Note on Newton's law of universal gravitation and division by zero

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract

This is a simple note for Newton's law of universal gravitation when the distance of the centers of two masses equals zero.

Keywords. Newton's law of universal gravitation, division by zero.
Mathematics Subject Classification (2010). 47N50.

The equation for universal gravitation is stated as follows:

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

where F is the gravitational force acting between two objects, m_{1} and m_{2} are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant.

In this note we consider the case in which the centers of the masses coincide. Then the directions of the forces acting two object vanish. This implies

$$
F=0 .
$$

Notice that $r=0$ in this case. While the definition of devision by zero in [1] states:

$$
\frac{a}{0}=0 \text { for any real number } a .
$$

Therefore this also gives

$$
F=0
$$

References

[1] M. Kuroda, H. Michiwaki, S. Saitoh, M. Yamane, New meanings of the division by zero and interpretations on $100 / 0=0$ and on $0 / 0=0$, Int. J. Appl. Math., 27(2) (2014) 191-198.

