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Abstract. An identity is proved connecting two finite sums of inverse tangents. This identity is dis-
cretized version of Jacobi’s imaginary transformation for the modular angle from the theory of elliptic
functions. Some other related identities are discussed.

1. Introduction

Sums of inverse tangents have attracted a lot of attention. For example, the following sums of inverse
tangents can be calculated in closed form:

∞∑
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arctan
2

(2n+ 1)2
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π

2
, (1.1)

∞∑
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(−1)n+1 arctan
1

F2n
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2
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∞∑
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arctan
sinhx
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=

3π

4
− arctan ex. (1.3)

(1.1) is a classic sum evaluated first by Glaisher in [1]. The sum (1.2), where Fn is n-th Fibonacci number,
was calculated by Hoggatt and Ruegels [6]. The sum (1.3) was noted in [8]. See [2] for further references
and a brief summary of research in this direction.

All summations of the type (1.1) and (1.2) seem to be based on two methods: the telescopic principle,
and the method of zeroes, as was noted in [7].

Even earlier, in his studies of elliptic functions, Jacobi proved identity of which he wrote in his treatise
on elliptic functions “one is obliged to rank among the most elegant formulas” [9],[10]:

1

4
arcsin k = arctan q1/2 − arctan q3/2 + arctan q5/2 − . . . (1.4)

Here q = e−πK
′/K , K is the complete elliptic integral of the first kind with modulus k

K = K(k) =

∫ π/2

0

dϕ√
1− k2 sin2 ϕ

,

K ′ = K(k′) with k′ =
√

1− k2 being the complementary modulus. The quantity arcsin k is called modular
angle. Together with the obvious relation

arcsin k + arcsin k′ =
π

2
,

this implies
∞∑
n=1

χ(n) arctan e−αn +
∞∑
n=1

χ(n) arctan e−βn =
π

8
, αβ =

π2

4
, (1.5)

where χ(n) = sin πn
2 is Dirichlet character modulo 4 ([3], ch.14, entry 15). (1.5) is Jacobi’s imaginary

transformation for the modular angle.
Another arctan series related to elliptic functions was found in an unpublished manuscript by B. Cais

[4]:
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+

∞∑
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=

π
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4π2

9
, (1.6)

where
(
j
3

)
= 2√

3
sin 2πj

3 is Legendre symbol modulo 3.
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The focus of this paper will be the two reciprocal identities for finite sums of inverse tangents, Theorems
1 and 3 below. Their proofs are given in sections 2 and 3, respectively. In section 4 we mention another
summation formula related to solution of Dirichlet problem on a finite rectangular grid.

Theorem 1. Let n,m ∈ N0 and αβ = 1, α > 0. Then∑
|j|≤n

(−1)n+j arctan

(√
1 + α2 cos2 πj

2n+1 − α cos πj
2n+1

)2m+1

+
∑
|k|≤m

(−1)m+k arctan

(√
1 + β2 cos2 πk

2m+1 − β cos πk
2m+1

)2n+1

=
π

4
. (1.7)

Note that when n = m and α = 1 both sums in (1.7) are equal and we get a closed form summation:

Corollary 2. For n ∈ N0:∑
|j|≤n

(−1)n+j arctan

(√
1 + cos2 πj

2n+1 − cos πj
2n+1

)2n+1

=
π

8
. (1.8)

It is instructive to write (1.7) in another form by shifting the summation variable and simple rearrangement
of terms

2n∑
j=1

χ4(j) arctan

(√
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4n+2 − α sin πj
4n+2

)2m+1
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2m∑
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χ4(k) arctan

(√
1 + β2 sin2 πj
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4m+2

)2n+1

=
π

8
− 1

2
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(√
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)2m+1
− 1

2
(−1)m arctan

(√
1 + β2 − β

)2n+1
.

From this form of (1.7), it is evident that letting n = m→∞ and redefining α and β, one recovers (1.5).
Thus, (1.7) is discretized version of (1.5). Our proof is completely elementary and provides an elementary
proof of the modular relation (1.5).

