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Abstract

We begin with a brief review of the essentials of Asymptotic Safety
and the Renormalization Group (RG) improvement of the Schwarzschild
Black Hole that removes the r = 0 singularity. The RG improvement of
the Kantowski-Sachs metric associated with a Schwarzschild black hole
interior is performed such that there is no singularity at t = 0. Two
temporal horizons at t− ' tP and t+ ' tH are found. For times be-
low the Planck scale t < tP , and above the Hubble time t > tH , the
components of the Kantowski-Sachs metric exhibit a key sign change, so
the roles of the spatial z and temporal t coordinates are exchanged, and
one recovers a repulsive inflationary de Sitter-like core around z = 0,
and a Schwarzschild-like metric in the exterior region z > RH = 2GoM .
The inclusion of a running cosmological constant Λ(t) follows leading to a
coupled system of two first-order non-linear differential equations whose
solutions furnish the expressions for the running gravitational and cosmo-
logical constant G(t),Λ(t). Consistency requires that one should recover
the observed vacuum energy density in the asymptotic t → ∞ limit :
ρvac(t → ∞) → Λo

8πGo
' 10−122M4

P . We proceed with the study of a
dilaton-gravity (scalar-tensor theory) system within the context of Weyl’s
geometry that permits to single out the expression for the classical poten-
tial V (φ) = κφ4, instead of being introduced by hand, and find a family of
metric solutions which are conformally equivalent to the (Anti) de Sitter
metric. Finally, a typical ansatz for the truncated effective average action
of ordinary dilaton-gravity in Riemannian geometry is introduced, and
a RG-improved Cosmology based on the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric is explored where instead of recurring to the cutoff

∗Dedicated to the loving memory of Irina Novikova, a brilliant and heavenly creature who
met a tragic death at a young age.
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identification k = k(t) = ξH(t), based on the Hubble function H(t), with
ξ a positive constant, one has now k = k(t) = ξφ(t), where φ is the dilaton
scalar field.

Keywords: Weyl Geometry; Cosmology; Asymptotic Safety; Dilaton-Gravity;
Kantowski-Sachs, Schwarzschild metric.

1 Introduction

The problem of dark energy and the solution to the cosmological constant prob-
lem is one of the most challenging problems facing Cosmology today. There
are a vast numerable proposals for its solution. Two proposed forms for dark
energy are the cosmological constant, representing a constant energy density
filling space homogeneously, and scalar fields such as quintessence or moduli,
dynamic quantities whose energy density can vary in time and space. The na-
ture of dark energy is more hypothetical than that of dark matter, and many
things about the nature of dark energy remain matters of speculation. Dark
energy is thought to be very homogeneous, not very dense and is not known
to interact through any of the fundamental forces other than gravity. In the
models based on the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, it
can be shown that a strong constant negative pressure in all the universe causes
an acceleration in universe expansion if the universe is already expanding, or a
deceleration in universe contraction if the universe is already contracting. This
accelerating expansion effect is sometimes labeled ”gravitational repulsion”.

A major outstanding problem is that quantum field theories predict a huge
cosmological constant, more than 100 orders of magnitude too large. This would
need to be almost, but not exactly, cancelled by an equally large term of the op-
posite sign. Some supersymmetric theories require a cosmological constant that
is exactly zero, which does not help because supersymmetry must be broken.
Nonetheless, the cosmological constant is the most economical solution to the
problem of cosmic acceleration. Thus, the current standard model of cosmology,
the Lambda-CDM (cold dark matter) model, includes the cosmological constant
as an essential feature. We refer to [20], [21], [27] and many references therein.

In quintessence models of dark energy, the observed acceleration of the scale
factor is caused by the potential energy of a dynamical field, referred to as
quintessence field. Quintessence differs from the cosmological constant in that
it can vary in space and time. In order for it not to clump and form structure like
matter, the field must be very light so that it has a large Compton wavelength.
This class of theories attempts to come up with an all-encompassing theory of
both dark matter and dark energy as a single phenomenon that modifies the
laws of gravity at various scales.

The Asymptotic Safety program initiated by Weinberg [1] is based on a non-
Gaussian (interacting) fixed point of the gravitational renormalization group
flow. It provides a mechanism for completing the gravitational force at very
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high energies. The ultraviolet (UV) fixed point controls the scaling of couplings
such that unphysical divergences are absent while the emergence of classical
low-energy physics is linked to a crossover between two renormalization group
fixed points. These features make Asymptotic Safety an attractive framework
for cosmological model building leading to scenarios which may naturally give
rise to a quantum gravity driven inflationary phase in the very early universe
and an almost scale-free fluctuation spectrum [3], [11].

This work is organized as follows. In 2.1 we briefly review the essentials of
Asymptotic Safety [1], [3] and the Renormalization Group (RG) improvement
of the Schwarzschild Black Hole [3], [4]. In 2.2 we model our Universe as a
homogeneous anisotropic self-gravitating fluid consistent with the Kantowski-
Sachs homogeneous anisotropic cosmology. A dynamical regularization of the
Kantowski-Sachs metric associated with a black hole interior is performed such
that there is no singularity at t = 0. Two temporal horizons at t− ' tP and
t+ ' tH are found. For times below the Planck scale t < tP , and above the
Hubble time t > tH , the components of the Kantowski-Sachs metric exhibit a
key sign change, so the roles of the spatial z and temporal t coordinates are
exchanged, and one recovers a repulsive inflationary de Sitter-like core around
z = 0, and a Schwarzschild-like metric in the exterior region z > RH = 2GoM .

In 2.3 the inclusion of a running Cosmological Constant Λ(t) is studied. A
coupled system of two first-order non-linear differential equations is found. Their
origin stems from the running gravitational coupling G(t), and cosmological
constant Λ(t), combined with the RG improvement of the Einstein field equa-
tions with a cosmological constant, which is associated with another Kantowski-
Sachs-like metric. The solutions to these first-order non-linear differential equa-
tions furnish the temporal dependence of G(t),Λ(t). Consistency requires that
one should recover the observed vacuum energy density in the asymptotic t→∞
limit : ρvac(t→∞)→ Λo

8πGo
' 10−122M4

P .
In 3.1 a dilaton-gravity (scalar-tensor theory) system within the context of

Weyl’s geometry permits to single out the expression for the classical potential
V (φ) = κφ4, instead of being introduced by hand, and find a family of met-
ric solutions which are conformally equivalent to the (Anti) de Sitter metric.
Finally, section 3.2 is devoted to the study of dilaton-gravity based entirely
on Riemannian geometry. A typical ansatz for the truncated effective aver-
age action in dilaton-gravity (DG) of the Jordan frame is introduced, and a
RG-improved Cosmology based on the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric is explored where instead of recurring to the cutoff identifica-
tion k = k(t) = ξH(t), based on the Hubble function H(t), with ξ a positive
constant [11], we have now k = k(t) = ξφ(t), where φ is the dilaton scalar field.
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2 Renormalization Group-Improved Gravity

2.1 Asymptotic Safety and RG improvement of the Schwarzschild
Black Hole

Testing Asymptotic Safety [1] at the conceptual level requires the ability to
construct approximations of the gravitational renormalization group (RG) flow
beyond the realm of perturbation theory. A very powerful framework for carry-
ing out such computations is the Wetterich-Morris functional renormalization
group equation (FRGE) for the gravitational effective average action Γk [2]

k
∂Γk[g, ḡ]

∂k
=

1

2
Tr [

k∂kRk
Γ(2) +Rk

] (2.1)

where k is the RG mass scale. The construction of the FRGE uses the back-
ground field formalism, splitting the metric gµν into a fixed background ḡµν and

fluctuations hµν . The Hessian Γ
(2)
k is the second functional derivative of Γk

with respect to the fluctuation field at a fixed background. The infrared regu-
lator Rk provides a scale-dependent mass term suppressing fluctuactions with
momenta p2 < k2, while integrating out those with p2 > k2. The functional
trace (matrix-valued operator trace) Tr stands for summation over internal in-
dices, and integration over spacetime and momenta. It appears with positive
sign for bosonic fields; a negative sign for fermionic ones, Grassmann odd fields
(ghosts), and a factor of two for complex fields.

