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Abstract. We introduce and study the needle function

(Γ~a1
◦ Vm) ◦ · · · ◦ (Γ~a l

2

◦ Vm) : Rn −→ Rn.

By exploiting the geometry of compression, we prove that this function is a

function modeling an l-step self avoiding walk for l ∈ N. We show that the
total length of the l-step self-avoiding walk modeled by this function is of the

order
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1. Introduction

Self avoiding walk, roughly speaking, is a sequence of moves on the lattice that
does not visit the same point more than once. It is somewhat akin to the graph
theoretic notion of a path. It is a mathematical problem to determine a function
that models self avoiding walks of any given number of steps. More formally, the
problem states

Problem 1.1. Does there exist a function that models l-steps self-avoiding walks?

The problem had long been studied from mathematical perspective but unfor-
tunately our understanding was not good enough. For instance the problem has
recently been studied from the standpoint of network theory [2]. The problem also
has great significance that extends beyond the shores of mathematics and its allied
areas. For instance flurry of studies show that a good understanding of the un-
derlying problem will certainly have its place in physics and chemistry about the
long-term structural movement of substances such as polymers and certain proteins
in the human anatomy[1],[3]. In this paper we find a function that models an n-step
self avoiding walk. We leverage the method of compression and its accompanied
estimates to study these things in much more detail. In particular we obtain the
following result
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Theorem 1.1. The map (Γ~a1
◦ Vm) ◦ · · · ◦ (Γ~a l

2

◦ Vm) : Rn −→ Rn, where

(Γ~a1
◦ Vm) ◦ · · · ◦ (Γ~ak

◦ Vm)

is the k-fold needle function with mixed translation factors ~a1, . . . ,~ak ∈ Rn, is a
function modeling l-step self avoiding walk.

We also comment very roughly about the total length of the l-step self avoiding
walk modeled by the needle function in the following result

Theorem 1.2. The total length of the l-step self-avoiding walk modeled by the
needle function (Γ~a1

◦ Vm) ◦ · · · ◦ (Γ~a l
2

◦ Vm) : Rn −→ Rn for ~ai ∈ Rn with i =

1, 2 . . . , l
2 is of order

� l

2

√
n

(
max{sup(xjk)}1≤j≤ l

2
1≤k≤n

+ max{sup(ajk)}1≤j≤ l
2

1≤k≤n

)
and at least
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2

√
n

(
min{Inf(xjk)}1≤j≤ l

2
1≤k≤n

+ min{Inf(ajk)}1≤j≤ l
2

1≤k≤n

)
.

2. Preliminary results

In this section we recall the notion of compression and its various statistics. We
find this method very efficient and much more convenient in establishing the main
result of this paper.

Definition 2.1. By the compression of scale m ≥ 1 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

It is important to notice a compression of scale m ≥ 1 with Vm : Rn −→ Rn

is a bijective map. In particular the compression Vm : Rn −→ Rn is a bijective
map of order 2. To see why this is the case, let us suppose Vm[(x1, x2, . . . , xn)] =
Vm[(y1, y2, . . . , yn)], then it follows that(

m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition
of the map. Thus the map is bijective. The latter claim follows by noting that
V2

m[~x] = ~x.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin - with each coordinate smaller than a unit - away
from the origin by certain scale and similarly draws points away from the origin -
with each coordinate bigger than a unit - close to the origin.
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2.1. The mass and the gap of compression.

Definition 2.3. By the mass of a compression of scale m ≥ 1 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

with xi 6= 0 for all 1 ≤ i ≤ n.