Theorem 3. Let n and m be positive odd numbers and αβ = 1. Then
3n/2∑
j=1

(
j

3

)
arctan

√
3

1 + 2

(
α+ tan πj

3n
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3n
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(
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3

)
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√
3
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(
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3m

)n = −π
6
, (1.9)

where
(
j
3

)
is Legendre symbol modulo 3.

If n = m and α = 1 the two sums in Theorem 3 are equal and we get closed form summation

Corollary 4. For an odd positive integer n:

3n/2∑
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3

)
arctan

√
3

1 + 2 cotn
(
π

4
−
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3n
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12
. (1.10)

As an illustration of (1.10) note the case n = 3:

arctan

√
3
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− arctan

√
3
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√
3
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36

=
π

12
.

Although (1.9) has a structure similar to (1.6) it is not clear if (1.6) can be derived from (1.9) as
a limiting case. However, by combining the limiting case of Theorem 3 with (1.6) one can find the
transformation formula for another infinite arctan series:
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+

∞∑
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=
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2. Proof of Theorem 1

We break the proof into a series of lemmas.

Lemma 5. The following identity holds for α > 0, n,m ∈ N0 and j ∈ Z

2 arctan

(√
1 + α2 cos2 πj

2n+1 − α cos πj
2n+1

)2m+1

=
π

2
− arctan (sinh(2m+ 1)αj)

where αj is the positive solution of sinhαj = α cos πj
2n+1 .

Proof. By denoting s = 2m+ 1 for brevity we obtain

2 arctan

(√
1 + α2 cos2 πj

2n+1 − α cos πj
2n+1

)2m+1

= 2 arctan (coshαj − sinhαj)
s

= 2 arctan e−sαj

=
π

2
−
(
arctan esαj − arctan e−sαj

)
=
π

2
− arctan

esαj − e−sαj

2
.

Since
ex − e−x

2
= sinhx the proof is complete. �

Lemma 6. For n,m ∈ N0, j ∈ Z, and αj as was defined in the previous lemma, one has

π

2
− arctan (sinh(2m+ 1)αj) = (−1)m

∑
|k|≤m

arctan
cos 2πk

2m+1

α cos πj
2n+1

,

Proof. Using properties of complex numbers we write
π

2
− arctan (sinh(2m+ 1)αj) = arg(i) + arg (1− i sinh(2m+ 1)αj)

= arg (sinh(2m+ 1)αj + i)

= (−1)marg
(

sinh(2m+ 1)αj + sinh πi(2m+1)
2

)
.

This expression can be factorised according to the formula

sinh(2m+ 1)a+ sinh(2m+ 1)b = 22m
∏
|k|≤m

(
sinh a+ sinh

(
b+

2πik

2m+ 1

))
.

Its validity is easy to check by standard methods: both sides are polynomials in sinh a with leading
coefficient 22m and zeroes − sinh

(
b+ 2πik

2m+1

)
, |k| ≤ m.

Thus

π

2
− arctan (sinh(2m+ 1)αj) = (−1)marg

22m
∏
|k|≤m

(
sinhαj + sinh

(
πi

2
+

2πik

2m+ 1

))
= (−1)marg

 ∏
|k|≤m

(
α cos

πj

2n+ 1
+ i cos

2πk

2m+ 1

)
= (−1)m

∑
|k|≤m

arctan
cos 2πk

2m+1

α cos πj
2n+1

,

as required. �

Lemma 7. For n,m ∈ N0, j ∈ Z, one has∑
|k|≤m

arctan
cos 2πk

2m+1

α cos πj
2n+1

=
∑
|k|≤m

(−1)k arctan
cos πk

2m+1

α cos πj
2n+1

.
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Proof. Let f be an odd function. Then∑
|k|≤m

(−1)kf

(
cos

πk

2m+ 1

)
=
∑
|k|≤m

f

(
cos

(
πk

2m+ 1
− πk

))

=
∑
|k|≤m

f

(
cos

2πkm

2m+ 1

)

=
∑
|k|≤m

f

(
cos

2πk

2m+ 1

)
.