The arguably simplest approximation of the gravitational RG flow is ob-
tained from projecting the FRGE onto the Einstein-Hilbert action approximat-
ing Γk by [3], [11]

Γk =

∫
d4x

√
|g| 1

16πG(k)
[ R(gµν) − 2 Λ(k) ] + · · · (2.2)

where the ellipsis · · · denote the gauge fixing and ghost terms. This ansatz
comprises two scale-dependent coupling constants, Newton’s constant Gk and
a cosmological constant Λk. The scale-dependence of these couplings is con-
veniently expressed in terms of their dimensionless counterparts λk ≡ Λkk

−2;
gk ≡ Gkk2, and captured by the beta functions

βg(gk, λk) = k∂kgk, βλ(gk, λk) = k∂kλk (2.3)

Eq-(1) yields a system of coupled differential equations determining the scale-
dependence of G(k),Λ(k). The interacting (non-Gaussian) ultra-violet (UV)
fixed points are determined by the conditions βg(g∗, λ∗) = 0;βλ(g∗, λ∗) = 0,
with g∗ 6= 0;λ∗ 6= 0 and are postulated to correspond to a conformal invariant
field theory.

The Renormalization group flow of the gravitational coupling and cosmolog-
ical constant in Asymptotic Safety was studied by [3]. The scale dependence of
G(k) and Λ(k) was found to be
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G(k2) =
Go

1 + g−1
∗ Go k2

, Λ(k) = Λo +
b G(k)

4
k4, Λo > 0, b > 0 (2.4a)

In D = 4, the dimensionless gravitational coupling has a nontrivial fixed point
g = G(k)k2 → g∗ in the k → ∞ limit, and the dimensionless variable λ =
Λ(k)k−2 has also a nontrivial ultraviolet fixed point λ∗ 6= 0 [3]. The interacting
(non-Gaussian) fixed points gk = G(k) k2, and λk = Λ(k) k−2 in the ultraviolet
limit k →∞ turned out to be, respectively, [3]

g∗ = 0.707, λ∗ = 0.193, b = 4
λ∗
g∗
, (2.4b)

Go and Λo are the present day value of the Newtonian gravitational coupling and
the cosmological constant. The infrared limits are Λ(k → 0) = Λ0 > 0, G(k →
0) = Go = GN . Whereas the ultraviolet limits are Λ(k =∞) =∞;G(k =∞) =
0.

The results in eq-(5) have been used by several authors, see [3], [4] and
references therein, to construct a renormalization group (RG) improvement of
the Schwarzschild Black-Hole Spacetime by recurring to the correspondence
k2 → k2(r), which is based in constructing a judicious monotonically decreasing
function k2 = k2(r), and which in turn allows to replace G(k2)→ G(r).

Let us start with the renormalization-group improved Schwarzschild black-
hole metric [3]

(ds)2 = − (1− 2G(r)Mo

r
)(dt)2 + (1− 2G(r)Mo

r
)−1(dr)2 + r2(dΩ2)2 (2.5)

based on the Renormalization group flow of G(r) in the Asymptotic Safety
program [1]. The metric (5) is not a solution of the vacuum field equations but
instead is a solution to the modified Einstein equations Gµν = 8πG(r)Tµν where
the running Newtonian coupling G(r) and an effective stress energy tensor

Tµν ≡ diag (−ρ(r), pr(r), pθ(r), pϕ(r)) (2.6)

appears in the right hand side. The components of Tµν associated to the modified
Einstein equations Gµν = 8πG(r)Tµν are respectively given by

ρ = − pr =
M

4πr2G(r)

dG(r)

dr
, pθ = pϕ = − M

8πrG(r)

d2G(r)

dr2
(2.7)

The energy-momentum tensor is in this case an effective stress energy tensor
resulting from vacuum polarizations effects of the quantum gravitational field
[7] (like a quantum-gravitational self-energy). As explained by [4], the quantum
system is self-sustaining: a small variation of the Newton’s constant triggers a
ripple effect, consisting of successive back-reactions of the semi-classical back-
ground spacetime which, in turn, provokes further variations of the Newton’s
coupling and so forth.
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As a result, the sequence of RG improvements is completely determined by
a series of recursive relations. In the limiting case, after choosing the following

monotonically decreasing function k2 = k2(r) = ξGoρ(r) = ξGoM
4πr2G(r)

dG(r)
dr ,

where ξ is a positive constant, and upon substituting k2 = k2[ρ(r)] into the
right-hand side of the running gravitational coupling G(k2(r)) in eq-(4), leads
to the differential equation for the sought-after functional form of G(r)

G(r) =
Go

1 + g−1
∗ Go k2[ρ(r)]

, k2[ρ(r)] = ξ Go ρ(r) =
ξGoM

4πr2G(r)

dG(r)

dr
(2.8)

The solution to the differential equation is [4]

G(r) = Go (1− e−r
3/rsl

2
cr ); rs = 2GoM, lcr =

√
3ξ

8πg∗
LPlanck (2.9)

leading to a Dymnikova-type of metric [13] in eq-(5). We shall choose ξ =
(8πg∗/3)⇒ lcr = LP , where LP is the PLanck length scale. A simple inspection
reveals that there is no singularity at r = 0. An expansion of the exponential
gives for very small values of r : 1− (2G(r)M)/r) ' 1− (2GoMr2/2GoML2

P ) =
1 − (r2/L2

P ), and one recovers a repulsive de Sitter core around the origin
r = 0. Hence, the key result of [4] is that if the gravitational renormalization
group (RG) flow attains a non-trivial fixed point at high energies, the back-
reaction effects produced by the running Newton’s coupling leads to an iterated
sequence of recurrence relations which converges to a “renormalized” black-hole
spacetime of the Dymnikova-type, which is free of singularities.

In particular, a repulsive de Sitter behavior has also been been found in
[6], and also in the gravastar (gravitational vacuum star) picture, proposed
by [5] where the gravastar has an effective phase transition at/near where the
event horizon is expected to form, and the interior is replaced by a de Sitter
condensate. Based on these ideas, and the RG-improved black-hole solutions
resulting from Asymptotic Safety, we shall proceed with our proposal that our
Universe could be seen as Gravitating Vacuum State inside a Black-Hole.