Proposition 2.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 and xi 6= xj for each
1 ≤ i, j ≤ n, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1

�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xi 6= xj for each 1 ≤ i, j ≤ n. Then
it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.4. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression, denoted G◦Vm[(x1, x2, . . . , xn)], we mean the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 −
m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
where ||~x|| is the euclidean norm of the vector ~x = (x1, x2, . . . , xn) or the distance
of a point ~x = (x1, x2, . . . , xn) relative to the origin in any euclidean space Rn for
any n ≥ 2.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
+m2M◦ V1[(x2

1, . . . , x
2
n)]− 2mn

=

n∑
i=1

x2
i +m2

n∑
i=1

1

x2
i

− 2mn.
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In particular for all (x1, x2, . . . , xn) ∈ Rn with xi > 1 for each 1 ≤ i ≤ n, we have
the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
− 2mn

+O

(
m2M◦ V1[(x2

1, . . . , x
2
n)]

)
.

Proposition 2.2 offers us an extremely useful identity. It allows us to pass from
the gap of compression on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
than points with a relatively smaller gap under compression. That is to say, the
inequality holds

G ◦ Vm[~x] ≤ G ◦ Vm[~y]

if and only if ||~x|| ≤ ||~y|| for ~x, ~y ∈ Rn with xi, yj > 1 for each 1 ≤ i, j ≤ n. This
important transference principle will be mostly put to use in obtaining our results.

Lemma 2.5 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with
xi > 1 and xi 6= xj for each 1 ≤ i, j ≤ n, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2
j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2
j ) +m2 log

(
1− n− 1

sup(x2
j )

)−1

− 2mn.

Proof. The estimates follows by leveraging the estimates in Proposition 2.1 and
noting that

nInf(x2
j )�M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
� nsup(x2

j ).

�

3. Compression lines

In this section we study the notion of lines induced under compression of a given
scale and the associated geometry. We first launch the following language.

Definition 3.1. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for each 1 ≤ i ≤ n.
Then by the line L~x,Vm[~x] produced under compression Vm : Rn −→ Rn we mean
the line joining the points ~x and Vm[~x] given by

~r = ~x+ λ(~x− Vm[~x])

where λ ∈ R.

Remark 3.2. In striving for the simplest possible notation and to save enough work
space, we will choose instead to write the line produced under compression Vm :
Rn −→ Rn by LVm[~x]. Next we show that the lines produced under compression
of two distinct points not on the same line of compression cannot intersect at the
corresponding points and their images under compression.
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Lemma 3.3. Let ~a = (a1, a2, . . . , an), ~x = (x1, x2, . . . , xn) ∈ Rn with ~a 6= ~x and
ai, xj > 1 for all 1 ≤ i, j ≤ n. If the point ~a lies on the corresponding line LVm[~x],
then Vm[~a] also lies on the same line.

Proof. Pick arbitrarily a point ~a = (a1, a2, . . . , an) with ai > 1 for each 1 ≤ i ≤ n
and close to the point ~x = (x1, x2, . . . , xn) on the line LVm[~x] produced under
compression induced on ~x ∈ Rn with xi > 1 for each 1 ≤ i ≤ n. Suppose on the
contrary that Vm[~a] cannot live on the same line with ~a. Then Vm[~a] must be away
from the line LVm[~x]. Produce the compression line LVm[~a] by joining the point ~a
to the point Vm[~a] by a straight line. Since the point ~a is closer to the origin that
the point ~x, it follows from Proposition 2.2

G ◦ Vm[~x] > G ◦ Vm[~a].

Again pick a point ~c = (c1, c2, . . . , cn) with ci > 1 for all 1 ≤ i ≤ n and close to the
point ~a on the line LVm[~a]. Then under the assumption it follows that the point
Vm[~c] must be away from the line. Produce the compression line LVm[~c] by joining
the points ~c to Vm[~c]. Since the point ~c is closer to the origin that the point ~a, it
follows from Proposition 2.2 the following decreasing sequence of compression gaps
- lengths of distinct lines

G ◦ Vm[~x] > G ◦ Vm[~a] > G ◦ Vm[~c].

By repeating this argument under the underlying contrary assumption, we obtain
an infinite descending sequence of compression gaps - lengths of distinct lines

G ◦ Vm[~x] > G ◦ Vm[ ~a1] > · · · > G ◦ Vm[ ~an] > · · · .

