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Abstract

The aim of this paper is that of show the furthed @ossible connections between the p-adic and
adelic strings and Lagrangians with Riemann zetectfon with some problems, equations and
theorems in Number Theory.

In the Section 1, we have described some equations and theorenegrommng the quadrature- and
mean-convergence in the Lagrange interpolationthin Section 2, we have described some
equations and theorems concerning the differertseo$sequences of integers. In Beetion 3, we
have showed some equations and theorems regaralimg groblems of a statistical group theory
(symmetric groups) and in tl&ction 4, we have showed some equations and theorems oomger
the measure of the non-monotonicity of the Euler fahction and the related Riemann zeta
function.

In the Section 5, we have showed some equations concerning thécpaad adelic strings, the zeta
strings and the Lagrangians for adelic strings

In conclusion, in theSection 6, we have described the mathematical connectionserning the
various sections previously analyzed. Indeed, enS#xtion 1, 2 and 3, where are described also
various theorems on the prime numbers, we havenglstaome mathematical connections with the
Ramanujan’s modular equations, thence with the siaderesponding to the physical vibrations of
the bosonic and supersymmetric strings and also pviidic and adelic strings. Principally, in the
Section 3, where is frequently used the Hardy-Ramanujanngegp asymptotic formula and are
described some theorems concerning the prime nwnb¥éith regard theSection 4, we have
obtained some mathematical connections between segpoations concerning the Euler Phi
function, the related Riemann zeta function andzéi strings and field Lagrangians for p-adic
sector of adelic stringSgction 5). Furthermore, in th&ections 1, 2, 3 and4, we have described
also various mathematical expressions regardingesoaquency connected with the exponents of

J5+1

the Aurea ratio, i.e. with the exponents of the bede:T. We consider important

remember that the number 7 of the various exporienmtsdated to the compactified dimensions of
the M-theory.



1. On some equations and theor ems concer ning the quadrature- and mean-convergencein
the Lagrangeinterpolation. [1]

Let

w
n

(1.1)

be an aggregate of points, where for every
12 x> > >xW>-1 (1.2)

Let f(x) be defined in the interve[l— l+1] (hence also the value of the Aurea ratio 0.61803B987
We define then™ Lagrange-parabola of (x) with respect toB, as the polynomial of degree
<n-1, which takes at the pointg™,x{",...x" the valuesf (xl(”)), f (xgn)) ..... f (x,g”)). We denote
this polynomial byLn(f) and we sometimes omit to indicate its dependepom x and B. It is
known, that

L= 1KO60=3 F(x) (). (@.3)

The functionsli(x) called the fundamental functions of the intergolatare polynomials of degree
n-1 and if

n

a(x)=](x-x) @4

fx)

then
)= a(x)
li( ) w()ﬁ)(x_&). (19

It is known that ify(x) is a polynomial of then™ degree, then
L,...w)=uw(x) k=12,... (with k also prime numbgr (1.6)

When l//(X)El, we obtain from (1.6) and (1.3)

L(x)=1. (@.7)

n
i
i=1

Mean convergence requires for any bounded Rndtegrable functionf (x)



lim [ [£(x)-L,(f)Pdx=0. (1.8)

THEOREM I.

Let p(x) be a function such that
1
p(x) >M >0 -l<x<+1, (1.9 L p(x)dx (1.10) exists.

It is known that there is an infinite sequence ofypomials a(x),c(x).... where the degree of
@, (x) is n with

J'_ll%(x)a)m (x)p(x)dx#0 if n=m, j_lla)n
w,(x)=1.

As knowna,(x) has in[—l+1] (hence also the value of the Aurea ratio 0.61803398different
real roots. Then our relation (1.8) is true for amatrix formed of these root®r more generally,

(X)ew,(x)p(x)dx=0 if nzm; coefficient ofx" in

THEOREM la.

Let e (x) be the above polynomialg,, and B, constants such that the equation

R(¥)=x"+..=2q(X)+ Aw.(x)+ B, (x)=0 (1.11)

may have in[—],+1] (hence also the value of the Aurea ratio 0.61803398different real roots
and B, <0; then (1.8) holds also for the matrices formedh®se roots
We prove Theorem la by proving the relation

|imj [f(x) Fp(x)dx=0, (1.12)
which will be shown to be a consequencepfk)=M and of the existence q? x)dx. From
(2.12) it follows by (1.9) that
o<j [£(x)-L,(f)F dx<—j [£(x) P p(x)dx, (1.13)

and this by (1.12) establishes Theorem la.

COROLLARY OF THEOREM la.

For all bounded andR integrable f (x) we have for the matrices given in Theorem la
||mj 1f(x)-L,(fJox=0 (1.14)

and a fortiori there is quadrature convergence tlogse matrices



THEOREM 1.

If the sequence

is unbounded as — o, there exists a continuou(x) such that for our matrix
l mj [£,(x) - L, (f, )] dx=+co.

We have to prove (1.12) for the fundamental pogiNen by the roots of thR](x) polynomials of
(1.11). First we prove that

.[_llli(x)p(x)dxz 0 i =12,...,n (with nalso prime numbgr  (1.15)

and

Consider the expression

L6071, 6] ()

But 1 (x)*-1.(x)=R (x)F(x), where F(x) is a polynomial of degredn-2), in which the
coefficient of the highest term is evidently VW, (xi)z. Thus  if
F(x)=cyw(X) +...+ w,_,(x)/as, (x ), by the orthogonality of they,(x)’s we have

-1 607 -1, 6l =—

j w,_ dx<0

f_ll'i (%) plx)x< flli (x)p(x)dx (1.17)

which immediately establishes (1.15); by summafan i =12,....n (with n also prime numbér
we obtain (1.16) in consequence of (1.7).

Let now Q, be an aggregate i[1— l+1] (hence also the value of the Aurea ratio 0.618038987
formed of closed non-overlapping intervals. We jgrtvat

100 () p(x)oq <23 [ pbodax. (118)

i i
xi(”)(su xl((”)(su xi("){m

First we assert that for evekyi withl<k<n, 1<i<n (with n also prime numbégr



(", = (0™ L (p(x)ax=0 i i#k. (1.19)

For by (1.5)

Asizk,

Rn(x) - +..+d @ . (X)+w_ X
oo x) = Bl o Gt b )

Hence considering the definition &, (x) we have

lik = mfﬂ%—z (X)2 p(X)dX

which proves (1.19), aB, < and sign R, (x )R, (x )=(-1)"*. Thus we have

L= 3 [P plex= 3 3 ()1 1 )plelx=

i
dia, x,((" {Q4 Wiy Wiy ‘(( o,
2

=2y J'_llli (x)? p(x)dx— .[_11 > (=11(x)| p(x)dx<2> I_llli (x)? p(x)dx

)ﬁ(n){ﬂll Xi(n){94 4("){94

thus (1.18) is proved.
If Q, denotes the whole of the interve[):l—],+1] (hence also the value of the Aurea ratio
0.61803398Y, in consequence of (1.16) we have

1,6 (x) p(X)d{ <2[ p(x)dx. (1.20)

Let now f(x) be continuous,#(x) the polynomial of degreen— that gives the best
approximation to it in Tschebischeff's sense fa tfterval [—1+1]. Write

f(x)-g(x)=a(x) (1.21)

mayy f (x)-¢(x)=E,. (1.22)

[¥s1

0= [ 6= L, (1) plxlax.
Then by (1.6) we have

l, :.[jl[A(x) (A p(x)dx< Zj x)dx + Zj AP p(x)dx=1"+1" . (1.23)



We have evidently
<262, [ p(x)dx. (1.24)

Further by (1.3)

1) =23 3] 0 (el < 22,373

1 k=1

I L0 P = 42, [ plo
by (1.20); from (1.23), (1.24) and (1.25) we have
1)< 6E%,[" p(xjdx  (1.26)

which by Weierstrass’ theorem establishes (1.12afty continuousf (x)

LEMMA.