2.2 Kantowski-Sachs metric and Schwarzschild Black Hole
Interior

Adopting the units c = 1, and after replacing the radial variable r for the
spatial coordinate z (for reasons explained below), the Kantowski-Sachs metric
associated with the interior region of Schwarzschild black-hole is given by

(ds)2 = −
(

2GoM

t
− 1

)−1

(dt)2 +

(
2GoM

t
− 1

)
(dz)2 + t2(dΩ2)2

(2.10)
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Such metric is a solution of the Einstein vacuum field equations and was ana-
lyzed in full detail by the authors [8]. As it is well known to the experts inside
the black-hole horizon region the roles of r and t are exchanged. The Kantowski-
Sachs metrics [10] are associated with spatially homogeneous anisotropic rela-
tivistic cosmological models [10].

The black hole mass parameter M in (10) assumes the role now of a char-
acteristic time (divided by Go) for the existence of universes inside the interior
Schwarzschild solution, as may be inferred from the cosmological interpretation
of the interior metric [8]. For example, in Black-Hole Cosmology [14] one sets M
to coincide with the mass of the Universe enclosed inside the Hubble horizon ra-
dius RH , and which also coincides with the Schwarzschild radius 2GoM . Hence,
the characteristic time will be set equal to the Hubble horizon time tH ≡ 2GoM .
An interesting numerical cincidence is that the uniform density over a spherical
ball of radius RH given by M/(4π/3)R3

H = 3
8πGoR2

H

coincides precisely with the

observed critical density (also vacuum density) of our universe. For more details
of Black Hole cosmology see [14].

Given the metric (10), the scalar Kretschmann invariant polynomial is

K = RµναβR
µναβ = 48

(GoM)2

t6

showing that a curvature singularity occurs at t = 0. This is our main moti-
vation to recur to Asymptotic Safety in Quantum Gravity in oder to provide a
Renormalization-Group improved version of the Kantowski-Sachs metric (10),
and show that there is no longer a singularity at t = 0. Furthermore, we shall
also include a running cosmological “constant” Λ(t), besides a running gravita-
tional coupling G(t), when we evaluate the variable vacuum energy density, and
which asymptotically should tend to the observed (extremely small) vacuum
energy density 10−122M4

P .
The most salient features of the metric (10) were rigorously examined by [8].

In particular, the study of null and timelike geodesics. In the null geodesic case,
when θ = (π/2) and dz = 0, they noted that these are not circular orbits, as
the z coordinate can no longer be considered as a radial coordinate. Another
surprising result, considering the interior point of view, is that the trajectories
of particles at rest are geodesics, contrary to the exterior region where particles
at rest are necessarily accelerated. This fact is due to the non-static character
of the interior geometry. For explicit details we refer to [8].

The Renormalization Group-improved Kantowski-Sachs metric associated
with the interior of a black-hole is given by

(ds)2 = −
(

2G(t)M

t
− 1

)−1

(dt)2 +

(
2G(t)M

t
− 1

)
(dz)2 + t2(dΩ2)2

(2.11)
The modified Einstein equations are Gµν = 8πG(t)Tµν , where as before, the
running Newtonian coupling G(t), and the effective stress energy tensor due
to vacuum polarizations effects of the quantum gravitational field [7] appear in
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the right hand side. Dirac proposed long ago the possibility of the temporal
variation of the fundamental constants.

The energy-momentum tensor corresponding to the modified Einstein equa-
tions is

Tµν ≡ diag (−ρ(t), pz(t), pθ(t), pϕ(t)) (2.12)

and whose components are respectively given by

ρ = − pz =
M

4π t2 G(t)

dG(t)

dt
, pθ = pϕ = − M

8π t G(t)

d2G(t)

dt2
(2.13)

After choosing the monotonically decreasing function of time

k2 = k2(t) = ξ Go ρ(t) = ξ GoM
(dG(t)/dt)

4π t2G(t)
(2.14)

the running gravitational coupling G(t) obtained in the dynamical renormal-
ization of the Kantowski-Scachs-like metric (10) is given by the solution to the
differential equation

G(t) =
Go

1 + g−1
∗ Go k2[G(t)]

, k2[G(t)] = ξ Go ρ(t) =
ξGoM

4πt2G(t)

dG(t)

dt
(2.15)

The solution to the above differential equation has the same functional form as
before

G(t) = Go (1−e−t
3/tst

2
cr ); ts = 2GoM = tH , tcr =

√
3ξ

8πg∗
tPlanck (2.16)

We shall set again ξ = (8πg∗/3) ⇒ tcr = tP , Planck’s time. Note also that
the expression G(t) (16) has the following correspondence (in natural units
h̄ = c = 1)

r ↔ t, lcr = LP ↔ tP , rs = 2GoM ↔ tH (2.17)

with the prior solution G(r) of eq-(2.9). The Schwarzschild radius rs (black hole
horizon) corresponds now to the cosmological horizon RH (Hubble radius), and
the Planck scale LP corresponds to the Planck time tP .

Once again, we find that when G(t) is given by eq-(2.16) there is no singu-
larity at t = 0. Given that tcr = tP ; ts = 2GoM = tH , a simple expansion of the
exponential for very small values of t gives (2G(t)M/t)− 1 ' (t2/t2P )− 1, lead-
ing to no singularity of the metric at t = 0. There are two temporal horizons,
t− ' tP ; t+ ' tH around the Planck and Hubble time, respectively. Taking the
trace of Rµν− 1

2gµνR = 8πG(t)Tµν yields the scalar curvature R in terms of the
trace of the stress energy tensor T = −ρr + pz + pθ + pφ, which in turn gives

R(t) ' 1

t2P

(
A − Bt3

t2P tH

)
e−(t3/t2P tH) (2.18)
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where A,B are numerical factors. At t = 0⇒ R ' 1
t2
P

= finite. Therefore, one

has achieved in eq-(2.11) a dynamical regularization of the Kantowski-Sachs
metric : there is no singularity at t = 0. The scalar curvature vanishes in the
t =∞ limit.

Inserting the solution (2.16) found for G(t) into eq-(2.14), k2(t) becomes

k2(t) = ξ GoM
3

4πt2P tH

exp(−t3/t2P tH)

( 1 − exp(−t3/t2P tH) )
(2.19a)

with Go = t2P , and 2GoM = tH . And the variable energy density is

ρ(t) = M
(dG(t)/dt)

4π t2G(t)
=

3M

4πt2P tH

exp(−t3/t2P tH)

( 1 − exp(−t3/t2P tH) )
(2.19b)

The density blows up at t = 0, and is zero at t =∞. However the Ricci tensor
and the scalar curvature (Einstein tensor) are finite at t = 0. The reason being
that when G(t = 0) = 0; ρ(t = 0) = ∞, their product G(t = 0)ρ(t = 0) = 3

8πt2
P

is finite.
To sum up : one has attained a dynamical regularization of the Kantowski-

Sachs metric (2.11) associated with a black hole interior and that there is no
singularity at t = 0. Two temporal horizons at t− ' tP and t+ ' tH are found.
For times below the Planck scale t < tP , and above the Hubble time t > tH ,
the components of the Kantowski-Sachs metric (11) exhibit a key sign change,
so the roles of the spatial z and temporal coordinates t are exchanged, and
one recovers a repulsive inflationary de Sitter-like core around z = 0, and a
Schwarzschild-like metric in the exterior region z > RH = 2GoM .