This proves the Lemma. �

It is important to point out that Lemma 3.3 is the ultimate tool we need to show
that certain function is indeed a function modeling l-step self avoiding walk. We
first launch such a function as an outgrowth of the notion of compression. Before
that we launch our second Lemma. One could think of this result as an extension
of Lemma 3.3.

Lemma 3.4. Let ~a = (a1, a2, . . . , an) ∈ Rn and ~b = (b1, b2, . . . , bn) ∈ Rn be points

with identical configurations with ~a 6= ~b and ai, bj > 0 for 1 ≤ i, j ≤ n. If the

corresponding lines LVm[~a] : r1 = ~a+λ(~a−Vm[~a]) and LVm[~b] : r2 = ~b+µ(~b−Vm[~b])

for µ, λ ∈ R intersect, then

~a− Vm[~a] ‖ ~b− Vm[~b].

Proof. First consider the points ~a = (a1, a2, . . . , an) ∈ Rn and ~b = (b1, b2, . . . , bn) ∈
Rn with ~a 6= ~b and ai, bj > 0 for 1 ≤ i, j ≤ n with corresponding lines LVm[~a] :

r1 = ~a + λ(~a − Vm[~a]) and LVm[~b] : r2 = ~b + µ(~b − Vm[~b]) for µ, λ ∈ R. Suppose

they intersect at the point ~s, then it follows that the point Vm[~s] lies on the lines

LVm[~a] : r1 = ~a + λ(~a − Vm[~a]) and LVm[~b] : r2 = ~b + µ(~b − Vm[~b]) and the result

follows immediately. �

Lemma 3.3 combined with Lemma 3.4 tells us that the line produced by com-
pression on points with certain configuration away from other lines of compression
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are not intersecting. We leverage this principle to show that a certain function
indeed models a self-avoiding walk.

Remark 3.5. Next we show that the lines produced under compression and their
corresponding lines under translation are non-intersecting.

Proposition 3.1. Let LVm[~x] and LVm[~y] be two distinct lines under compression.
Then the corresponding lines LΓ~a◦Vm[~x] and LΓ~a◦Vm[~y] for a fixed ~a ∈ Rn are distinct
and non-intersecting.

Proof. Suppose the lines LΓ~a◦Vm[~x] and LΓ~a◦Vm[~y] for a fixed ~a ∈ Rn intersect and let
~s be their point of intersection. Then it follows that there exist some 1 ≥ k1, k2 > 0
such that Γk1~a ◦ Vm[~x] = ~s and Γk2~a ◦ Vm[~y] = ~s. Then we can write

Vm[~x] = Γ−1
k1~a
◦ Γk2~a ◦ Vm[~y]

= Γ(k2−k1)~a ◦ Vm[~y].

It follows that either the point Vm[~x] lies on the line LΓ~a◦Vm[~y] or the point Vm[~y]
lies on the line LΓ~a◦Vm[~x]. Without loss of generality, we let the point Vm[~x] lie on
the line LΓ~a◦Vm[~y]. Under the underlying assumption, the following equations hold

Γk1~a ◦ Vm[~x] = Vm[~x] and Γk2~a ◦ Vm[~y] = Vm[~x].

This is absurd since the lines LVm[~x] and LVm[~y] are distinct. �

4. The ball induced by compression

In this section we introduce the notion of the ball induced by a point ~x =
(x1, x2, . . . , xn) ∈ Rn under compression of a given scale. We study the geometry
of the ball induced under compression. We launch more formally the following
language.

Definition 4.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all 1 ≤ i ≤ n. Then by
the ball induced by (x1, x2, . . . , xn) ∈ Rn under compression of scale m, denoted
B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ ≤ 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality.

Remark 4.2. Next we prove that smaller balls induced by points should essentially
be covered by the bigger balls in which they are embedded. We state and prove
this statement in the following result.