Let B, be a matrix satisfying the following expressioﬁlli (x) p(x)dx, and Q. be a set of a finite

number of non-overlapping intervals i[\—l+1] (thence also the value of the Aurea ratio
0.61803398y; then forn>n, we have

2 fl'i(X) p(x)dx < 2]95 p(x)dx. (1.27)

xi(n)l{(25

We easily obtain this result if we consider thechion l//(X) having the value 1 for points @,
and O elsewhere//(x) is evidently bounded anB integrable, so that according to Fejér’s theorem

lim [ L, (¢)p(x)dx= jw x)dx. (1.28)

Nnood-1 n

But by the definition ofy(x) we may write

further
1

w(x)p(x)dx = IQS p(x)dx. (1.30)

-1

The expression (1.27) is an evident consequenck.28), (1.29) and (1.30). Now we consider the
matrix B defined as in Theorem la. In consequence of (IHé&) emma is applicable; we obtain
from (1.17) and (1.27)



Z _[_lli (x)? p(x)dx < ; Lli (x) p(x)dx < 2,[95 p(x)dx, (1.31)

and finally from (1.18)

Py

&("){95 X {95

j11|, {<4j x)dx. (1.32)

Let now f(x) be any bounded andR integrable function. Then in virtue of the Riemann
integrability, to anye we can find a finite aggregate of non-overlappapeen intervals of total
length < £ such that if we exclude these intervals, the tzmoh of the function i< £ at any point
of the remaining aggrega®, . We now definef,(x) as follows: (i) inQ, let f,(x)= f(x). (i) if

we denote the excluded intervals fy,q,)..(p,.q,), (v finite), the functionf,(x) is represented in
(p.q) by the straight line connecting the pol, f(p,)) and (g, f(q)). Thus we definef,(x)

for the whole 01{—l+1] (hence also the value of the Aurea ratio 0.618033%8Wl its oscillation is
at any point< £. But then f,(x) may be uniformly approximated by a polynomigix) to within

2¢ . Let the degree of(x) be m=m(g). Then we have

| —f [£(x) Jdx < zj [, (x (f7)]2p(x)dx+2j_ll[f St -1 (f - £,)F pX)ax<
< ZJ._l[f7 X)— n 7 ] p X dX+ 4'[_1[]c - f7] p(x)dx+ 4'[_11Ln(f _ f7)2 p(x)dxz AR )
33)

say. As the degree of approximationtdx) is 2¢ , we have by (1.26) fon > m(¢)
9= 2467 [ p(x)dx. (1.34)

Further asf (x)- f,(x) differs from 0 only upon intervals, of which thetal length is< £ and as
| (x)- f,(x) < 2r‘n‘§l>4f (x)=2M , we have

" 2% (G
3" |<16M Zl jpi p(x)dx. (1.35)
For J"™', we may evidently write

=330 (1(¢)= N ()= )1 6L (- p 0.

i=1 k=1 1

In consequence of the definition di;(x) the terms of this sum differ from 0 only wheq and x,
lie in intervals(p;,q) and(p,.q,) respectively. Hence



() (x)p(x) {<16|v| zr" x)dx, with |,u=12,..v (1.36)

Xl{(pl a) k{(pﬂ a)

by (1.32). As the total length of the range of gntgion is< &, it is evident by (1.33), (1.34), (1.35)
and (1.36), that, - @sn - o . Hence the result. Let us write

and suppose this to be unboundedias « . We shall prove that we can find a continuous fi@nc
f(x) with
IimsupJ' [£(x)-L,(f)fdx=+o.

n-oo

By hypothesis there exists an infinite sequemge n, <... with S(n)<S(n,)<... » . For the
sake of simplicity of notation we denote by the m" element of this sequencg,.

Let them” fundamental points bd > f fz(m) >...> E,(nm) >-1. We regard them as abscissas and
to anyg‘i we adjoin an ordinate; , wheree,, ,,...,&,, have arbitrarily the values + 1 or — 1. Thus
we havem points; we connect them obtaining a continuoustion ¢, (x) with

w.(x)<1 for —1=x<+1 (thence alsox = 0.618033987 i.e. the Aurea ratjo (1.37)

and

[ L@.fo=YYea 0K (1.39)

u=lv=1

By variation of thes's we obtain2™ different ¢, (x) functions. For these functions we have by
forming the sums of (1.38)

ZI np:) dx= Zi Jdx=S(m), (1.39)

hence we may choose’s, so that for the corresponding, (x) which we simply denote by/(x),
we have

[ Law)dx=s(m). (1.40)

-1

According to Weierstrassy(x) may be approximated by a polynomig|(x) of degreex(m) so
that

£ (x) sg -1<x<+1 (hence also the value of the Aurea ratio 0.6180389§7.41)



Now we select a partial sequendg, f,, of.sequencef,(x), f,(x),... and define a sequence of
constantsc,, G,,... in the following way. Letf,, (x) = f,(x) andc, =1. Supposem,_,, that is f,,_(x)
andc,_,, already defined, then we define

.| C 1
Cc, =min =, ——
=1
Iémr—l)(xx

(1.43)
max

[x<1

k=1

andm as the least integer satisfying the following dtods:

m = p(m_)+1 (1.44)

[ Ly (1, )zdx—8cr\/2j_11 L, (f, Pax>4;  (1.45)

these 2 conditions can evidently be satisfied imseguence of (1.42) andim
We now form with these, and f (x) the function

S(m)=00.

m- oo

By (1.43)
1

c<— (147

and in consequence of (1.47) and (1.41) it is entideat the infinite series foif (x) uniformly
converges ir{—l+1] i.e. f(x) is continuous. Now we consider, () for a fixed valuep of r.
According to (1.44)

p-1 o0
L (=S 1, 00+ FeL ()
r=1

r=p

hence

1, = [ [, (1) 1 Fax= fl{chmp(fmp)+ S, (f,)-Yct, (x)de. (1.48)

r=p+1 r=p

But in consequence of (1.47)

> e f, (x)

r=p

s§(1+i+i2+...j:2, (1.49)
A" "2

and in accordance with (1.41) and (1.43)



YL, (f)s ¢ @%lfmﬂ)(x)(sg(1+%+...j=2. (1.50)

r=p+1 r=p+1 2 v=1

From (1.48), (1.49) and (1.50)
1, = [le,, (1., )-46Fax  @sp)

with |6 <1 (also 0.618033987, i.e. the value of the Aureiayat
Further

L, (1, Jox-16> <2 L, (1, Fox-gc, 2] L, (1, )def ~16,
@5

1, >, (1, F-gi [,

and by (1.45)
| >4°- 16 p=123,... (and also the prime numbers) (1.53)

My

With regard the eqgs. (1.34) and (1.52), we not¢ ¢tha be related with th&urea ratio by the
numbers 8, 16 and 24. Indeed, we have:

1
-1

3] < 24£2j p(x)dx;
1o, >3 L, (1, P, [ |1, (1, Jox-16>c2 [ L, (1, ax-se, 2L, (1, )zdxf -16;

(@ + ()" + ()" +(0)*7" =12; 1212=24; 1293 =16; 12&3 =8. (1.54)

_+5+1

In the expression (1.54)®p = =1,6180339887. , and the number 7 of the various exponents

is related to the compactified dimensions of thehgery. Furthermore, we note that 8 and 24 are
related with the “modes” that correspond to thegutgl vibrations of the bosonic strings and
superstrings.

2. On some equations and theor ems concer ning the difference sets of sequences of integers. [2]

A set of integersy, <u, <... will be called an# -set if its difference set does not contain theasgu
of a positive integer. LeiA(x) denote the greatest number of integers that caseleeted from
12,...,x to form an# -set and let us write

a(x)=¥. (2.1)

10



Let N be a large integer and let us wrikk = l\/ﬁj Let

= %N:]e(zza) = ie(zza). (2.2)

Let u,U,,...,usy) be a maximal# -set selected frond2,...,N and let

Obviously,

E= Jl'F() (-a)T(a)da = J'Ze(ua)Ze(—ua e(za)da- >1=0 (2.5)

o y=1 xyz

Uy—Uy+ 2=0
sinceu;,Us,...,Uyy) is an 4 -set.

