Excircles of a triangle with two parallel sides

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract

For a triangle $A B C$, the radius of the excircle touching $C A$ from the side opposite to B equals 0 if $B C$ and $C A$ are parallel.

Keywords. excircle, triangle with parallel sides, division by zero.

Let us consider the excircle of a triangle $A B C$ touching $C A$ from the side opposite to B (see Figure 1). We show that the radius of this circle equal 0 if $B C$ and $C A$ are parallel.

Figure 1.

We use a rectangular coordinate system such that A and B have coordinates ($a, 0$) and $(b, 0)$, respectively, where we assume that the point C lies on the region $y>0$. Let θ_{a} (resp. θ_{b}) be the angles between $\overrightarrow{B A}$ and $\overrightarrow{A C}$ (resp. $\overrightarrow{B C}$). Then the center of the excircle coincides with the point of intersection of the two lines expressed by $y=\tan \frac{\theta_{a}}{2}(x-a)$ and $y=\tan \frac{\theta_{b}}{2}(x-b)$. The coordinates of the point are give by

$$
\left(\frac{a \tan \frac{\theta_{a}}{2}-b \tan \frac{\theta_{b}}{2}}{\tan \frac{\theta_{a}}{2}-\tan \frac{\theta_{b}}{2}},(a-b) \frac{\sin \frac{\theta_{a}}{2} \sin \frac{\theta_{b}}{2}}{\sin \frac{\theta_{a}-\theta_{b}}{2}}\right),
$$

where notice that the y-coordinate gives the radius of the excircle. Now we fix the points A and B and consider the case $\theta_{a}=\theta_{b}$ (see Figure 2). Then by the definition of division by zero, $z / 0=0$ for any number $z[1]$, we see that the center of the excircle has coordinates $(0,0)$. Therefore the exradius equals 0 .

Figure 2.
Remark. The essential part of this note is the fact that the point of intersection of two parallel lines coincides with the origin, which is pointed out in [2].

References

[1] M. Kuroda, H. Michiwaki, S. Saitoh, M. Yamane, New meanings of the division by zero and interpretations on $100 / 0=0$ and on $0 / 0=0$, Int. J. Appl. Math., 27(2) (2014) 191-198.
[2] S. Saitoh, Division by zero calculus (draft).