For simplicity we will on occasion choose to write the ball induced by the point
~x = (x1, x2, . . . , xn) under compression as

B 1
2G◦Vm[~x][~x].

We adopt this notation to save enough work space in many circumstances.

Theorem 4.3. Let ~y = (y1, y2, . . . , yn), ~z = (z1, z2, . . . , zn) ∈ Rn with zi > 1 and
yi > 1 for all 1 ≤ i ≤ n. Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] ≤ G ◦ Vm[~y].
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Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Rn with zi > 1 for all

1 ≤ i ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] > G ◦ Vm[~y],

then it follows from Proposition 2.2 that ||~y|| < ||~z||, which is a contradiction.
Conversely, suppose

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

then it follows from Proposition 2.2 that ||~z|| ≤ ||~y||. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �

4.1. Remark. As an alternative to the requirement that ~x ∈ Rn with xi 6= 0 for
all 1 ≤ i ≤ n, we will work under the more convenient regime that each coordinate
of the vector xi > 1 for each 1 ≤ i ≤ n. This requirement has no restriction on the
geometry since for a vector ~x = (x1, x2, . . . , xn) with xi = 1 for each 1 ≤ i ≤ n the
coordinates of the corresponding compression vector is still V1[~x] = (1, 1, . . . , 1). It
is also easy to see that for those points ~x = (x1, x2, . . . , xn) with 0 < xi < 1 the
corresponding compression vector will be a point ~y = (y1, y2, . . . , yn) with yi > 1
for each 1 ≤ i ≤ n and vice-versa. Thus in the sequel we will only use points
~x = (x1, x2, . . . , xn) ∈ Rn with xi > 1 for all 1 ≤ i ≤ n for our constructions,
since the remaining points with unlike properties will automatically be obtained as
compression images. It has to be said that this requirement will turn to be natural
in our studies in the sequel.

Theorem 4.4. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi > 1 for all 1 ≤ i ≤ n. If
~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 4.3 that

G ◦ Vm[~z] > G ◦ Vm[~x].

It follows that

G ◦ Vm[~y] ≥ G ◦ Vm[~z]

> G ◦ Vm[~x]

which is absurd, thereby ending the proof. �

Remark 4.5. Theorem 4.4 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.
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4.2. Interior points and the limit points of balls induced under compres-
sion. In this section we launch the notion of an interior and the limit point of
balls induced under compression. We study this notion in depth and explore some
connections.

Definition 4.6. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= 0 for all 1 ≤ i ≤ n. Then
a point ~z ∈ B 1

2G◦Vm[~y][~y] is an interior point of the ball in which it is contained if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for most ~x ∈ B 1
2G◦Vm[~y][~y]. An interior point ~z of the ball is then said to be a limit

point of the ball B 1
2G◦Vm[~y][~y] if and only if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for all ~x ∈ B 1
2G◦Vm[~y][~y]

Remark 4.7. Next we prove that there must exist an interior and limit point in any
ball induced by points under compression of any scale in any dimension.

Theorem 4.8. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi > 1 for all 1 ≤ i ≤ n. Then
the ball B 1

2G◦Vm[~x][~x] contains an interior point and a limit point.

Proof. Let ~x = (x1, x2, . . . , xn) ∈ Rn with xi > 1 for all 1 ≤ i ≤ n and suppose on
the contrary that B 1

2G◦Vm[~x][~x] contains no limit point. Then pick

~z1 ∈ B 1
2G◦Vm[~x][~x]

for ~z1 6= ~x. Then by Theorem 4.4 and Theorem 4.3, it follows that

B 1
2G◦Vm[~z1][~z1] ⊂ B 1

2G◦Vm[~x][~x]

with G ◦ Vm[~z1] < G ◦ Vm[~x]. Again pick ~z2 ∈ B 1
2G◦Vm[~z1][~z1] for ~z2 6= ~z1. Then by

employing Theorem 4.4 and Theorem 4.3, we have

B 1
2G◦Vm[~z2][~z2] ⊂ B 1

2G◦Vm[~z1][~z1]

with G ◦ Vm[~z2] < G ◦ Vm[~z1]. By continuing the argument in this manner, we
obtain the infinite descending sequence of the gap of compression