LEMMA 1

If a,b are integers such tha< ,land S is an arbitrary real number (also a prime numb#®@n

Ze(kﬂ)(<m|n{b a+l, ”ﬁ”} (2.6)

(For | 8| =0, the right hand side is defined byin{a,%} =a.)

LEMMA 2

Let N, p, g be integers andr a real number (also prime number) such t(lp,tq) =

<L (2.9) Then

q

)

q

N>3 (2.7) 1<q<N"?/logN (2.8) and

|T(a)|<21(%j . (2.10)

LEMMA 3
11



Let N, p, g be integers andr, S real numbers (also prime numbers) such that

N29 (211) (pg)=1, (212) 1=q<JN, (2.13) a=§+,8 (2.14)

1/2
logN 1 logN
and =% s|,3|<2qm. (2.15) Then |T(a)|<3({—] . (2.16)

LEMMA 4

Let N, p, g be integersR,Q,a real numbers (also prime numbers) such tNat 1, (p,q) =1,

1

1<R<q<Q, (2.17) JN<QsN (2.18) and a—§<q—Q. (2.19) Then

1/2
T(a) < 7(%) +14(QlogN)"?.  (2.20)
LEMMA 5
For any positive integex, %s a(x)<1. (2.21)

LEMMA 6

For any positive integers and y, we have

Alx+y)s AX)+Aly), 222) Alxy)sxAy), (23) alxy)<aly), (2.24)
a(x)< (1+%ja(y). (2.25)

LEMMA 7

Let g,t, N be positive integersp integer,a, real numbers (also prime numbers) such that

a—gz . (2.26). Let Fl(a):iz)(i %)j][ie(,@)j (2.27) so that if(p,q)=1 then

Fl(a)za(t)Ze(ja) for q=1, F/(a)=0 for g>1 (where(p,q)=1). (2.28)

Then
F(a)-F(a) < (alt) -a(N)N + 2a(tho?(L+ 7BIN) = H(t.N, 0. 8).  (2.29)

12



LEMMA 8

Lett, N be positive integersR, @al numbers (also prime numbers) such that

N

N>e’, (2.30) t/N, (2.31) 1<R<N"?/logN, (2.32) 2N"?<Qc<

Then
a?(t)N*2 <126a(t)(a(t) - a(N))N*2loglog N +1260@>*(t)N(log N )"?Q /2 +
+120(a(t) - a(N)J{7N*?R*"? log N + 20N(log N)*Q "R} + 26006t}
{3N —1/2(|Og N)3 RLV2 4 2N2(|0g N)”ZQ‘5/2R3}+14Oa(t){N s2RU2 4 2NQ1/2(Iog N)l/Z}.

Let us write
o(a)=alt)3 elj).
Then
E = [|F(a)T(a)da = [|6(a) T(a)da + [(F(a)’ -6l r(a)a

where E = 0by (2.5). Hence
[l6la)T(a)a =-[(F(a) - @) a)a. @39

o :[|G(a)|2T(a)da = i[a(t)ge(j a)j(a(t)kzi; of- ka)j{g]e(zzaﬂda )

=22t)] X efj-k+Zada=22() Y1. (236)

0l<j,ksN j—k+22=0
1<zsdN i<j,ksN
1<z<dN
If
, N
1SZ SE_]., z> 0, (237)

1< | s%+1 (2.38)

then the numbersj, k= j+2z*, z satisfy the conditions
j—k+z’= ,01<j,ksN, 1<z<+/N

since

logN -

(2.33)

(2.34)



By (2.30), the number of the positive integersatisfying (2.37) is at least

[\/N_lH ﬂ_ﬁHm}m_bm_m:m

2 2 4 2172 T2 4 4

while (2.38) holds fo{%} +1>% integers| . Thus (2.36) yields that

jolefTlaba=al) ¥ 12N & =lagn @)

0 j—k+z%=0
Lj k<N
:I_zsf

Now, we have to give an upper estimate for thetrigind side of (2.35). Fogq=12,..., [Q] and

p=0L....g-1, let
i
**"{g pQ'q aQ

and letS denote the set of those real numbers (also prumeers)a for which

—1<asl—1
Q
holds and
alOl,, for 1<q<R, 0<ps<qg-1 (pg)=1. (2.40)
Then
1 2 2 i 2 2 e 2 2
[{F(a) ~Io(a)’Jr(a)da = jﬁp(ax ~[6(a)’ Jr(a)da|< | [F(a) -[c(a)|T(a)da+
0 -1/Q -1/Q

EZJMF

q= 21<p<q
)=1

(a)da + J' "F -l6(a)’

(@)da=E +E,+E,. (2.41)

Let us estimate the teri, at first. For any complex numbeusv, we have
=Juur = | = (u = v)u -+ v{w =) < fu =i + M =¥ =Ju = {ul+ ) =
=ju-w(u-v)+vi+M)<lu-vi{u -+ 2) =u - + du-viv.  (2.42)

Furthermore, applying Lemma 7 with=0,q=1a =3, we have F,(a)=G(a) there, thus we
obtain that

F(a)-Gla)<H{ELNLa). (2.43)

The expressions (2.42) and (2.43) yield that
14



+1/Q +1/Q +/Q

E = J; ‘IF Gla) [T (a)da < j/ IF(@)-Gla)T(a)da + 2 j/ IF(a)-G(a)6(a)T(a)da <
< ﬂj/Q H2(t, N La)T(a)da + 2lj/QH (t.NLa)G(a)T(a)da =E+2E",. (2.44)

Furthermore, f0||a| <logN/N, we use the trivial inequality

M
<) 1=M<NY?, (2.45)

while for logN/N <|a|<1/Q(<1/2VN , by (2.33)), we apply Lemma 3. In this way, weaibt
that

E< | {(a(t)— a(N)N + 2a(t)t(1+ et mj} ()N IN2dar +

|a|<1/N

+ {(alt) - a(N))N + 2a(t)t (1 + ) a|N} m(t)% INY2da +

1/N<|al<logN/N | |

+ .[ {(alt) - a(N))N + 2a(t)t(1 + 7)a|N} ma(t) 21a| B({Iog N Jl zda )

logN/N<a|<1/Q | |O’|

<%{a(t)(a(t)— a(N))NS'2 + 2a2(t ) mm3f2}+%a(t)(a(t)_ a(N)N"?

—da+2de2t BIN*? +15a(t a(N))N(logN )2 L da+
g T 32
1/N<|a|<logN /N |0'| logN/N<|a|<1/Q |a|
+30a?(t)t BN (logN)"? %da. (2.46)

|ogN/N<\a\sl/Q|0'|

Here

da 2loglogN,

1/N<|a|<logN /N |0'|

+o0 1 loaN -1/2 N 1/2
| L da<2 [ Wola=2uz[ 9 j =4(| ]
IogN/N<\a\sl/Q|a| logN/N a N 09 N

1/Q 11/2 4
l,zda<2j —>da= 2[2(QJ =,

IogN/N<\a\<l/Q|a|

Thus with respect to (2.30), (2.33) araft)=a(N) (by (2.24) and (2.31)),

E, <2a(t)(alt) - a(N))N*2 + 20a2(tgNY2 + a(t)(a(t) - a(N ))N*"?loglog N +10a?(t}iN*2logN +
+60a(t)(a(t) - a(N))N*2 + 600a%(t)iN(logN ) Q2 < 63a(t)(a(t) - a(N))N*?loglog N +

15



QlogN

+30a%(tkN*2log N{1+ 2({

j} 63a(t)alt) - a(N))N*loglog N + 630 (tkN (log N) 2 Q™

Now we are going to estimat&, + E,. If 2<q<Q, 1< p<q-1 then a0l implies that

P.q

Thus for 2<q<Q, 1< p<qg-1 and (p,q)=1, Lemmas 1 and 7 (whetg(a)=0 in this case)
and the trivial inequality (2.45) yield that
H|F “IT(@)da < J'|F T (@)da + I|G T(a)da < [|F(a)T(e)da +

Pq Pq

+[a (t)E(Zq)ZN”Zda: [IF(ay |T(a]da+2q%t2a2(t)q2N”2 <

p.a

P loq
+1/9Q

< I H2(t, N,q,[n’)‘T(§+ ﬂj‘d,[ﬂ a(t)Nv2.