The last equality is explained as follows. First, note that cos has period 2π. The sum
∑
|k|≤m is over

residue class mod 2m + 1. When m > 0, the numbers m and 2m + 1 are coprime. Hence, when k runs
over residue class mod 2m+ 1, the set of numbers km runs over residue class mod 2m+ 1.

To complete the proof of the lemma set f(x) = arctan
x

α cos πj
2n+1

. �

Lemma 8. ∑
|j|≤n

(−1)j = (−1)n, n ∈ N0.

Proof. The sum is trivial when n = 0. Let’s assume that n > 0. Then∑
|j|≤n

(−1)j = (−1)n
1− (−1)2n+1

1− (−1)
= (−1)n. �

Now, we are in a position to prove Theorem 1. According to lemmas 5-8 we have that the LHS of
equation (1.7) equals∑

|j|≤n

(−1)n+j
1

2

∑
|k|≤m

(−1)m+k arctan
cos πk

2m+1

α cos πj
2n+1

+
∑
|k|≤m

(−1)m+k 1

2

∑
|j|≤n

(−1)n+j arctan
cos πj

2n+1

β cos πk
2m+1

=
1

2
(−1)n+m

∑
|j|≤n

∑
|k|≤m

(−1)j+k
π

2
sign

(
α cos

πj

2n+ 1
cos

πk

2m+ 1

)
=
π

4
(−1)n+m

∑
|j|≤n

(−1)j
∑
|k|≤m

(−1)k =
π

4
.

3. Proof of Theorem 3

Again, as we did in the previous section, it is convenient to break the proof into several parts.

Lemma 9. We have the partial fractions expansion for arbitrary positive integer m:

sinh
(
m tanh−1 z

)
sinh

(
3m tanh−1 z

) 1

1− z2
=

1

m
√

3

3m/2∑
k=1

(
k

3

)
tan πk

3m

z2 + tan2 πk
3m

. (3.1)

Proof. Since sinh t
sinh 3t = 1

2 cosh 2t+1 , tanh−1 z = 1
2 ln 1+z

1−z , and

2 cosh
(
2m tanh−1 z

)
=

(
1 + z

1− z

)m
+

(
1− z
1 + z

)m
,

the LHS of (3.1) is a rational function of z of the form f(z) = (1−z2)m−1

P2m(z) , where P2m(z) is polynomial
of degree exactly 2m. This rational function has poles at zk = i tan πk

3m , k = 3r − 1 or 3r − 2 with
r = 1, 2, 3, ...,m. Rezidues of f(z) at zk are

(−1)k

3im
sin

πk

3
=

1

2im
√

3

(
k

3

)
.

Hence, taking into account that
(
k
3

)
= 0 when k ≡ 0 (mod 3)

sinh
(
m tanh−1 z

)
sinh

(
3m tanh−1 z

) 1

1− z2
=

1

2im
√

3

3m∑
k=1

(
k

3

)
1

z − i tan πk
3m

.
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Due to
(
3m−k

3

)
= −

(
k
3

)
and tan π(3m−k)

3m = − tan πk
3m this is equivalent to (3.1). �

Lemma 10. For arbitrary positive integers n and m we have the transformation formula
3n/2∑
j=1

(
j

3

) sinh
(
m tanh−1

(
z tan πj

3n

))
sinh

(
3m tanh−1

(
z tan πj

3n

)) tan πj
3n

1− z2 tan2 πj
3n

− n

mz2

3m/2∑
k=1

(
k

3

)
sinh

(
n tanh−1

(
z−1 tan πk

3m

))
sinh

(
3n tanh−1

(
z−1 tan πk

3m

)) tan πk
3m

1− z−2 tan2 πk
3m

= 0. (3.2)

Proof. In the previous lemma, replace z with z tan πj
3n , then multiply the resulting identity with

z

n

(
j

3

)
tan

πj

3n
,

and sum wrt j from 1 to 3n/2. It is easy to see the symmetry of the resulting double sum under the
transformation n→ m, m→ n, z → 1/z, from which the identity in the lemma follows. �

Lemma 11.
√

3

∫ ∞
s

sinh t

sinh 3t
dt =

π

6
− arctan

tanh s√
3

= arctan

√
3

1 + 2e2s
.

