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Abstract: We will refer to an application of the division by zero calculus
in Ford circles that have the relations to some criteria of irrational numbers
as covering problems and to the Farey sequence Fn for any positive integer
n.
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1 Introduction - definitions of Ford circles and
division by zero calculus

First we will recall Ford circles. Consider any two relatively prime integers
h and k, then the circle C(h, k) of radius 1/(2k2) centered at (h/k, 1/(2k2))
is known as a Ford circle. Let d be the distance between the centers of the
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circles with C(h, k) and C(h′, k′)

d2 =

(
h′

k′ −
h

k

)2

+

(
1

2k′2 − 1

2k2

)2

and s be the sum of the radii

s = r1 + r2 =
1

2k2
+

1

2k′2 .

Then
d2 − s2 =

(h′k − hk′)2 − 1

k2k′2 .

From d2 − s2 ≥ 0, (h′k − k′h)2 ≥ 1, and so the two circles are touching
(tangency) if and only if

|h′k − k′h| = 1. (1.1)
See ([8]).

Ford circles are related to the Farey sequence ([4], Conway and Guy 1996).
The Farey sequence Fn for any positive integer n is the set of irreducible

rational numbers a/b with 0 ≤ a ≤ b ≤ n and (a, b) = 1 arranged in
increasing order. The first few are

F1 = {0/1, 1/1}

F2 = {0/1, 1/2, 1/1}
F3 = {0/1, 1/3, 1/2, 2/3, 1/1}

F4 = {0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1}
F5 = {0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1}

and so on.
Except for F1, each Fn has an odd number of terms and the middle term

is always 1/2.
Let p/q, p′/q′, and p′′/q′′ be three successive terms in a Farey series. Then

qp′ − pq′ = 1

and
p′

q′
=

p+ p′′

q + q′′
. (1.2)
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This is the intermediate number of Farey.

If h1/k1, h2/k2, and h3/k3 are three consecutive terms in a Farey sequence,
then the circles C(h1, k1) and C(h2, k2) are tangent at

α1 =

(
h2

k2
− k1

k2(k2
2 + k2

1)
,

1

k2
1 + k2

2

)
(1.3)

and the circles C(h2, k2) and C(h3, k3) intersect in

α2 =

(
h2

k2
+

k3
k2(k2

2 + k2
3)
,

1

k2
2 + k2

3

)
.

Moreover, α1 lies on the circumference of the semicircle with diameter (h1/k1, 0)−
(h2/k2, 0) and α2 lies on the circumference of the semicircle with diameter
(h2/k2, 0)− (h3/k3, 0) ([1], Apostol 1997, p. 101).

Division by zero and division by zero calculus were, indeed, very simple.
For the basic references on the division by zero and the division by zero
calculus, see the references cited in the reference.

For a function y = f(x) which is n order differentiable at x = a, we will
define the value of the function, for n > 0

f(x)

(x− a)n

at the point x = a by the value

f (n)(a)

n!
.

For the important case of n = 1,

f(x)

x− a
|x=a = f ′(a). (1.4)

In particular, the values of the functions y = 1/x and y = 0/x at the origin
x = 0 are zero. We write them as 1/0 = 0 and 0/0 = 0, respectively. Of
course, the definitions of 1/0 = 0 and 0/0 = 0 are not usual ones in the sense:
0 · x = b and x = b/0. Our division by zero is given in this sense and is not
given by the usual sense. However, we gave several definitions for 1/0 = 0
and 0/0 = 0 with many examples and applications. See, for example, [27].

3



In addition, when the function f(x) is not differentiable, by many mean-
ings of zero, we should define as

f(x)

x− a
|x=a = 0,

for example, since 0 represents impossibility. In particular, the value of the
function y = |x|/x at x = 0 is zero. For this paper, we need only the
definition of the division by zero calculus.

The aim of this paper is to consider the special circle C(h, 0) from the
view point of the division by zero calculus. For this purpose, we will consider
the group of the circles C(h, k) for real numbers h, k (we do not consider the
conditions of rational numbers and of co-primeness (h,k)=1).