-1/4Q

Hence

E+E < ﬂJ'Q H2(t N La)T(a)da + y {TQH 2(t, N,q,,B)(T(g + ﬁ}‘dﬂ+ az(t)N”Z} <
iy

-1/Q a= -1/qQ

IT\‘

(p
[R] +1/9Q

<>y J’ H2(t,N,q, )

q

T| P+ ﬁj‘dﬂ +a2(t)RANY2.  (2.48)

To estimateT(§+[>’J, we use Lemmas 2 and 3 fif <logN/N and logN/N <|8<1/qQ,

respectively. We obtain with respect to (2.30)322.and (2.33) that (fog< R, (p,q)=1)

T hetng ﬁ){r(g ; ﬂ]‘dﬂ y ﬁ<|OJ;N/N{2(a(t) ~a(N)PN? +1622( g L+ nzﬁzNz)}Z](%)”zdm

-1/aQ

+ [ felat)-an)PNe +162(trg 4(1+nz/;N}30[logNj 0 <

logN/N<|f/<1/aQ

<2100 {Z(a(t)—a(N))ZNZ +16a2(t)t2q4(1+ g N Nj}z{%j +60falt) - a(N)FN?

(ogN)2q™2 [ |g™%dp+ [ 480e%(thq* LIBPN?2 EE'Og N j df <

logN/N<|p|<1/9Q logN/N<|f|<1/aQ |ﬁ|

<84(a(t)-a(N))’N*2logN "2 + 320og N [N 2a%(t)t?q"'? M1dog? N (21+120a(t) - a(N )}’ N2
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1/9Q 1/9Q

(logN)"*q™2 | p2d5 +105602(t) %" *N*(logN)"* [ 523 =84(alt)- a(N)P N*"logN g™/? +
0 0
+73922°(t)t*N *(log N ’q"’? +120(a(t) - a(N))* N2(log N ) *q ™2 [2(qQ) ™* +1056*(t )t*q"'*N?
(Iog N)1/2 [‘ZI‘S(CIQ)_S/Z — (a(t)— a(N))2{84N 3/2 Iog N l]:]—lIZ + 240N2(|Og N)1/2Q—1/2q—1}+ az(t)tz
{73920 2(1ogN P q7"? + 4224N2(log N} 2Q*'q

since
(x+y) < 2x® +2y?

for any real numbers (or also prime numbexsy. Thus (2.48) yields with respect to (2.30) and
(2.32) that

E +E,< ﬁ 84N *2logN [ ™2 + 240N *(log N )" Q¥%q" l)+ a?(t)?

g=1 p= 0
R
(7392\1 2(logN)’q"’? + 4224N2(logN )”2Q‘5’2q)}+ a(t)R*°NY2 < i{(a(t) -a(N))
g=1
[BAN®"210g N (g2 + 240N2(log N 2Q 2 )+ a2(t)*(7392N %(log N ) g% + 4224N(log N ) 2Q %%} +
+a?(t)NY2/logN N2 < (aft) - a(N)J{84N"2R? Iog N + 240N2(log N ) *Q 2R} +

+ a2t )2{7392N 2 (log N PRI + 4224N7(log N ) Q5/2R?} + 6—14a2 (N2, (2.49)

Finally, in order to estimat&,, we use Lemma 4. Namely, & S then there exist integers,q

such that
12¢2Q, 0<p=qg-1 (pg)=1

and
1

<_

qQ’

b
q

a-

by (2.40),q satisfies alsdR<q. Thus (2.17) and (2.19) in Lemma 4 hold. Hencenioa 4 yields
that

supT (a) < 7(%)1/2 +14(QlogN)"?.

alds

Thus we obtain applying Parseval’s formula that

E3:£‘|F(a)|2—|G(a)|2 (a)| a<suﬁT [HF |da+j|G j<{7N1/2R_1/2+14Q1/2(|OgN)1/2}

ﬁ||:(a)|2da +| |G(a)|2daJ ={7N2R2 414072 (1og N Y2 A(N) + @2(t)N) =

0
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={7NY2RY2 +14Q"*(1ogN )2 }{a(N)N +a2(t)N) < {7NY?R 2 +14Q"2(log N )2 }{a(t)N +a(t)N) =
= a(tf1aN¥2R V2 + 28NQ"*(logN)"?}  (2.50)

by Lemma 5 and sinca(N)< a(t) by (2.24) in Lemma 6 and (2.31). Collecting thsutes (2.35),
(2.39), (2.41), (2.44), (2.47), (2.49) and (2.58pdther, we obtain that

LN < [ola) T(aka < E v E, +E,s (6 +2E)+ B, v E =26+ (BB s <

<126a(t)(a(t)- a(N))N*?loglogN +1260>*(t)tN(log N }"?Q™"2 + (a(t) - a(N )Y’
{84N¥2R¥210gN + 240N%(logN)'?Q 2R} + a2(t)t*{7392N /2(log N ' R™? + 4224N>

(logN )1/2Q'5’2R3} + éaz (£)N2 + a(t){14N ¥2RY2 1 28NQY2(logN )1’2}. (2.51)
Subtracting éaz(t)Ny2 and then multiplying by

-1 -1
[E _ ij - (lj =54 _9142857<10,
8 64 64) 7

we obtain that

a?(t)N*'? <126@(t)(a(t) - a(N))*?loglog N +1260@>3(t)N (logN)"*Q ™2 +12((a(t) - a(N))*
{7N¥2R¥2logN + 20N(log N )2Q 2R} + 26006 (t 13N "*(log N ™2 + 2N*(log N >
Q—5/2R3} +14(h(t){N si2pvz | 2NQ1/2(I0g N )1/2} .

3. On various equations and theorems regarding some problems of a statistical group
theory (symmetric groups). [3]

Let S, stand for the symmetric group with letters, P a generic element of it ar(d(P) its order.
Then we have

THEOREM 1

For almost all P’s in S, , i.e. with the exception @{n!) P’s at most,O(P) is divisible by all
prime powers not exceeding

logn [, , glogloglogn _ a(n) (3.1)
loglogn loglogn loglogn

18



if only a{n) & +oco arbitrarily slowly.

Since theP’s in a conjugacy clas$i of S, have the same order, we may denoteCl(yI) the

common order of its elements and it is natural sk the corresponding statistical theorem for
O(H). The total number of conjugacy classes3p is, as well known,p(n), the number of

partitions ofn. Now, in this Section, we prove the following them:

THEOREM 2

For almost all classedH , i.e. with exception ob(p(n)) classes,O(H) is divisible by all prime

powers not exceeding
27 3n [} gloglogn_aln)] 5 5,
J6 Togn logn  logn

if only a)(n) A +oo arbitrarily slowly.
This is again best possible in the following streegse.
THEOREM 3

If @(n) A +oo arbitrarily slowly, then almost no classés (i.e. only o(p(n)) of it) have the
property thatO(H) is divisible by all primes not exceeding

21T \/_ 1+ 5loglogn | w(n) (3.2b)
Je Iogn logn  logn

Now we turn to the proof of Theorem 2. Let, fpr , 0

=Y p(n)e™. (3.3)

11-e™ 1%

f (y)

For this we have the classical functional equation

o) o

)=+ @)@ exp{gyj @9)

LetY :Y(n) - oo with n to be determined later and Igtrun through all prime powers with

and hence fory - + 0

qsY(n). (3.6)

19



Let further pq(n) be the number of all partitions of with the property that no summand is
divisible by g. Then we have foy > 0

