 (mass of the Higgs boson), are connected to each other. 
In fact, just add 2 to 137.508 to obtain a result very close to the mass of the Pion and subtract 
12 to 137.508 to obtain a result that is also very close to the mass of the Higgs boson. We can 
therefore hypothesize that it is the golden angle (and the related golden ratio inherent in it) to 
be a fundamental ingredient both in the structures of the microcosm and in those of the 
macrocosm. 
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