The division by zero calculus is to consider the case k = 0 in the fractional
h/k.

Then, how to consider h for h/0 = 0? On the above line and from the
primeness (h, k) = 1, we would like to consider the case h = 1. Indeed,
we would like to show that the irruducible fraction of h/0 may be
considered as 1/0; that is h = 1.

In this case, we will consider the property of Ford circles from the view-
point of the division by zero calculus.

2 3 circles appear as the circle C(1, 0)

We will show that 3 circles appear as the circle C(1, 0) from the division by
zero calculus view point. We write C(h, k) as follows:(

x− h

k

)2

+

(
y − 1

2k2

)2

=

(
1

2k2

)2

;

that is,

x2 − 2
h

k
x+

(
h

k

)2

+ y2 − 1

k2
y = 0. (2.1)

Hence, by the division by zero calculus, we have, for k = 0, x = y = 0;
this means that the circle C(1, 0) is the point circle and it is the origin

C(1, 0) = {0}. (2.2)
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Next, from

x2k − 2hx+
h2

k
+ y2k − 1

k
y = 0, (2.3)

we obtain, similarly

C(1, 0) = {x = 0}. (2.4)
Finally, from

x2k2 − 2hkx+ h2 + y2k2 − y = 0, (2.5)
we obtain, similarly

C(1, 0) = {y = 1}. (2.6)
In the sequel, we will consider these three cases.

3 Case I
This point circle is a very natural case. In particular, note that a point circle
may be considered as zero radius and zero curvature ([26, 12, 27]). Firstly,
it may be considered as touching with the real line. Secondly, the condition
(1.1) is valid for k = 0, h = 1 and note that in the case k′ = 0; that means
that there is no non-degenerate circles C(h′, k′) touching with the origin point
circle. The third condition (1.2) also is satisfied with the sense that the three
circles all have to be the origin point circle.

α1 property (1.3) is valid in the degenerated sense of k1, k2 = 0 and
α1 = 0.

4 Case II
Firstly, note that tan(π/2) = 0 and for some natural sense we can consider
that the y axis and the x axis are orthogonal, however, they are, at the same
time, touching each other; that is the gradients of the both lines are zero and
the same. This property appeared in many cases, already. See, for example,
([12, 14, 17, 18, 20, 19, 27]).
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Any circle C(h, k) touching with the x and y axes can be represented by
the relation

h =
1

2k
.

Then, of course, we have
h

k
=

1

2k2
.

Therefore, with the parameter k > 0, when we consider two circles C(1, 0)
and C(1/(2k), k), the property (1.1) is valid only with k = 1.

The reasons are on the facts that the center and radius of a line are the
origin and zero, respectively, when we consider a line as a circle.

The property (1.2) is not valid.
α1 property (1.3) is not valid.

5 Case III
In this case, we can consider that the both lines y = 1 and y = 0 are touching
each other at the point at infinity. In this case, the situation is clear, because
any circle C(h, k) touching with the both lines is represented by

k2 = 1.

Therefore, we see that in this case all the properties are valid.
α1 property (1.3) is also valid.
In particular, note that, even this case, the center of the circle C(1, 0) =

{y = 1} is the origin.

6 Remarks
The Ford circles have deep properties for some criteria of irrational numbers
with covering problems as follows:

Theorem: For a real number α, it is an irrational number if and only if
there exist infinitely many numbers h/k; irruducible rational numbers satis-
fying the inequality ∣∣∣∣α− h

k

∣∣∣∣ < 1

2k2
.
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See, for example, ([4, 6, 9]).
As a general circle group of the Ford circles, we will consider

(x− ξ)2 + (y − f(ξ))2 = f(ξ)2

with a differentiable function f(ξ) around the origin. Then, by the same
logic we obtain the three cases, similarly for ξ = 0

(I) : x2 + y2 − 2f(0)y = 0,

(II) : x+ f ′(0)y = 0

and
(III) : 1− f ′′(0)y = 0.
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