Proof. The proof of this lemma is given in [4], but we reproduce it here for the sake of completeness.
Since

sinh t

sinh 3t
=

1

2 cosh 2t+ 1
=

1

cosh2 t

1

3 + tanh2 t
,

the integral can be easily calculated. The second equality follows from the elementary formula

arctanx− arctan y = arctan
x− y
1 + xy

with x = 1√
3
, y = tanh s√

3
and the identity

1√
3
− tanh s√

3

1 + tanh s
3

=

√
3

1 + 2es
. �

Lemma 12. For an odd positive integer n:

3n/2∑
j=1

(
j

3

)
= 1.

Proof. This is obvious for n = 1. For arbitrary odd n its validity follows from the fact that the sum of
Legendre symbols mod 3 for three consecutive integers is 0. �

The formula in Theorem 3 now follows easily from these lemmas. We integrate equation (3.2) wrt z
from 1/α to ∞ using lemma 11. Then assuming that n is odd we complete the proof using lemma 12.

4. Other reciprocal relations

In our previous paper [13], we have found many relations of the form P (n,m) = P (m,n) for finite
products of trigonometric functions. However, the identity in Theorem 1 is of the type S(n,m)+S(m,n) =
C, where C is independent of n and m. There is simple method to find other relations of this type. It is
based on the solution of Dirichlet problem on a finite rectangular grid [11]. For example

m

n∑
j=1

(−1)j cot
πj

2n

sinh yαj
sinhmαj

sin
πjx

n
+ n

m∑
k=1

(−1)k cot
πk

2m

sinhxβk
sinhnβk

sin
πky

m
= −xy, (4.1)

where 1 ≤ x ≤ n, 1 ≤ y ≤ m are integers and

cos
πj

n
+ coshαj = 2, cos

πk

m
+ coshβk = 2 (1 ≤ j ≤ n, 1 ≤ k ≤ m). (4.2)

In particular, when x = y, n = m this gives the closed form summation
n∑
j=1

(−1)j cot
πj

2n

sinhxαj
sinhnαj

sin
πjx

n
= −x

2

n
, sinh

αj
2

= sin
πj

2n
. (4.3)
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Laplace operator on a finite rectangular grid is defined as

∆f(x, y, k) = f(x− 1, y) + f(x+ 1, y) + f(x, y − 1) + f(x, y + 1)− 4f(x, y).

One can see that the RHS of (4.1) satisfies the discrete Laplace equation

∆f(x, y) = 0, (0 <≤ x ≤ n, 0 ≤ y ≤ m)

on a rectangular grid of size n × m. Also −xy = f1(x, y) + f2(x, y), where f1(x, y) and f2(x, y) are
solutions of the Laplace equation with boundary conditions{

f1(0, y) = f1(n, y) = 0, 0 ≤ y ≤ m,
f1(x, 0) = 0, f1(x,m) = xm, 0 ≤ x ≤ n,

(4.4){
f2(x, 0) = f2(x,m) = 0, 0 ≤ x ≤ n,
f2(0, y) = 0, f2(n, y) = ny, 0 ≤ y ≤ m.

(4.5)

Partial solutions of Laplace equation corresponding to boundary conditions (4.4) and (4.5) are given by,
respectively

u
(1)
j (x, y) = sin

πjx

n
sinh yαj , (1 ≤ j ≤ n).

u
(2)
k (x, y) = sin

πky

m
sinhxβk, (1 ≤ k ≤ m).

In fact this method is quite well known and there are many examples in electrodynamics and heat
conduction problems in physics (e.g., [12]).

One could generalize (4.1) to include one continuous parameter α by requiring that αj and βk be defined
by

sinh
αj
2

= α sin
πj

2n
, sinh

βk
2

=
1

α
sin

πk

2m
, (1 ≤ j ≤ n, 1 ≤ k ≤ m)

instead of (4.2). However to obtain a closed form summation we would need α = 1, so this does not
generalize (4.3).
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