Concluding, we have modeled our Universe as a homogeneous anisotropic
self-gravitating fluid consistent with the Kantowski-Sachs homogeneous anisotropic
cosmology and Black-Hole cosmology [14]. If one wishes, one can repeat the
whole calculations and include the running cosmological constant Λ(k2(t)) if
one desires to identify the running cosmological constant with the running vac-
uum energy density. Below we shall include the running cosmological constant
in order to suitably modify the Kantowski-Sachs-like metric (2.10). This will
change the expression for k2(t) in (2.19a), and in turn, lead to a very different
expression for ρ(t) than the one provided by eq-(2.19b).

2.3 Inclusion of the Running Cosmological Constant

Let us introduce the running cosmological constant Λ(t) into the following RG
improved and modified Kantowski-Sachs metric

(ds)2 = −
(

2G(t)M

t
+

Λ(t)

3
t2 − 1

)−1

(dt)2 +

(
2G(t)M

t
+

Λ(t)

3
t2 − 1

)
(dz)2

9



+ t2 (dΩ2)2 (2.20)

Given the effective stress energy tensor associated with a self-gravitating anisotropic
fluid Universe

T νµ = diag (− ρ(t), pz(t), pθ(t), pφ(t)) (2.21)

the modified Einstein equations with a running cosmological and gravitational
constant

Rνµ −
1

2
δνµ R + Λ(t) δνµ = 8πG(t) T νµ (2.22)

and corresponding to the metric (20) become

Λ(t) − 2M

t2
d

dt

(
G(t) +

Λ(t)t3

6M

)
= − 8πG(t) ρ(t) (2.23a)

Λ(t) − 2M

t2
d

dt

(
G(t) +

Λ(t)t3

6M

)
= 8πG(t) pz(t) (2.23b)

Λ(t) − M

t

d2

dt2

(
G(t) +

Λ(t)t3

6M

)
= 8πG(t) pθ(t) (2.23c)

Λ(t) − M

t

d2

dt2

(
G(t) +

Λ(t)t3

6M

)
= 8πG(t) pφ(t) (2.23d)

From eqs-(2.23) one can read-off the expressions for the density and pressure

ρ(t) = − pz(t) =
M

4π t2 G(t)

d

dt

(
G(t) +

Λ(t)t3

6M

)
− Λ(t)

8πG(t)
=

M

4πt2G(t)

dG(t)

dt
+

1

24π

t

G(t)

dΛ(t)

dt
(2.24)

pθθ = pφφ =
Λ(t)

8πG(t)
− M

8π t G(t)

d2

dt2

(
G(t) +

Λ(t)t3

6M

)
(2.25)

The relation ρ(t) = −pz(t) bears the same form as the dark energy equation of
state ρ = −p. The conservation of energy ∇ν(8πG(t)T νµ − Λ(t)δνµ) = 0 follows
directly from the Bianchi identities and leads to the relation between ρ = −pz
and the tangential pressure components of the anisotropic fluid (Universe) pθ =
pφ

d

dt

(
G(t)ρ(t) +

Λ(t)

8π

)
+

2 G(t) ( ρ(t) + pθ(t) )

t
= 0 (2.26)

The k2 ↔ ρ(t) relation is postulated to be of the same form as before k2 =
ξGoρ (ξ is a positive numerical constant) but where now ρ(t) is given by eq-
(2.24)
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k2(t) = k2[ρ(t)] = k2[G(t); Λ(t)] = ξ Go ρ(t) =

ξ Go

(
M

4π t2 G(t)

d

dt
[ G(t) +

Λ(t)t3

6M
] − Λ(t)

8πG(t)

)
=

ξ Go

(
M

4πt2G(t)

dG(t)

dt
+

1

24π

t

G(t)

dΛ(t)

dt

)
(2.27)

Upon substituting the above expression (2.27) for k2[ρ(t)] = k2[G(t); Λ(t)] (given
in terms of G(t),Λ(t) and their first order derivatives) into the right hand side
of the running gravitational coupling

G(t) =
Go

1 + g−1
∗ Go k2[ρ(t)]

=
Go

1 + g−1
∗ Go k2[G(t); Λ(t)]

(2.28a)

it furnishes one differential equation involving G(t) and Λ(t)

G(t) + ξ
G2
o

g∗

(
M

4πt2
dG(t)

dt
+

t

24π

dΛ(t)

dt

)
− Go = 0 (2.28b)

The second differential equation is obtained from the running cosmological
constant

Λ(t) = Λo +
b

4
G(t) k4[ρ(t)] = Λo +

b

4
G(t) k4[G(t); Λ(t)] (2.29a)

where k4 is the square of the expression k2[G(t); Λ(t)] displayed in eq-(2.27)

Λ(t) − Λo −
b

4
ξ2 G2

o

G(t)

(
M

4πt2
dG(t)

dt
+

t

24π

dΛ(t)

dt

)2

= 0 (2.29b)

The differential equations (2.28b,2.29b) comprise a very complicated coupled
system of two first-order non-linear differential equations whose origin stems
from the running gravitational coupling, and cosmological constant, combined
with the RG improvement of the Einstein field equations with a cosmological
constant, and associated with the Kantowski-Sachs-like metric of eq-(2.20).

By eliminating one of the functions, the two first-order nonlinear differential
equations (NLDE) can be reduced to a single second-order NLDE. Eliminating
Λ(t) from eqs-(2.28b, 2.29b) yields the following second order NLDE for G(t) :

24πg∗
ξG2

ot
(Go −G(t)) − 6M

t3
dG(t)

dt
+

bξ2G2
o

4

(dG(t)/dt)

G(t)2

(
M

4πt2
dG(t)

dt
+

t

24π
[

24πg∗
ξG2

ot
( Go −G(t)) − 6M

t3
dG(t)

dt
]

)2
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− bξ2G2
o

4G(t)

d

dt

(
M

4πt2
dG(t)

dt
+

t

24π
[

24πg∗
ξG2

ot
( Go −G(t)) − 6M

t3
dG(t)

dt
]

)2

= 0

(2.30)
Since the NLDE eq-(2.30) is of second order one requires to impose boundary

conditions on G(t) and (dG(t)/dt). The choice of boundary conditions must
be consistent with the FRGE flow solutions (2.4) which require that for very
late times t → ∞ : G(t) → Go; Λ(t) → Λo. Therefore, the solutions to the
coupled system of differential equations (2.28b,2.29b) must obey the boundary
conditions :

In the asymptotic t → ∞ limit one should have : G(t) → Go; Λ(t) → Λo;
dG(t)
dt → 0; dΛ(t)

dt → 0. And, in this way ρvac(t) → Λo

8πGo
' 10−122M4

P one
recovers the observed vacuum energy density.