G ◦ Vm[~x] > G ◦ Vm[~z1] > G ◦ Vm[~z2] > · · · > G ◦ Vm[~zn] > · · ·
thereby ending the proof of the theorem. �

Now we state and prove a result that in some way makes our earlier imposition
in Remark 4.1 a natural one and gives more meaning to our work in further sequel.

Proposition 4.1. The point ~x = (x1, x2, . . . , xn) with xi = 1 for each 1 ≤ i ≤ n is
the limit point of the ball B 1

2G◦V1[~y][~y] for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1

for each 1 ≤ i ≤ n.

Proof. Applying the compression V1 : Rn −→ Rn on the point ~x = (x1, x2, . . . , xn)
with xi = 1 for each 1 ≤ i ≤ n, we obtain V1[~x] = (1, 1, . . . , 1) so that G ◦V1[~x] = 0
and the corresponding ball induced under compression B 1

2G◦V1[~x][~x] contains only

the point ~x. It follows by Definition 4.8 the point ~x must be the limit point of the
ball B 1

2G◦V1[~x][~x]. It follows that

B 1
2G◦V1[~x][~x] ⊆ B 1

2G◦V1[~y][~y]
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for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for all 1 ≤ i ≤ n. For if the contrary

B 1
2G◦V1[~x][~x] 6⊆ B 1

2G◦V1[~y][~y]

holds for some ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for each 1 ≤ i ≤ n, then there
must exists some point ~z ∈ B 1

2G◦V1[~x][~x] such that ~z 6∈ B 1
2G◦V1[~y][~y]. Since ~x is the

only point in the ball B 1
2G◦V1[~x][~x], it follows that

~x 6∈ B 1
2G◦V1[~y][~y].

Appealing to Theorem 4.3, we have the corresponding inequality of compression
gaps

G ◦ V1[~x] > G ◦ V1[~y]

so that by appealing to Proposition 2.2 and the ensuing remarks, we have the
inequality of their corresponding distance relative to the origin

||~x|| > ||~y||.
This is a contradiction, since by our earlier assumption ~y = (y1, y2, . . . , yn) ∈ Rn

with yi > 1 for each 1 ≤ i ≤ n. Thus the point ~x = (x1, x2, . . . , xn) with xi = 1 for
each 1 ≤ i ≤ n must be the limit point of any ball of the form

B 1
2G◦V1[~y][~y]

for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for each 1 ≤ i ≤ n. �

4.3. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 4.9. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= 0 for all 1 ≤ i ≤ n. Then
~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 4.10. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball. Next we show
that all balls can in principle be generated by their admissible points.

Theorem 4.11. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 4.3, we obtain the inequality

G ◦ Vm[~y] < G ◦ Vm[~z] ≤ G ◦ Vm[~x].
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By leveraging Proposition 2.2, it follows that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining
this points to the origin by a straight line, this contradicts the fact that the point
~y ∈ B 1

2G◦Vm[~x][~x] is an admissible point. Now we notice that ~y ∈ B 1
2G◦Vm[~x][~x]

certainly implies G ◦ Vm[~y] ≤ G ◦ Vm[~x]. Conversely we notice as well that ~x ∈
B 1

2G◦Vm[~y][~y], which certainly implies G ◦Vm[~x] ≤ G ◦Vm[~y] by Theorem 4.3. Thus

the conclusion follows. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y must satisfy the
inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x]

and ~y is indeed admissible, thereby ending the proof. �

Proposition 4.2. Compression balls are non-overlapping.