Putting
we get

Using (3.5) we get for altj’s in (3.8)

f(y) =1+o(1)exp{ﬁ(1_z)1} (3.9)

flay) a 6 aq)y

if only
gy - Q@ (3.10)

Hence, ify and% are sufficiently small, we have

gm(n)e‘“y<2ex;){§(1—1 }qz“/— I(;/g_Y lg( ij%}

Putting
[ 1
i 1- Vdef /1
Y% Jn T
we get
h,(n)e ™" =h,(n)e™ < i;‘)h,(m)e‘my < 5|;/;( exp{%x/ﬁ —éx/ﬁ}
and hence
h,(n) <5*/_ p{ f—lf}<5*/_ p{ Jﬁ}. (3.11)

Using the classical formula of Hardy-Ramanujan haree

20



which gives for all sufficiently large,

(1) <53 p(nnex ;{%7} @19

logY

Now choosing

4 Vn

Y = —G—G— 3.14
5 /6 logn (3.14)

the restriction (3.10) is satisfied and hence (Bdides

mao for n - . (3.15)

p(n)
Now, there is a one-to-one correspondence betweeodnjugacy classdsd of S, and partitions
n=mn, +mpn, +...+ mn, l<n<n<..<n  (3.16)

of n; moreover
:[nl,nz,...,nk]\/. (3.17)

HenceO(H) is divisible by a prime poweq if and only if g is the divisor of some summant

and hY(n) is an upper bound for the number of conjugacysela$i of S, whose order is not
divisible by some prime powerq<Y . Hence (3.15) means that for almost all claseeshe
guantity O(H) is divisible by all prime powers not exceeding

4 T \/_
EG\/__G@' (3.18)

Next we consider the divisibility otD(H) by the prime powersg satisfying
AoV G207V g g
5 V6 |
Taking into account the Euler-Legendre “Pentagatalsaccording to which for Rez> Ghe

relation

holds, equation (3.7) gives the representation

21



p,(n) =3, (-1 p(n X 2+ k qj . (3.21)

where the summation is to be extended overkitsawith

2
3k +kS

n
—. (322
2 g (3.22)

Now we shall estimate the contribution of th&s with

K >1o% (3.23)

to the sum in (3.21). Then we have
3k*+k
2

2k2210£5k
q

and thus

2
n—3k2+kqsn—10\/ﬁk<(\/ﬁ—5k)2;

since from (3.12)

p(n) < cexr{%\/ﬁj (3.24)

we have for thek’s in (3.23)

p(n ) 3k22+ K qj < cex ZTZ[n —&;quj < exp{%(\/ﬁ —5k)}.

Hence

> (-1 p(n - 3k22+ K qj

[k|>10{n/q

< cex;{%\/ﬁjbz/q exp{—%kj <cn® ex;{%\/ﬁj <cn®p(n)

by (3.12). Hence, from (3.21),

)= 3 (-2 a]soln o). 29

|k|<10yn/q

Next we use Hardy-Ramanujan’s stronger formuldeform
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ex;{ j
e

Noticing the elementary relation

- 049—

[f } (3.26)

1- @ O(l)ex;{— (‘GM)
ex;{cl(wlix—yi—\/;)}xi(ym X~y =

1--%2 Tex VX
vl F( G )
2 3 4
= exp{— —chy;j{H Gz G g G o(x-l"‘ﬁ)} (3.27)

where thec,’s are positive constants and
O<y<x®, (3.28)
we obtain using (3.26) for thie’s in (3.25) andg’s in (3.19) from (3.27) with

2n 1 _3K*+k
X=n-—, y=

(3.29)

2 6 [ 1 j 1 j
m-— n—-—
24 24
3K*+k q® 3k*+k q*
n--—— n--—-
24 24
Putting this into (3.25), we get at once
2
pq(n) (~2)¢ 3Kk*+k T q q° k(3k2 +kj
= -1)exg - =0 +c (-12) x
p(n) kslzn/q 2 V6 (n_lj ‘ [n—ljw kslozn/q 2
24 24
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K2+k 7T q q k(3k2+k]3
xexp - —0 +C—— -1 X
2 \/6 [n_lj C5 (n_1j5/2 kglzn/q( ) 2
| 24 24
2 4 2 4
x ex Mtk 9 41 (-1)k(3k2+kj ’

[n_ljskslo n/q
24

+ O(n‘l'46 log n). (3.31)

R
24
—3k2+k£D q

SR (S

Obviously the same error term holds completingstima in (3.31) to— o <k < +0c0; putting

x exp

K2 +k) AK2+k _m . q

-1) expg — g —_ 3.32
2ol )( 2 ] 2 V6 [ _1 (3.32)
24

equal toS,(n,q), we get

2 3 4

77 S(na)+ C5q—5/2 S,(n.g)+ Ceq—3 S,(n.g)+ O(n_m)-

S

In order to investigatéﬁ,(n,q) we take the reciprocal of (3.4) and apply the fiomal equation
(3.20). This gives fory> 0

© v (FHk e (y )& o[ 3K A
k;m( 1) ex;{ 5 yj—\/jexp{m 6ijk§o( 1) exp{ 5 E)Tj (3.34)

and hence

%(”'Q)= 2\/5“_—214)1/4 T i (n_zldfj 1+O(1)ex —4m/5(n%214j

For our present aims it is enough to write
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S(nq)= (1+o(1))ﬂzﬁ)%‘ex;{-% g@ (3.36)

Differentiation in (3.34) leads easily to

S,(n,q)=0(|oglon)exr{— EI\/—EJ (3.37)

q

Sl

and thus (3.33) together with (3.19) gives
n) = (1+o(1) w/‘Z jn e L \/_jp(n). (3.38)

Let us differentiate the identity (3.34) times (1< v < 4). This is the sum ofv +1) terms each of
the form

Yy 2o W[ 3CHKY [ 3Pk AP
|0,-(y)e><l{24 Gy]%( 1)( > jeXL{ , 97] j=0L.v (3.39)

where thep, (y)’s are polynomials ini of degree< 20with bounded coefficients. In particular,

Jy
for j =0, we have

[ f 2] sy 28080

whereas for the terms with> , Bince the term wittk = (@s missing from the sum, we have an
upper bound
Vg n
Ollog* n)ex —(—+477 6}— :
fogese| - e +amis

Hence, for1<v < 4 we have

S,(n,q)= {\/E {24 6y]}y: .. +O(Iog10 n)exp{— (%+4ﬂ\/gj%}. (3.40)

7o J(n-1/24)
Let
lei"igﬂ, YZ:)Ii[-lﬂ, (3.41)
5.6 logn J6 Togn

where A will be determined later. Putting
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def

h™(n) = qu(n) (3.42)

Y,<q<Y,

gives (3.38) for all sufficiently larga’s,

j I 7o \/’1*/_}1@() (3.43)

where G(x) stands for the number of prime powers not exceedin Using the prime number
theorem in the form
o(x)= Lix+ O(x)exp{—q/logx),

the factor ofp(n) in (3.43) is

h( <3p nt/4

1+O 1/4j |
xogx

A
%\d
y \%
;/
/L\
a -
2
R m—
o
|
&l
|5
;Q_/
X
»
g

Since the last integral

we have
1
0 =-1/A

) _ ol ™ |- o)

p(n) log
choosing

=q1050900n_ )
logn  logn

if only

odn) 2 +eo

arbitrarily slowly.
Let againcin) & o arbitrarily slowly; further

X, = 21 \/_ 1+5loglogn _ a(n) X2=2—HEI\/E 1+5Ioglogn+c«)(n) (3.46)
\/_ Iogn logn logn|’ 6 logn logn logn

and
X <0, <..<q =X, (3.47)

all primes of this interval. We define the clasadtion k(H) by
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First we investigate

Obviously

$=% T i=2 ()

v=1lq,

Using the representation (3.38), we have that

m q/n
S = (L-o(t)W(2v6)p(n) 1"‘2( ;{ j:m()) 26 p(n)nmxj Jxﬁx ]

Since we need asymptotic formula f8r we can write the precedent expression also aswoll