And, when t→ 0 : Λ(t)→∞, (dΛ/dt)→ −∞; while G(t) and (dG/dt)→ 0;
and ρvac →∞. Having solved the complicated system of differential equations
for G(t),Λ(t), the temporal behavior of the running vacuum energy density is

given by ρvac(t) = Λ(t)
8πG(t) . It will be extremely small Λo

8πGo
∼ 10−122M4

P at

t→∞, and it blows up at t = 0. Due to the regularization effects the curvature
scalar R obtained from evaluating the trace of eqs-(2.22)

R = 4Λ(t) − 16πG(t) (pz + pθ) =

2Λ(t) +
4M

t2
dG

dt
+

2

3
t
dΛ(t)

dt
+

2M

t

d2

dt2

(
G(t) +

Λ(t)t3

6M

)
(2.31)

should be finite at t = 0. When one evaluates eq-(2.31) in the region close to
t = 0 there should be terms with positive and negative sign in order to render R
finite at t = 0. Note that as t→ 0, the derivative (dΛ/dt)→ −∞. If the metric
(2.20) is regularized at t = 0 one expects that Λ(t)t2, and (G(t)/t) should be
finite at t = 0.

Whereas, the t→∞ limit of eq-(2.31) gives R→ 4Λo. The scalar curvature
attains a maximum (but finite regularized) value at t = 0, and decreases with
time reaching the minimum nonzero value 4Λo at t = ∞. A de Sitter space in
D = 4 has a constant R = 4Λo (at all times). This result should be contrasted
with the value of R found in eq-(2.18), in the absence of a running cosmological
constant, where it vanishes in the t = ∞ limit, while being finite at t = 0,
R ∼ 1

t2
P

. I It is beyond the scope of this work to analytically and numerically

solve eq-(2.30). For these reasons we can only provide physical reasonings rather
than solving eq-(2.30).

A closing remark, if one were to use the correspondence k2 = ξR, instead of
k2 = ξGoρ, directly into the action (2.2), it will lead to R+R2 Starobinksi-like
inflationary actions. Mapping the latter to the Einstein frame yields a scalar-
tensor theory involving the graviton and a scalar field φ with the inclusion of a
self-interacting scalar potential V (φ) [11].
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3 Weyl Geometry and Dilaton-Gravity

3.1 Classical Dilaton-Weyl Cosmology

Before discussing dilaton-gravity within the context of Weyl geometry, given
the Lorentzian signature (−,+,+,+), let us begin with an action in a curved
Riemannian background

S =

∫
d4x

√
|g|
(

R

16πGo
− gµν

2
(∂µΦ) (∂νΦ) − V (Φ)

)
(3.1)

and associated with a canonical real scalar field Φ with a known prescribed
potential V (Φ). Varying the action with respect to the two fields gµν ,Φ yields

Rµν −
1

2
gµν R =

8πGo

(
(∂µΦ)(∂νΦ) − 1

2
gµν g

αβ(∂αΦ)(∂βΦ) − gµνV (Φ)

)
(3.2)

1√
|g|
∂µ

(√
|g| gµν ∂νΦ

)
− ∂V (Φ)

∂Φ
= 0 (3.3)

The two equations (3.2, 3.3) (Einstein-Klein-Gordon system) are now coupled
and induce a nonlinear Klein-Gordon-like equation for Φ after solving eqs-(3.2)
for the metric gµν in terms of Φ. Namely, a substitution of the form gµν [Φ]
into (3.3) yields a nonlinear Klein-Gordon-like equation. The authors [25] have
shown that the nonrelativistic limit of the two coupled equations (3.2,3.3) fur-
nish the nonlinear Newton-Schrödinger equation

ih̄
∂Ψ(~r, t)

∂t
=

− h̄2

2m
∇2Ψ(~r, t) + V Ψ(~r, t) −

(
Gm2

∫
|Ψ(~r′, t)|2

|~r − ~r′|
d3r′

)
Ψ(~r, t) (3.4)

which is obtained after solving the Poisson equation

∇2U = 4πGomρ = 4πGom Ψ∗Ψ (3.5)

for the Newtonian potential U = U(Ψ,Ψ∗) and substituting its value into the
Schrödinger equation.

The immediate advantage of recurring to Weyl geometry is that it will allow
us to find exact solutions to the very complicated coupled system of equations
(3.2, 3.3). References on Weyl’s geometry can be found in [15], [16], [17], [18],
[26], [28], among many others. Weyl’s geometry main feature is that the norm
of vectors under parallel infinitesimal displacement going from xµ to xµ + dxµ
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change as follows δ||V || ∼ ||V ||Aµdxµ where Aµ is the Weyl gauge field of scale
calibrations that behaves as a connection under Weyl transformations :

A′µ = Aµ − ∂µ Ω(x). gµν → e2Ω gµν . (3.6)

involving the Weyl scaling parameter Ω(xµ) . The Weyl covariant derivative
operator acting on a tensor T is defined by DµT = ( ∇µ + ω(T ) Aµ ) T;
where ω(T) is the Weyl weight of the tensor T and the derivative operator
∇µ = ∂µ + Γµ involves a connection Γµ which is comprised of the ordinary
Christoffel symbols {ρµν} plus the Aµ terms

Γρµν = {ρµν} + δρµ Aν + δρν Aµ − gµν g
ρσ Aσ (3.7)

The Weyl gauge covariant operator ∂µ + Γµ + w(T)Aµ obeys the condition

Dµ (gνρ) = ∇µ (gνρ) + 2 Aµ gνρ = 0. (3.8)

where ∇µ(gνρ) = − 2 Aµ gνρ = Qµνρ is the non-metricity tensor. Torsion
can be added [17] if one wishes but for the time being we refrain from doing so.
The connection Γρµν is Weyl invariant so that the geodesic equation in Weyl
spacetimes is Weyl-covariant under Weyl gauge transformations (scalings)

ds→ eΩ ds;
dxµ

ds
→ e−Ω dxµ

ds
;
d2xµ

ds2
→ e−2Ω [

d2xµ

ds2
− dxµ

ds

dxν

ds
∂νΩ ] (3.9)

gµν → e2Ω gµν ; Aµ → Aµ−∂µΩ; Aµ → e−2Ω (Aµ−∂µΩ); Γρµν → Γρµν . (3.10)

The Weyl connection and curvatures scale as

Γρµν → Γρµν , Rρµνσ → Rρµνσ, Rµν → Rµν , R → e−2Ω R (3.11)

Thus, the Weyl covariant geodesic equation transforms under Weyl scalings as

d2xρ

ds2
+ Γρµν

dxµ

ds

dxν

ds
− Aµ

dxµ

ds

dxρ

ds
= 0 →

e−2Ω [
d2xρ

ds2
+ Γρµν

dxµ

ds

dxν

ds
− Aµ

dxµ

ds

dxρ

ds
] = 0. (3.12)

The Weyl weight of the metric gνρ is 2. The meaning of Dµ(gνρ) = 0 is
that the angle formed by two vectors remains the same under parallel transport
despite that their lengths may change. This also occurs in conformal mappings
of the complex plane. The Weyl covariant derivative acting on a scalar φ of
Weyl weight ω(φ) = −1 is defined by