Proof. Pick arbitrarily points ~x, ~y ∈ Rn with xi, yi 6= 0 for all i = 1, . . . , n such that
~x 6= ~y with ||~x|| 6= ||~y||. Then it follows that ||~x|| < ||~y|| or ||~x|| > ||~y||. Without
loss of generality, let us assume that ||~x|| < ||~y||, then it follows from Proposition
2.2

G ◦ Vm[~x] < G ◦ Vm[~y]

or

G ◦ Vm[~y] < G ◦ Vm[~x].

By appealing to Theorem 4.3 and Theorem 4.4, it follows that

B 1
2G◦Vm[~x][~x] ⊂ B 1

2G◦Vm[~y][~y]

or

B 1
2G◦Vm[~y][~y] ⊂ B 1

2G◦Vm[~x][~x].

This completes the proof since the points ~x and ~y with ||~x|| 6= ||~y|| were chosen
arbitrarily. �

Next we show that there must exists some point in a bigger ball whose induced
ball under compression has admissible points way off a certain line in the underlying
ball. We find the following Lemma useful.

Lemma 4.12. The point ~yi+Vm[~yi]
2 with yi ∈ B 1

2G◦Vm[~x][~x] for all i ∈ N is on the

line LVm [~x] if and only if the limits point ~z of the ball B 1
2G◦Vm[~x][~x] is on the line

LVm[~x].



ON A FUNCTION MODELING AN L-STEP SELF AVOIDING WALK 11

Proof. Let ~yi+Vm[~yi]
2 for i ∈ N with yi ∈ B 1

2G◦Vm[~x][~x] be on the line LVm[~x] with

~x 6= ~yi for all i ∈ N. Then by Lemma 3.3, It follows that Vm[~yi] ∈ B 1
2G◦Vm[~x][~x]

with G ◦Vm[~yi] < G ◦Vm[~x]. Let us now construct the ball induced by compression
on this point given by B 1

2G◦Vm[~yi][~yi] and by Proposition 4.4

B 1
2G◦Vm[~yi][~yi] ⊂ B 1

2G◦Vm[~x][~x]

and ~yi+Vm[~yi]
2 = 1

2

(
yi1 + m

yi1
, . . . , yin + m

yin

)
is on the line LVm[~x]. By repeating

the argument by choosing a point in this manner in the much smaller ball the first
part of the result follows. Conversely, suppose the limit point lies on the line LVm[~x]

and there exist a ball B 1
2G◦Vm[~yj ][~yj ] ⊂ B 1

2G◦Vm[~x][~x] such that the point
~yj+Vm[~yi]

2

does not live on the line LVm[~x]. It follows that the ball B 1
2G◦Vm[~yj ][~yj ] and the line

LVm[~x] are overlapping, since the limit point is on the line LVm[~x]. By Lemma 3.3
the ball B 1

2G◦Vm[~yj ][~yj ] overlaps some ball induced by some point under compression

on the line LVm[~x]. This is absurd since compression balls are non-overlapping. �

Theorem 4.13. There exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that admissible points of

the induced ball B 1
2G◦Vm[~z][~z] are not on the line LVm[~x].

Proof. Consider the ball B 1
2G◦Vm[~x][~x] and suppose on the contrary that for any

point ~z ∈ B 1
2G◦Vm[~x][~x] the corresponding induced ball under compression B 1

2G◦Vm[~z][~z]

intersects the compression line LVm[~x]. Then by Lemma 4.12 the limit point of the

ball B 1
2G◦Vm[~x][~x] is on the line LVm[~x]. It follows from Lemma 4.12 the point ~z+Vm[~z]

2

must lie on the line LVm[~x]. This is a contradiction since the point ~z is an arbitrary

point in the ball B 1
2G◦Vm[~x][~x] and so is the point ~z+Vm[~z]

2 . This completes the proof

of the theorem. �

5. The needle function

In this section we introduce and study the needle function. We combine the
geometry of lines under compression and the geometry of balls under compression
to prove that this function is a function modeling an l- step self avoiding walk.