5 =(ur ol 2P o - e ool £ +o). 250

Next let
S, =2 k(H) . (351
Then
S=20 L Lel=S+ 2 Xl (352
a,/0(H) a,/0(H) 1< uvsl gﬂllgé:;

Fixing 4 and v the inner sum is the number of such partitionsnoin which no summand is
divisible either byg,, or by g, . With the notation of (3.20) this quantity is @s¥ to see

f(2)f(a,02)

the coeiffict €™ in .
t(a,2)f (a,2)

(3.53)

Hence

- q CIV
S, = the coefficiente™ in f 7—% (3.54)
(qy ) I<p#<l f q/_,Z f qv

The function in the curly bracket is

1 ]+ 5 flo.qz)-1 (3.55)
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and accordingly we spli§, into the parts

s, s, s and SP. (3.56)

Since from (3.3) and (3.20)
f c —kyz
:)({ ((}”fq(“q) cH {Z plkJe™ } Z plic)exp(- k.,q, )}
{ i (_1)k3+k4 xex;{— 3k322+ K, g, + 3kfz+ K, QVJZ} (3.57)

k3 ,k4=—00

we have

2 2
=3 (-1 plke)x X (”- a,q, -2 g, - Fa ke qvj (3.58)

Koy, K3,Ky I<puzv<l 2 2

where the outer summation is to be extended ttkglk,,k,) systems with

2 2
3k32+ ks q, + 3k42+ Ky g, <n. (3.59)

k2 2 1 quka +

Using (3.24) and (3.46) — (3.47), the inner sur(Bi®8) is quite roughly

A2+k, 3K+ o[ 2 n "
> (n-ka,q 9, - q)<c > ex;{—%{n 3 Togn

I<p#vsl 2 I<pvsl

27 1 co(n)2 2 +n o [ 2 n
<cexp{% j log?n 3\/@09 nj <cp(n)n?ex mﬁl@j (3.60)

Since roughlyk, takes at mosf)(log2 n) -values, furtherk, and k, each at mosD(n”“Iogn)-
values, we get from (3.60) at once

s =o(p(n)). (3.61)

Next we considelsgz). Since from (3.55) and (3.20), we have
- f(2) - f(2) 1 (N -mz )k 3Kk +k
fla2f [f(qu)j f(a.2) _(n;) P (mle j{zﬁ( Y exp{ 2 qﬂz}j

ng) — iz(k)(_ 1)k+1 b, (n _ 3k22+ Kk Qyj . (3.62)

we get
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The contribution of terms witfk| >10logn is absolutely

| 3k? +k
%% -2k o)
y=110|0gns\k\sm

For the remaining terms in (3.62) we can apply réq@esentation (3.33) — (3.35) — (3.37) in the

R s s

logn

The contribution of the error term to (3.62) is albgely

32 + Kk 12
L Y o n- 2 q.

9

using (3.46). Hence from (3.62) and (3.63), we have

w2 +k ) 3K + Kk
)+ q—)zr kﬂx[n_ qj of n- 0 |x
z\/qﬂ k<lOIogn ) 2 “ 2 “

{n_3k2+kq}l/2
T 2
xXexp —-— . (3.64
7 (3.64)

A

Rough estimations show that replacing

5 14
(n_3k +quj by nv*

2
and
{ 3k2+k 1/2
2 } Jn
exp - — by exg ———
V6 q, F{ /6 qyj

§ = o(p(n)) +(246) nﬂ‘*'zﬁcex %q—}[z (—1)k+1p(n—3k2;kqﬂj]- (369



Completing the inner sum means again an erra({pfn)) and using (3.21) we get

s =o(p(n)) - \/(2%)”22\/(4— xex ”*/_} o(p(n). (3.66)

Next we considetsgl). Using (3.20) and (3.3)

and hence the representation

SESETC - H S, X B | e

M=l =1ky Ky

One can see easily that the contributionkp®s with |k,m>10logn is op(n)) and hence using
also (3.21)

b))+ Yy T (-1)k2p%(n-&2+kzq,,z) (3.68)

14y =141,=1k,|<10logn

To go further, we shall need fcp%1 (m) an asymptotic representation which is finer thedne in

(3.38) (even the one in (3.63)).
Using (3.33) and the formula (3.40) we get

A R
( F ,{24 GyD +o(m**). (3.69)

y=mi/6q//(m-1/24)

The contribution of the error term in (3.69) 8 in (3.68) is seen to be by (3.46) easifp(n)).
The contributionU of p(m)S,(m,q) is by (3.35)
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3Kk, 1}

U=o(p) 2By Y ¥ (i) (

2 24
X
#h=141,=1K,|<10logn q,Uz
) 3k22 + k ) i 1/2
X ex i q/‘Z _i 2 " 24 p(n 3k22 Tk J
\/6 3k22 + k2 1 1/2 \/6 qﬂl 2 Ha
n- 2 Ha B ﬂ_

@7
By the elementary formula

o ol {5

3

2
{1+d Y4 +d, yo +d yq+d y +d; Y +d y—+0(yggj+o( y j} (3.71)

1.3/2 XS 3 X5/2 qX1/2 X q X X qXS
valid for
0<y<x%*, g<+x.
Using it with
I/ _ 1 3k2 +k, _
C—%, X—n_ﬂ, y= q,u2 q_qyli
we obtain

u:o(p(n»+ﬂ%)'zMxex PR 1)

M=l q,Ul \/6 (n _1j q'u1
24
| 2
X{ZZ( 1) p(n - 3k22+ , q, )} (3.72)
Ha =1k,
The sum in the curly brackets is by (3.21) (or §$3)2
|
> p,, ()=
Hp=1
and the sum with respect jq is
1
——(1+oll
T rolt)s
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by (3.33), (3.35) and (3.40). Thus using (3.50) ,haee

=0+ ot) o & = o) D(n){&/i_rexp{c—;j}z. 373)

Collecting (3.52), (3.56), (3.50), (3.61), (3.66)da(3.73) we get fofS, in (3.51) the inequality

S, <(1+0(2)) p(n){a\/f_rexp[%’j}z. (3.74)

By Cebysev’s inequality, it is enough to show that

z d:ﬁn)Z{k(H )- Nﬁexr{%)j}z = o(1)expw.

H

But this follows from (3.50) and (3.74) at once.

Now we describe various mathematical expressiogarding some frequency connected with the
exponents of the Aurea ratio and related with weriequations of this Section.

We note that for the eq. (3.19), there are theovalhg mathematical connections with the Aurea
ratio:

g G% =1,0260398641((d)"" +(®) """ + () *'") E-g = (1,618033988 0,618033988 0,05572809[—!3

= 2,291796];1 =1018576;

% =12,8254983] [(CD)28” () (q:)‘””]z-x;1 = (685410197 2,61803399+ 0,2360679$E-1;1 =

= 9,708204Elg— =1294427191

With regard the egs. (3.38), (3.40) and (3.46),haee the following connections with the Aurea
ratio:

7 2817
7 _12825490(0 ) - 16854102 = 22847
\/gl859() 168541023 =2,2847006§

2,28470066- (d)° = 2,28470066-1=1,28470066

4714/6 = 30,78119592120,56230590+ 10,28115295= 30,84345885
20,56230590= [(q>)35’7 + (d))“”]Bi— = (11,09016994 2,61803399@3— = 13708204@3— =20,56230590

13,708204[—]2 =10,28115295
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2n _
J6
+ 0,0557280992 = 3,437694(32 =257827058

256500 [(cb)l“” + (D) + (D)7 + (q:)‘“”] F= (2,61803399 0,61803399+ 014589803
4

We note that for the egs. (3.50) and (3.60), weelthe following connections with the Aurea ratio:

2@ = 2,763953196 2,47213595+ 0,29179607 2,76393202

247213595 [(CD)28” +(®) ™7 + (@) + (cp)““’”]d:3 = (6,8541019% 0,3819660 1+
+0,14589803 0,03444185% = 7,416408% = 2,47213595