Dµφ = ∂µ φ + ω(φ)Aµ φ = ∂µ φ − Aµ φ. (3.13)

The Weyl scalar curvature in D dimensions and signature (−,+,+,+....) is 1

1Some authors define their Aµ field with the opposite sign as −Aµ which changes the sign
in the last term of the Weyl scalar curvature (3.14)
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RWeyl = RRiemann − (d− 1)(d− 2)AµA
µ − 2(d− 1)∇µAµ. (3.14)

Having introduced the basics of Weyl geometry our starting action is the
Weyl-invariant Jordan-Brans-Dicke-like action involving the scalar φ field and
the scalar Weyl curvature RWeyl

S[gµν , Aµ, φ] = S[g′µν , A
′
µ, φ
′] ⇒∫

d4x
√
|g| [ φ2 RWeyl(gµν , Aµ) − 1

2
gµν (Dµφ)(Dνφ) − V (φ) ] =∫

d4x
√
|g′| [ (φ′)2 RWeyl(g

′
µν , A

′
µ) − 1

2
g′µν (D′µφ

′)(D′νφ
′) − V (φ′) ] (3.15)

where under Wey scalings one has

φ′ = e−Ω φ; g′µν = e2Ω gµν ; RWeyl(g
′
µν , A

′
µ) = e−2Ω RWeyl(gµν , Aµ)

V (φ′) = e−4Ω V (φ),
√
|g′| = e4Ω

√
|g|; D′µφ

′ = e−Ω Dµφ; A′µ = Aµ −∂µΩ.
(3.16)

Despite that one has not introduced any explicit dynamics to the Aµ field
(there are no FµνF

µν terms in the action (3.15) with Fµν = ∂µAν − ∂νAµ)
one still has to take into account the equation obtained from the variation of
the action in d = 4 w.r.t to the Aµ field and which leads to the pure-gauge
configurations provided φ 6= 0

δS

δAµ
= 0 ⇒ φ2 δRWeyl

δAµ
+

δ(Dµφ)

δAµ

δSmatter
δ(Dµφ)

= 0 ⇒

gµνDνφ
2 = 0 ⇒ Dµφ = 0 ⇒ Aµ = ∂µ ln (φ). (3.17)

Hence, a variation of the action w.r.t the Aµ field leads to the pure gauge solu-
tions (3.17) which is tantamount to saying that the scalar φ is Weyl-covariantly
constant Dµφ = 0 in any gauge Dµφ = 0 → e−ΩDµφ = D′µφ

′ = 0 (for non-
singular gauge functions Ω 6= ±∞).

Therefore, the scalar φ does not have true local dynamical degrees of freedom
from the Weyl spacetime perspective. Since the gauge field is a total derivative,
under a local gauge transformation with a gauge function Ω = ln(φ/φo), one
can gauge away (locally) the gauge field Aµ and have A′µ = 0 in the new gauge.
Globally, however, this may not be the case because there may be topological
obstructions. Therefore, the gauge A′µ = 0 implies that φ′ = φo = constant,
and which can be chosen such that 16πGN = φ−2

o , where GN is the observed
Newtonian gravitational coupling, and one recovers the Einstein-Hilbert action
with a cosmological constant Λo = 8πGNV (φo).

The pure-gauge configurations leads to the Weyl integrability condition Fµν =
∂µAν − ∂νAµ = 0 when Aµ = ∂µΩ, and means physically that if we parallel
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transport a vector under a closed loop in a flat spacetime, as we come back
to the starting point, the norm of the vector has not changed; i.e, the rate at
which a clock ticks does not change after being transported along a closed loop
back to the initial point; and if we transport a clock from A to B along different
paths, the clocks will tick at the same rate upon arrival at the same point B.
This will ensure, for example, that the observed spectral lines of identical atoms
will not change when the atoms arrive at the laboratory after taking different
paths ( histories ) from their coincident starting point. In this way on can by-
pass Einstein’s objections to Weyl. If Fµν 6= 0 the Weyl geometry is no longer
integrable. This can occur if one adds explicit FµνF

µν terms to the action which
may lead to true dynamical degrees of freedom for the gauge field Aµ.

This result Dµφ = 0 also follows in other dimensions. Substituting

Aµ =
2

d− 2
∂µlnφ (3.18)

into

RWeyl = RRiemann − (d− 1)(d− 2)AµA
µ − 2(d− 1)∇µAµ (3.19)

gives

RWeyl = RRiemann − 4
d− 1

d− 2

∇µ∇µφ
φ

(3.20)

The last term in (3.20) has a similar functional form as Bohm’s quantum poten-
tial [22], [23]. From now we shall denote R for the Riemannian scalar curvature
RRiemann. The covariant derivative ∇µ appearing in (3.19,3.20) is the one
defined in terms of the Christoffel conection {}, and not based on the Weyl
connection Γ.

Given the action (3.15) in d = 4 the field equations are obtained after the
variations of the action with respect to the 3 fields gµν , Aµ, φ, respectively

φ2

(
RWeyl
µν − 1

2
gµν RWeyl

)
− DµDνφ

2 + gµν g
αβDαDβφ

2 =

1

2
(Dµφ)(Dνφ) − 1

4
gµν g

αβ(Dαφ)(Dβφ) − 1

2
gµνV (φ) (3.21)

Dµφ
2 = 2 Dµφ = 0 ⇒ Aµ = ∂µln(φ) (3.22)

2φ RWeyl −
∂V (φ)

∂φ
+ DµD

µφ = 0 (3.23)

As stated earlier, the field equationDµφ = 0 just states the φ is Weyl-covariantly
constant. This result when followed by taking the trace of (3.21) gives φ2RWeyl =
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2V (φ) which allows to eliminate RWeyl = 2φ−2V (φ), and inserting it in eq-
(3.23) yields 4φ−1V (φ)− V ′(φ) = 0, singling out the quartic potential V (φ) =
κφ4 in d = 4, out of an infinity of possible choices for the classical potential. For
example, one could have potentials of the form V =

∑
n cnM

4−nφn where M is
mass-like parameter (a scalar moduli parameter) which scales as M → e−ΩM
in order to render the action Weyl invariant.

To sum up, in this Weyl geometric approach the choice for the classical
potential V = κφ4 is not ad hoc but can be inferred from the field equations
themselves. One must emphasize that we are focusing solely on the classical
potential. It is known that quantum fluctuations lead to an effective scalar
potential that will introduce corrections to the classical quartic potential, see
for example [19] for technical details.