Definition 5.1. By the needle function of scale m and translation factor ~a, we
mean the composite map

Γ~a ◦ Vm : Rn −→ Rn

such that for any ~x ∈ Rn

Γ~a ◦ Vm[~x] = ~y

where ~x = (x1, x2, . . . , xn) with xi 6= 0 for 1 ≤ i ≤ n and Γ~a[~x] = (x1 + a1, x2 +
a2, . . . , xn + an).

Proposition 5.1. The needle function Γ~a ◦ Vm : Rn −→ Rn is a bijective map of
order 2.

Proof. We remark that the translation with translation factor ~a for a fixed ~a given
by Γ~a : Rn −→ Rn is a bijective map. The result follows since the composite of
bijective maps is still bijective. �
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Theorem 5.2. The map (Γ~a1
◦ Vm) ◦ · · · ◦ (Γ~a l

2

◦ Vm) : Rn −→ Rn, where

(Γ~a1
◦ Vm) ◦ · · · ◦ (Γ~ak

◦ Vm)

is the k-fold needle function with mixed translation factors ~a1, . . . ,~ak ∈ Rn, is a
function modeling an l-step self avoiding walk.

Proof. Pick arbitrarily a point ~x = (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xi > 1
for each 1 ≤ i ≤ n and apply the compression Vm[~x] and construct the ball
B 1

2G◦Vm[~x][~x]. Now choose a point ~u ∈ B 1
2G◦Vm[~x][~x] and construct the ball B 1

2G◦Vm[~u][~u]

so that admissible points do not sit on the compression line LVm[~x]. Let us now join

the point Vm[~x] to the closest admissible point ~t of B 1
2G◦Vm[~u][~u] on the line LVm[u]

under a suitable translation vector ~a1 6= ~O. Let us now traverse the line produced
under compression to the line produced by translation of the point Γ~a1

(Vm[~x]) with

the starting point ~x to Vm[~x] and from Vm[~x] to Γ~a1
(Vm[~x]) = ~t and finally from

~t to Vm[~t]. The upshot is a 3-step self avoiding walk. Again we choose a point
~s ∈ B 1

2G◦Vm[~u][~u] so that the ball B 1
2G◦Vm[~s][~s] satisfies the relation

B 1
2G◦Vm[~s][~s] ⊂ B 1

2G◦Vm[~u][~u]

and with the property that admissible points of the inner ball are not allowed to
sit on the compression line LVm[~u]. We then join the point Vm[~t] to the closest
admissible point of the ball B 1

2G◦Vm[~s][~s] on the line LVm[~s] by the translation Γ~a2

under a suitable translation factor ~a2 6= ~O. By traversing all these lines starting
from the point ~x to Vm[~x], ~z = Vm[~x] to Γ~a1

[~z], Γ~a1
[~z] to Vm ◦ Γ~a1

[~z] and finally
from Vm ◦ Γ~a1

[~z] to Γ~a2
◦ Vm ◦ Γ~a2

[~z], we obtain a 4-step self avoiding walk. By
continuing this argument l

2 number of times, we produce an l-step self avoiding
walk. This completes the proof. �

We remark that we can certainly do more than this by estimating the total length
of the self-avoiding walk modeled by this function in the following result.

Theorem 5.3. The total length of the l-step self-avoiding walk modeled by the
needle function (Γ~a1

◦ Vm) ◦ · · · ◦ (Γ~a l
2

◦ Vm) : Rn −→ Rn for ~ai ∈ Rn with i =

1, 2 . . . , l
2 is of order

� l

2

√
n

(
max{sup(xjk)}1≤j≤ l

2
1≤k≤n

+ max{sup(ajk)}1≤j≤ l
2

1≤k≤n

)
and at least

� l

2

√
n

(
min{Inf(xjk)}1≤j≤ l

2
1≤k≤n

+ min{Inf(ajk)}1≤j≤ l
2

1≤k≤n

)
.