0,29179607= [(¢)-7/7 + ()7 + (q:)‘56’7] 3= (0,61803399 0,23606798 0,02128624% =

3
= 0,875.'.-388&3 =0,29179607

8/ =1417963081 1456230590~ 0,3819660% 14,18033989
14,5623059C= [(q:)””7 + (D)7 + (q:)‘“”]GZ- =(6,8541019% 2,6180339% 0,23606792}@; =

= 9,708204[—];— =14,56230590

0,3819660% [(¢)_7/7 + (cp)‘”*”]ﬁ2 =(0,61803399+ 0,1458980:)3[—1;— = 0,763932315 =0,38196601

% =6,57973626716,47213595+ 010524494 6,57738089

6,47213595 [(q:)”” + (q:)””]ﬁsl = (4,23606798 0,61803393)9‘31 = 4,8541023;l = 6,47213595

010524494 [(¢)‘28’7 + ()7 + ()7 + (cb)‘”‘“’”]% = 0,157867% = 010524494

E =8,438839633 647213595+ 196352549~ 843566144

36
6,47213595 [(cp)””7 + (D)7 + (q:)‘“”]ai- = (6,8541019% 2,61803399%+ 0,2360679$B§- =
= 9,708204% = 6,47213595

196352549 ()’ Bz 0 2,618034133 =1,96352549

In conclusion, for the eq. (3.72), we have thediwihg connection with the Aurea ratio:
2./6) = 2,21336383% 215737865+ 0,05572809% 2,21310674
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215737865 [(q>)21”+(q>) 7”]@3 (42360679&06180339&)[—!— 4854102135 215737865

0,05572809:[(q>)‘28”+ 56’7] 014589803002128624)# 0167184131£ 0,05572809

J5+1

We note that also her® = 5 =16180339887.

4. On some equations and theorems concer ning the measure of the non-monotonicity of
the Euler Phi function and therelated Riemann zeta function. [4]

Let f be a real valued arithmetic function satisfyinign f (n) = +c. Define another arithmetic

n-oo

function F = F, by setting

Fo(n)=#{j<n:£(j)z f(}+#{j>n: 1(j)< f(n)}.

The size of the values assumed by the functomprovides a measure of the nonmonotonicity of
f . In particular,F is identically zero if and only iff is strictly increasing. Here we shall take

to be ¢, Euler’s function, and study the associated fumct, , which we henceforth cal .
For O<a,b< o, let

®(a,b)=#{n<a:g(n)<b}.

We have

Thus
F(n)=n+®(e0,4(n)) - 20(n, #(n)+#{j <n:4(j) = p(n)}.

It is known that
(oo, y) = gy + Olye ™),

where ¢ denotes the constanf(2)¢(3)/ ¢ (6) = 1.9436; and

®(x,y) = xg(y/x)+ Olye " ),

where g is a continuous, increasing function [jJ:iL] which is determined by a contour integral.

We note that for the value 1,9436 we have the Wollg mathematical connection with the Aurea
ratio:
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1,94360( )" Gzl = 2,6180339935’i 0 2,61803492—’ =1,96352549

Moreover, g is strictly concave, as we now indicate. We héna t
ag'(@)=9(a)-D,(a), O<as<1l (4.1)

Here

D,(a)= Ixi[rl%#{ns x: ¢(n)< an}.

It is known that this limit exists and defines antiouous function ofa . Clearly D, is non-

decreasing. In fact, it is known to be strictly re@sing on(O,l). If we integrate the differential
equation forg and use the fact th@(l) =1, we obtain

gla)=a+ aj:t‘2D¢ (t)dt,

and differentiating again, and differencing, wefget 0O<u<v<1l

g'(v)—g'(u):—% D¢(v)+%D¢(u)— [0, (t)dt =-[ 1D, (1) <{D, (u)- D, (}/v<0. (4.1b)

Thus g is strictly concave off01). Noting that

#j <n:g(j) = g(n)} < @0, $(n)) - (o, ¢(n) ~1) = Ofp (e},
we have
@ =1+ ZM - Zg(Mj + O{me_m} . (4.2)
If we set
h(u)=1+¢u-2g(u) (4.3)

and enlarge the error we obtain the asymptotic fbam

@ =h(g(n)/n)+ o(e‘m ) (4.4)

A Dirichlet series involving the Euler phi functio¢(n) is

where {(s) is the Riemann zeta function. This is derivedaiisys:
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We have shown thaF (n)/n=h(g¢(n)/n). The functionh attains a minimal valug, at an interior
point u, of (01). The pointu, is unique by the strict convexity of. Thus F(n)/n is

asymptotically, near its minimal valug when ¢(n)/n is nearu,. Numerical data suggest thag

is near 1/2 andh, is near 1/3. We shall show th&473<u,<0. 4#hd 0.321<h,<0. 324

We note that for the value 0,473; 0,475; 0,321d #&,324 we have the following mathematical
connections with the Aurea ratio:

[(¢)-7/7 + (qn)‘35”]9§- = (0,61803399+ 0,09016994% = 0,708204[% = 0,47213595

(@) BZ = 0,14589803% =0,32827058

LEMMA 1
h(0)=-¢, h()=¢.
We have by (4.3) thati(u) = ¢ ~2g'(u). The estimate
g(u) = ¢u+Ofexp(- expl/(ku)}  (4.5)

implies thatg'(0)=¢, and hence h'(0)=-¢ . Equation (4.1) implies thatg'(1)=0, and hence

h'(1)= ¢ . Thus the minimum of is achieved in the open intervgd]). We shall now establish a
formula which will lead to estimates far{1/2). This will be useful because of the close conmecti
betweeng and h and the proximity ol, to 1/2.

LEMMA 2

g(1/2) :%+% —{(g - g(%)] —(g— g(%j] +(% - g(%j] —} (4.6)
We estimate
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#{n<x:n oddg(n)< y}.

We have used the generating function

Zn—s¢(n)—z — |—| {1+ p—s(p_l)—s(1+ p—s—z + p—25—22 + )}:

|]{ = p(p-1) R (s+2) = (s 2K (s+2)  @7)

and the functiong was represented by

g(a)=i 1/2+ioo| |(l—Z,Z)

o i (1 ) a‘dz, 0<sa<l (4.8
de o Z(1-2z

The formula is valid at the end points by uniforoneergence of the integral. We delete the even
integers and write

F(s.2)= i n>g(n)” = |_| (s,2)(s+ z){%:zz_s} (4.9)

niodd
The functionsF (s, z) and F,(s, z) have the same singularities in the region
{(s.zDCxC:Res+z>0},

because any singularity of the new factcﬂl—Z‘s‘Z)/(l—Z‘s‘Z +2‘S) is cancelled by a zero of
|_| (s, z), and the new factor has no zeros in this regiomow follows that

def

g(@) = lim i#{ x:nodd,g(n)< ax} = % ;f_::"ﬂzg:ij)z)az(H 2 dz=
:%E’Zjﬂzg:izz)z) [%jz —(%jz +(%jz - ...}dz: g(a/2)-gla/4)+g(a/8)-.... (4.10)

Now g is concave and)(¢)= (s as¢ — 0O Thus the series in the formula fg(1/2) is alternating
with terms decreasing to zero, indeed at a geomedte. To further exploit our formula we must
first estimateD, (t) for t near O.
LEMMA 3

D,(t)<12>, 0<t<L1.