Eq-(3.23) in d = 4 can be rewritten in terms of the Riemannian scalar
curvature, after using Dµφ = 0, as

2 R φ − 12√
|g|
∂µ

(√
|g| gµν ∂νφ

)
− ∂V (φ)

∂φ
= 0 (3.24)

Upon inserting the derived expression for V (φ) = κφ4 above, it gives

R φ − 6√
|g|
∂µ

(√
|g| gµν ∂νφ

)
− 2 κ φ3 = 0 (3.25)

It remains now to solve eq-(3.21) given Dµφ = 0 and V (φ) = κφ4. After
factoring out φ2 and substituting RWeyl = 2κφ2 leads to

RWeyl
µν =

1

2
gµν κφ

2 (3.26)

with

RWeyl
µν = Rµν −2∇µAν − gµν gαβ ∇αAβ +2 Aµ Aν −2 gµν g

αβ AαAβ (3.27)

Before proceeding, it is relevant to mention that since the Weyl weight of RWeyl
µν

is 0, from eq-(3.27) after some straightforward lengthy algebra, one can infer the
transformation law of the Riemannian Ricci tensor Rµν in d = 4 under scalings
gµν → e2Ωgµν

R′µν =

Rµν −2∇µ∇νΩ − gµν gαβ (∇α∇βΩ) +2 (∇µΩ)(∇νΩ) −2 gµν g
αβ(∇αΩ)(∇βΩ)

(3.28)
From eq-(3.26) one then arrives at the Weyl invariant field equation

RWeyl
µν (g,A) = RWeyl

µν (g′,A′) =
1

2
gµν κ φ

2 =
1

2
g′µν κ φ

′2 (3.29)

with g = gµν ,A = Aµ, · · ·. The dimensionless parameter κ is inert under
scalings.
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The zero gauge choice A′µ = 0 leads to

A′µ = ∂µ[ln(
φ′

φo
)] = Aµ − ∂µΩ = ∂µ[ln(

φ

φo
)]− ∂µΩ = 0 ⇒

φ′ = φo; eΩ =
φ

φo
(3.30)

which resulted from D′µφ
′ = Dµφ = 0.

Consequently, one arrives finally at

RWeyl
µν (g′;A′ = 0) = R′µν =

1

2
g′µν κ φ

2
o ⇒ R′ = 2κ φ2

o (3.31)

leading to a family of spacetime backgrounds which are all conformally equiva-
lent to backgrounds of constant Riemannian scalar curvature : (Anti) de Sitter
spaces. The solutions to the scalar φ field equation (3.25) defined in spacetime
backgrounds which are conformally equivalent to a (Anti) de Sitter background

gµν = e2 Ω′(x) g′(A)dS
µν = e−2 Ω(x) g′(A)dS

µν , Ω = − Ω′ (3.32)

are of the form φ = e−Ω′(x)φo = eΩ(x)φo; φo = (16πGN )−1/2 is the constant
directly related to the observed Newtonian coupling GN . Given

gµν = e2 Ω′(x) g′(A)dS
µν = e−2 Ω(x) g′(A)dS

µν (3.33a)

under Weyl scalings the constant Riemannian scalar curvature of (Anti) de Sitter
space in d = 4 transforms as

R = e2Ω(x)
(
R′(A)dS + 6 (∇µ∇µΩ) − 6 (∇µΩ) (∇µΩ)

)
(3.33b)

such that

R φ − 6√
|g|
∂µ

(√
|g| gµν ∂νφ

)
− 2 κ φ3 =

e3Ω(x)
(
R′(A)dS φo − 2 κ φ3

o

)
= 0 (3.34)

as expected.
To sum up, starting with a dilaton-gravity (scalar-tensor theory) system

within the context of Weyl’s geometry, permits to single out the expression for
the classical potential V (φ) = κφ4, instead of being introduced by hand, and
find the following family of metric solutions to the field equations (3.21-3.23)
which are conformally equivalent to the (Anti) de Sitter metric

gµν [φ] = e−2Ω g′(A)dS
µν [φo] = (

φo
φ

)2 g′(A)dS
µν [φo] (3.35a)
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and where the Weyl field is

Aµ[φ] = ∂µ[ln(
φ

φo
)] (3.35b)

The (Anti) de Sitter metric g
′(A)dS
µν [φo] has an explicit dependence on φo via the

cosmological constant Λ : R′ = 4Λ = 2κφ2
o. κ < 0 for Anti de Sitter space;

κ > 0 for de Sitter space. The solutions with κ = 0 lead, for example, to
the Schwarzschild (R′µν = R′ = 0) and Reisnner-Nordstrom (R′ = 0) metrics
corresponding to static spherically symmetric backgrounds.

The prime example of a de Sitter background of constant Riemannian scalar
curvature is the observed accelerated-expanding universe R′ = 12H2

o = 12
R2

H

where RH is the present day Hubble radius. Substituting R′ = 12H2
o into

eq-(3.34) fixes the numerical coefficient κ of the potential V (φ′) = κφ′4,

12H2
o = 2κ φ2

o ⇒ κ =
6

φ2
oR

2
H

(3.36)

Therefore, by evaluating the potential at φ′ = φo, after fixing the Weyl scale
invariance by setting φ′2 = φ2

o = (16πGN )−1 ( Go = GN = Newton’s constant)
it gives

V (φo) = κ φ4
o =

6

φ2
oR

2
H

φ4
o = 6

φ2
o

R2
H

=
6

16πGNR2
H

=
3

8πGNR2
H

= ρcr

(3.37)
and one recovers, in a straightforward fashion, the Universe’s observed critical
mass density with the precise numerical factor, which agrees also with the ob-
served vacuum energy density ρvac. The reason one has found exact solutions
to the field equations in a straightforward fashion is due to the fact that one did
not introduce dynamical degrees of freedom for the Weyl field Aµ. Including
FµνF

µν into the action (3.15) would have considerably affected matters.

3.2 Dilaton-Gravity and RG-improved Cosmology

This last section is devoted to the study of dilaton-gravity [24] based entirely
on Riemannian geometry and its application to Cosmology. A typical ansatz
for the truncated effective average action in dilaton-gravity (DG) in the Jordan
frame is

ΓDGk =

∫
d4x

√
|g| [ Fk(φ2) R − 1

2
Kk(φ2) (∂µφ) (∂µφ) − Vk(φ2) ] + · · ·

(3.38)
where the ellipsis · · · denote the gauge fixing and ghost terms. The functions
Fk,Kk, Vk depend on the scalar field φ and the RG scale k. One can expand
these functions in a power series with k-dependent coefficients
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Fk =

∞∑
n=−∞

an(k) φn, Vk =

∞∑
n=−∞

λn(k) φn, Kk =

∞∑
n=−∞

bn(k) φn

(3.39)
By substituting the ansatz ΓDGk into the FRGE equation (2.1) [3], and scaling
the coefficients an(k), bn(k), λn(k) by suitable powers of k in order to generate
dimensionless couplings, yields a system of coupled partial differential equations
determining the scale-dependence of Fk,Kk, Vk. Converting ΓDGk to the Einstein
frame the predictions for the cosmological observables may then be constructed
[11], [12].