Proof. We note that the total length of the l-step self avoiding walk modeled by
the needle function is given by the expression

l
2∑

i=1

G ◦ Vm[~xi] +

l
2∑

i=1

||~ai||

and the result follows by applying the estimates in Lemma 2.5. �
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6. A combinatorial interpretation

In this section we provide a combinatorial twist of the main result in this paper.
We reformulate Theorem 5.2 in the language of graphs. We launch the following
language:

Definition 6.1 (Compression graphs). By a compression graph G of order k > 1
induced by ~x1 = (u1, u2, . . . , un) ∈ Rn with ui 6= 0 for all 1 ≤ i ≤ n, we mean the
pair (V,E) where V is the vertex set

V := {~x1,Vm[~x1],Γ~a1
(Vm[~x1]) = ~x2,Vm[~x2], . . . ,Γ~as

(Vm[~xk−1]) = ~xk,Vm[~xk]}
and E the set of edges

E :=
{
L~x1,Vm[~x1],LVm[~x1],~x2

, . . . ,L~xk,Vm[~xk]

}
.

We now state a graph-theoretic version of Theorem 5.2.

Theorem 6.2 (A combinatorial version). There exists a compression graph of order
l + 1 with l ∈ N and whose edges are paths.

Proof. Pick ~x1 = (u1, u2, . . . , un) ∈ Rn very far away from the origin with the
property that ui > 1 and for all 1 ≤ i ≤ n. Next we apply the compression V1 on
~x1 and obtain a point V1[~x] ∈ Rn. Let us join the point ~x1 to the point V1[~x1] by a
straight line so that by traversing this line starting from ~x1 to V1[~x1], we have the
path L~x1,V1[~x1]. Next we pick a point ~x2 = (v1, v2, . . . , vn) ∈ Rn

⋂
B 1

2G◦V1[~x1][~x1]

with vi > 1 for all 1 ≤ i ≤ n such that no admissible point of the induced ball of
the compression on ~x2 namely

B 1
2G◦V1[~x2][~x2]

sit on the compression line L~x1,V1[~x1]. Next apply the compression V1 on ~x2 and
we obtain the point V1[~x2]. Next let us join the point ~x2 to the point V1[~x2] by a
straight line. Let us now apply the translation Γ~a1

under some suitable translation
vector to join the point V1[~x1] to exactly one the points ~x2,V1[~x2] whose distance
is minimal. Without loss of generality let us assume that the point ~x2 is closer to
V1[~x1] than V1[~x2] to V1[~x1] and apply the translation

Γ~a1
(V1[~x1]) = ~x2.

Next we join the point V1[~x1] to the point ~x2 by a straight line LV1[~x1],~x2
and the

point ~x2 to the point V1[~x2] by the straight line L~x2,V1[~x2]. By traversing the line
L~x1,V1[~x1] starting from ~x1 to V1[~x1] and the line LV1[~x1],~x2

continuing from V1[~x1]
to ~x2 and the line L~x2,V1[~x2] continuing from ~x2 to V1[~x2], we obtain a path induced
by four vertices. By repeating this argument and in the sense of proof of Theorem
5.2, we obtain a compression graph G = (V,E) with vertex and edge set

V := {~x1,Vm[~x1],Γ~a1
(Vm[~x1]) = ~x2,Vm[~x2], . . . ,Γ~as

(Vm[~xl]) = ~xl+1,Vm[~xl+1]}
and E the set of edges

E :=
{
L~x1,Vm[~x1],LVm[~x1],~x2

, . . . ,L~xl+1,Vm[~xl+1]

}
where the points in set V are the vertices and each line in E are the edges of the
graph G, with the edges being a path. �

1.

1



14 THEOPHILUS AGAMA

References

1. Flory, Paul J Principles of polymer chemistry, Cornell University Press, 1953.
2. Tishby, Ido and Biham, Ofer and Katzav, Eytan The distribution of path lengths of self avoid-
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