

Using YARA tags to build a heuristic
scanner

Jason Reaves
Threat Research, SentinelOne

sysopfb@gmail.com

ABSTRACT
 YARA is a tool that has been pretty heavily adopted within the Cyber Security
community, it was built to aid malware researchers with identifying and classifying
malicious objects[1]. Instead of approaching this problem with a purely good or
bad mindset in detecting malicious objects, we can utilize added functionality of
YARA, namely tags, to approach the problem of judging how malicious or
suspicious an object is by looking at the problem in smaller sets. This concept is
commonly used in heuristic engines used by antiviruses and sandboxes where you
can give a weight of maliciousness to an object. The aim of this paper is to
introduce a method for such an engine to be built by an organization utilizing
existing software.

Keywords
Malware; YARA; Heuristics; Scanning

1. Introduction
A common approach with detecting something is to hone in on what makes it
unique is this can sometimes involve very large and very specific signatures. This
is done because the malware researcher is looking for something specific, whatever
that may be they will usually generate a narrow scoped signature and a broad
signature this lets you tune your YARA rules in a more manageable fashion but
you can end up repeating the process multiple times. Making a more generic
signature based on possible suspicious or malicious indicators allows for quicker
generation of signatures for detection purposes but also lowers your ability to
accurately detect something based on name, instead you are writing detections
based on techniques and tactics or other suspicious indicators that can then allow
you to assign a score to something. This also allows you to classify something
based on its capabilities and is a technique antivirus companies use called heuristic

scanning in order to try and detect new or unknown malware. A normal company
however doesn’t need to rely on external software in order to perform this type of
scanning, a single malware researcher tracking the families targeting a company
can easily generate such signatures on a daily basis at various levels, by levels I
refer to creating signatures for a standalone scanning engine in this case YARA to
scan for example all inbound email attachments for suspicious or malicious
indicators, all outbound emails for possible data leaking(DLP), all executable files
transferred around the network and can also can be written to target memory
scanning from sandbox executions[4,5,6] or forensics[7].

2. Heuristic Engine
For our purposes we are wanting an engine that we can utilize for scanning files,
this engine should accept easily creatable rules. The rules for the engine should be
able to have meta data in them that can be used for concise descriptions of the hits
on a file along with a heuristic score that can applied for each hit, they should also
be easily customizable. As it turns out an existing engine already exists geared
towards malware identification and classification; YARA. YARA also comes with
the ability to have meta data inside its rules, so the research that follows is a case
study on how to use YARAs capabilities along with a little development work to
get a very easy to use and easy to expand heuristics scanning engine.

This engine will simply be a python script with a YAML configuration and a
collection of generated YARA rules that will live in sub directories with the main
YARA rules referenced in the YAML configuration file controlling importing the
signature files from the subdirectories.

3. YARA Tags
Adding tags to YARA rules is a feature that was added in order to be able to filter
the output of running your rules, in order to accomplish our heuristic scanning we
use it for a similar but slightly different purpose. We will be using tags to give
short and concise descriptions about the rule, combining this with the meta data
that can be added into a YARA rule allows us to expand the usage in a variety of
ways. Instead of using tags we could have more descriptive data inside the meta
data section to be used for a similar purpose but the short nature of tags fit our
needs of having a concise description.

4. META data

YARA allows for meta data to be included in its rules, it’s intended use is for
storing additional information about the rule[]. The additional information is stored
in a identifier value method separated by an equal sign, our additional information
will be the score value that we want to assign when a file is detected by a rule.

This allows us to build a label system that we will be able to collect and output in
the event of a file exceeding our score system.

5. Building the engine
The pseudocode for our engine is pretty straightforward:

Figure 1 Engine psuedocode

We will have an argument system and a single configuration file, the configuration file will
simply contain a list of YARA rules that we will import. An example of this would be common
windows API function names that are XOR encoded, such a trait could mean a packed or

obfuscated file which is not a malicious trait by itself but can be suspicious. The level of
suspiciousness is completely dependent on each environment that you are scanning in, in certain
environments such a trait could be so suspicious that it is deemed indistinguishable from
malicious and is then elevated to a malicious trait. These sort of determinations require
individuals familiar with the environment to make and could be adjusted continually as time goes
on.

In the config is a string ‘apis’ which will line up with a YARA file sitting in predetermined
location and named ‘apis.yar’. This allows the scanning engine to simply enumerate everything
in the configuration file to load all the scanning rules but also allows flexibility in regards to
turning on and off rulesets.

Figure 2 APIs Yara

Inside the ‘apis.yar’ file is a collection of includes to load all the associated rulesets, this once
again makes the entire system more extensible.

Figure 3 Scanner directory layout

This proposed structure for the demonstration purposes of this paper can be seen in figure 6. A
few examples of rules would be to look for XOR encoded API calls such as GetProcAddress and
LoadLibraryA or XOR encoded RSA keys.

Figure 4 Sniffer of YARA file

Figure 5 Newer YARA keyword XOR

With the framework lined out it’s input over time becomes YARA rules, the flexibility of a
scoring system allows the user to create a broad range of rules from specific YARA designed to
detect families or packers to broader rules designed to detect suspicious indicators.

Figure 6 Framework flowchart

Using our scanning engine with a simple print out format:

5b1beb5ac97d1ce84ae215dd1ec6b8d7e4522bbe47dbb79e4128abf26d5228891~Rip.exe:
apis:

XOR_GetProcAddress 10
XOR_VirtualAlloc 10
XOR_LoaderLibraryA 10
XOR_GetModuleHandleA 10

06apr_doc1~Rip.exe:

apis:
XOR_GetProcAddress 10
XOR_LoaderLibraryA 10
XOR_GetModuleHandleA 10

06apr_doc.doc:

apis:
XOR_GetProcAddress 10
XOR_LoaderLibraryA 10
XOR_GetModuleHandleA 10

5b1beb5ac97d1ce84ae215dd1ec6b8d7e4522bbe47dbb79e4128abf26d522889:

apis:
XOR_GetProcAddress 10
XOR_VirtualAlloc 10
XOR_LoaderLibraryA 10
XOR_GetModuleHandleA 10

ab2cf2d4-2611-48b5-9799-8d6198e9c936.pcap:

apis:
XOR_GetProcAddress 10
XOR_LoaderLibraryA 10
XOR_GetModuleHandleA 10

Figure 7 Demonstration run

Conclusion and Future Work

In this paper I detailed a proof of concept system for creating a heuristic scanning engine
utilizing YARA tags, there are a number of places within the realm of cybersecurity where this
concept could be utilized including scanning inbound and outbound objects detecting on a
network perimeter. Future work should consist of utilizing this concept for heuristically scanning

inbound objects for example within emails and such a system could built on top of this to
consume the scanning reports and then create automated detections and quarantining entire spam
campaigns to an enterprise environment based on a heuristic threshold. Scanning outbound
objects would also be possible if an enterprise environment were to detect and carve them for
temporary scanning you could perform retroactive detection looking for outbound sensitive
documents such as intellectual property or other important corporate data being exfiltrated.

References

1: https://virustotal.github.io/yara/
2: https://yara.readthedocs.io/en/v3.4.0/writingrules.html#rule-tags
3: https://yara.readthedocs.io/en/v3.4.0/writingrules.html#metadata
4: Willems, C.: CWSandbox: Automatic Behaviour Analysis of Malware (2006),
http://www.cwsandbox.org/
5: https://github.com/kevoreilly/CAPEv2
6: https://github.com/SparkITSolutions/phoenix
7: https://github.com/volatilityfoundation/volatility

http://www.cwsandbox.org/