Let us simplify the problem considerably by choosing a0(k) = 1
16πG(k) , Kk =

1, and λ4(k) = λ(k)
4 , Vk(φ) = λ(k)

4 φ4, while setting all the other coefficients in
eq-(3.39) to zero. Concentrating on a Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric when the spatial curvature is flat, the time evolution of φ and
the scaling factor a(t) are obtained from solving the RG-improved Friedmann
and Klein-Gordon-like equations

(
ȧ

a
)2 =

8πG(k)

3

(
φ̇2

2
+ Vk(φ)

)
(3.40)

φ̈ + 3
ȧ

a
φ̇ +

dVk(φ)

dφ
= 0, Vk(φ) =

λ(k)

4
φ4 (3.41)

The RG-improvement version of the Friedmann and Klein-Gordon-like equa-
tions that we shall propose in this work differs from the one studied in [11].
It is obtained by assuming that G(k) and λ(k) are converted to functions of
the cosmological time G(t), λ(t) by an appropriate cutoff identification k = k(t)
given now by k = ξφ(t), instead of the usual identification k = ξH(t) in [11].
The Hubble function is defined by H(t) ≡ ȧ

a , and ξ is a positive constant.
The explicit expressions G = G(k) and λ = λ(k) are dictated by the RG

equations of the dilaton-gravity system [12]. And, which in turn, fix the func-
tional form G = G(k = ξφ) and λ = λ(k = ξφ) in terms of φ. Denoting the
temporal derivatives by dots, the RG-improvement version of the Friedmann
and Klein-Gordon-like equations become

(
ȧ

a
)2 =

8πG(ξφ)

3

(
φ̇2

2
+

λ(ξφ)

4
φ4

)
(3.42)

φ̈ + 3
ȧ

a
φ̇ + λ(ξφ) φ3 +

φ4

4

dλ(ξφ)

dφ
= 0 (3.43)

Given the prescribed functional form of G = G(ξφ) and λ = λ(ξφ), eqs-
(3.42,3.43) determine the temporal dependence of a(t), φ(t). Because the above
equations are very difficult to solve analytically let us simplify matters by setting
ξ = 1, and by focusing in the deep ultraviolet region where g = G(k)k2, and
λ(k) assume their non-Gaussian interacting fixed-point values g∗ 6= 0;λ∗ 6= 0,
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respectively, it leads to G ' g∗
φ2 , and V ' λ∗

4 φ
4. Inserting these values into eqs-

(3.42,3.43) , and eliminating H = ȧ
a , yields the nonlinear differential equation(

φ̈ + λ∗φ
3

3φ̇

)2

' 8π

3

g∗
φ2

(
φ̇2

2
+

λ∗
4
φ4

)
(3.44)

which has a very simple solution

φ(t) =
A

t
, A =

√
6πg∗ − 2

λ∗
, g∗ > 0, λ∗ > 0 (3.45)

with the provision that A is real-valued, and such that the quartic potential
V ' A4t−4 evaluated at the Planck time t = tP is of the order of M4

P , which
agrees with the expected zero-point energy density of a scalar field when a
Planck-mass cutoff is chosen.

The dilaton-gravity beta functions [12] differ from the pure Einstein gravity
plus cosmological-constant system. In the former case, the value of the UV fixed
point g∗ associated to the dimensionless coupling g(k) = G(k)k2 is shifted
from the value in the latter case. However, one still has a similar functional
expression for G(k2) of the form G(k2) = Go(1 + g−1

∗ Gok
2)−1. Introducing the

cut-off identification scale k = ξφ yields

G = G[k2(φ)] =
Go

1 + g−1
∗ Goξφ2

⇒ φ2 =
g∗
ξ

(
G−1 − G−1

o

)
(3.46)

And one learns that φ2 is infinite at G = 0 (when k =∞, t = 0), and φ2 is zero
at G = Go (when k = 0, t =∞). Therefore, there is consistency in introducing
the cut-off identification scale k = ξφ. An important remark is in order : one
must not confuse fixing the Weyl scale invariance by setting φ2

o = 1
16πGo

in the
previous section with the RG flow of the gravitational coupling expressed in the
form described by eq-(3.46).

Fo instance, instead of studying the RG flow of the dilaton-gravity system
and the RG-improved Cosmology based on the FLRW metric, we return to the
Kantowsi-Sachs metric (2.11) of the previous section, and for the sake of the
argument in order to obtain a numerical estimate of the classical Higgs-like
quartic potential κφ4, where κ is given by eq-(3.36), let us set φ2(t) = 1

16πG(t) ,

instead of using the relation in eq-(3.46), and insert the expression for G(t)
found in eq-(2.16) that was derived within the context of the Kantowsi-Sachs
cosmology. The quartic potential becomes in this case

V (φ(t)) = κ φ4(t) =
6

φ2
oR

2
H

φ4
o

(1− e−t3/RHt2P )2
(3.47)

When t = tH = RH , V (φ(tH)) ' V (φo) = (3/8πGNR
2
H) = ρvac, one recovers

the observed vacuum energy density 2. Whereas at Planck’s time t = tP , one

2We use the ' symbol because strictly speaking (1− e−R
2
H/L

2
P )2 = (1− ε)2 6= 1
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finds after a Taylor expansion of the exponential, in c = 1 units, the expected
very large result

V (φ(tP )) =
6

φ2
oR

2
H

φ4
o

(1− e−tP /RH )2
' 6

φ2
oR

2
H

φ4
o

(tP /RH)2
=

3

8π
M4
P (3.48)

simply by substituting 16πφ2
o = G−1

N = L−2
P = M2

P (h̄ = c = 1). As the bubble
expands it borrows energy from the vacuum, thus depleting its energy density
to the extremely low value currently observed. Note that the potential (3.48) at
t = tP has the same order of magnitude as the potential V ' A4t−4 evaluated
at the Planck time t = tP and derived from eq-(3.45).

To finalize, if one were to use the usual identification k(t) = ξH(t) in [11],
instead of k = ξφ(t), eqs-(3.42,3.43) would have turned out to be

(
ȧ

a
)2 = H2 =

8πG(ξH)

3

(
φ̇2

2
+

λ(ξH)

4
φ4

)
(3.49)

φ̈ + 3 H φ̇ + λ(ξH) φ3 = 0 (3.50)

One way to solve eqs-(3.49,3.50) is by rewriting the temporal derivatives in
terms of derivatives with respect to H as follows

φ̇ =
(dφ/dH)

(dt/dH)
=

φ′(H)

t′(H)
, φ′ =

dφ

dH
, t′ =

dt

dH
(3.51)

φ̈ =
φ′′(H) t′(H) − t′′(H) φ′(H)

(t′(H))3
(3.52)

such that eqs-(3.49,3.50) turn into two nonlinear differential equations for φ =
φ(H), and t = t(H). Consequently, it is much easier to solve the system of
eqs-(3.42,3.43) than (3.49-3.52). For this reason we opted to use the cut-off
identification k(t) = ξφ(t) rather than k(t) = ξH(t). A thorough discussion of
the possible implications of Asymptotic Safety in FLRW-cosmological models
based on the cutoff identification k = ξH(t) can be found [11]. For instance,
in the study of cosmology in the fixed point regime, quantum gravity-driven
inflation and an almost scale-free fluctuation spectrum.

To conclude, the exploration of Kantowski-Sachs and FLRW-Cosmology,
Weyl Geometry and Asymptotic Safety in Quantum Gravity has generated some
interesting results in this work that deserve to be investigated further. In order
to study the effective average action of the dilaton-gravity system within the
context of Weyl geometry one could follow a similar and very technical procedure
as the one taken in [12] involving the inclusion of NS scalars, NF fermions and
NV Abelian vectors. For simplicity we decided to discuss the dilaton-gravity
system within the context of Riemannian geometry.
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