By Chebychev’s inequality

37



t"3#{ns x:¢(n)st}:t‘3 3 1< z(q}in)js, (4.11)

n nsx nsx
n/g(n)=1/t

and we estimate the last sum by writing

(n/¢(n)f = (@OB)n),

where [ denotes multiplicative convolution an@ is a non-negative multiplicative function

satisfying A(p) = (p3 - (p—l)s)/(p—l)s, B(p?)=0 for all primesp and all exponents = .2
Thus

nsx n=xL N p P p

Now

o 3p?-3p+1|[._ 11°_ .y 6p* +4p*~3p° - p+1
y—Z(Z)l:l{1+ (-1 Hl pZ} Z(Z)El{“ ~ } (4.13)

It is easy to check that forapp> 3

6p*+4p®-3p*-p+1<7p*. (4.14)

y< 5(2)3(1+ i—;:j{(u %)(u éj(u %)} ex ;17 p_s} ., (4.15)

7y pi<7 j1°;t-3dt =0035. (4.16)

p=11

We have

and

We note that for the value 0.035, have the follgumathematical connection with the Aurea ratio:
[(qn)‘%’7 + (qa)‘“”]% =(0,09016994+ 0,01315563% = 0,1033263;- =0,0344185

Thus y < 12 and D,(t) satisfies the claimed bound.
We combine the last two lemmas with numerical d@ét&@. R. Wall on the density functiob, to
obtain upper and lower estimates filtl/2).

LEMMA 4
% +% -0.00154< g(1/2) < % +% -0.00075. (4.17)

The alternating series representatiorg{ff/2) leads to the inequalities
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Lo g [+ £ — [ L EONC AN [ G (3 W g 5

26 {4 9(4D (8 g(SD+(16 9[16B}sg(1/2)52+6 {4 9(4D (8 g@}
(4.18)

The differential equation (4.1) has the solution

=7- j D,(t)2dt. (4.19)
Thence we obtain that
ag'(a)=g(a)-D,(a)= u™gu)=¢ - J' ,(th>dt.  (4.19b)

The constant is evaluated here by noting th(O):Z. The integral converges at zero by the
preceding lemma. Thus we have

kg - g(z-k): 2k joz_k D,(t)t?dt. (4.20)

It follows that

Coaf o[ Cmgf [ Lo 222D ()8 4 1 p ()94 3 (°p ()t
(Z 9(4D (8 g(SjJJr(lG g[mD 4L/8 D¢(t)t2+8L/16D¢(t)t2+16j0 D“’(t)tz'
23)

We estimate the three integrals from above, usimg bhound of the preceding lemma for
0<t<0.007 and the upper bounds of Wall fo0.007<t<  025Ne obtain the upper bound

0.00154. Similar treatment of

oL (f_42
(4 9(4D (8 Q(SB
leads to the lower bound. 00075

LEMMA 5

2D¢(%j —1+%+ 2R = L”Zt-ldD,,, (), (4.22)

where 0.00075< R< 0.00154

We have by (4.19)
9u) _9(L/2) _ [“D, () 7dt. (4.23)

From (4.3) and the fact that(u,) =0 we get g'(u,) == . Combining this with (4.1) we obtain

I\)IJ\.
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g(uo) = uog + D¢(Uo)- (4.24)
This expression, Lemma 4, and the preceding intgohl

oltu) 4 € or=p, (0. (o259
b 0

Integrating by parts we get the desired expressien,
1 { vz,
2D¢(§j—1+g+ 2R=[ “t7dD,(t).

THEOREM 1
U, >0.473 and h, <0.324.

Starting from Lemma 5, we write

2D, ej -1+ % +2R=["" t7dD,(t)+[ " t'dD,(t)2 é{% (05)- D, (0499} +

1 1 1
O_49€{D¢ (0499)- D, (0.498)} +...+ 0.47E{D¢ (0.476)- D, (0.475) + Vi

+

{D,(0.475)- D, (u,)}.

(4.26)
We rearrange terms, isolatirigy, (u,):

Dylo) L 1_¢ _ops (L —iqu, (0.499)+...+ (L —LJD,,, (0479. (4.27)
6 0499 05 0475 0476

If we use the upper estimate foR and the lower estimates of C. R. Wall for
D,(0.475),...,D,(0.499 we find that D, (u,) > 0.3380.

The stated inequalities follow at once from thisibo. First, we have tha])¢(0.473)< 0.3362, and
thus u, >0.473 Next, it follows from equations (4.1) and (4.3)at h, =1-2D,(u,). Thus,

h, <0.324.
We also have bounds fox, and h, in the opposite directions.

THEOREM 2

U, <0.475 and h, >0.321

Using Lemma 5 again, we write

2D¢(%j ~1+ % +2R=[" t7dD,(t)+ [ "t7dD,(t). (4.28)

Ug

This time we express the first integral as an uppemann-Stielties sum and sum by parts to obtain
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[ D, )< D¢(°-5)+( 1 __1 jo¢(o.499)+...{L_Lj%(am)-w.
0475 0.499 0.498 0.499 0475 0.476 0475

(4.29)
Thus

0475 _, D¢ (0.47 )_
J, t quj(t)z—o_475 |, (4.30)

where

| =1-5 2R+ [L —ijD¢(o.5)+ - [L —LJD¢(0.476) . (4.31)
6 0499 05 0475 0476

Thence, we obtain

[, (t)2 D.(0479 _, ¢, 2R—(L —ijD¢(o.5)— —[L —LJD¢(0.476).
" 0.47F 6 0499 05 0475 0476

We estimatel from above by using the upper bounds 5(0.476).....D,(05) and the lower
bound forR from Lemma 5. We obtain the inequality

J'0'475t—1d D¢ (t) > M - 07145, (432)
. 0.47¢

from which both assertions of the theorem will dall The boundD¢(O.475)2 0.33969 implies
that

0.475
[ t7dD,(t)>0.0006>0 (4.33)

and hencay, <0. 475Next, sinceu, > 0. 473we obtain from (4.32)

1
047z

(0,(0479- D, }2 22479

~0.7145. (4.34)

This inequality and the bounB¢(0.475)< 0.34166 yield D¢(uo)< 0.3394. Thus, we finally obtain
h, =1-2D,(u,) > 0.321,

We note that for the values 0.3380; 0,3394; 1684 and 0,7145 we have the following
mathematical connections with the Aurea ratio:

[(¢)_7/7 + (¢)‘28’7]E-g =(0,61803399%+ 0,1458980$Gg = 0,76393213;1 = 0,33952534

[(q:)‘”” + (D)7 + ()7 + (q:)‘%”]t-fg1 =(0,23606798 0,01315562+ 0,00502500+ 0,00118624)%

= 0,25543533 =0,34057978
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()" E-g = l61803399]l€18034[—lg =0,71912622

5. On some equations concerning the adelic strings, the zeta strings and the L agrangians
for addlic strings. [5] [6] [7]

As is known, the scattering of two real bosoniéngs in 26-dimensional space-time at the tree
level can be described in terms of the path integra2-dimensional quantum field theory
formalism as follows:

A, (K, k) = gfoj'ﬁ)x ex;{%ﬂso[x]j J'd o ex;{—k X" o, )} (5.1)
where DX =DX°(0,7)DX*(0,7).DX*(0,7), d°0, =do,dr; and
T 2 HAa
SO[X]=—EId a0, X X, (5.2)

with =01 and ©=0},...,25
The p-adic analogue of (5.1) is

1
A (ky,..s k4):g‘2)J'fz)X)(p( SO[X]j ”jd J)(p[ Ek] X”(U g )} (5.3)
This is the p-adic string amplitude, wher,qfp exp(an ) Is p-adic additive character and

{u}, is the fractional part ou JQ, .
Adelic string amplitude is product of real and@kdic amplitudes, i.e.

ALK k)= Al KT AL K. 64
In the case of the Veneziano amplitude &midrj)D A(S)xA(S), we have

4
=g [ M- b [ g ] [d0 <[] 7 59

The exact tree-level Lagrangian for effective scdi@ld ¢ which describes open p-adic string
tachyon is

’Bp:iz . { = 2¢+ ¢"*1}, (5.6)
9" p-1

where p is any prime number,0=-37+0° is the D-dimensional d’Alambertian and we adopt
metric with signature (- + ... +). Now we want toroduce a model which incorporates all the
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above p-adic string Lagrangians in a restrictediadeay. To this end, let us take the sum of the

above Lagrangiang, (5.6) in the form

L=3C8 =3 "t = |- g n gt X g (6

nz1 nz1 n

Recall that the Riemann zeta function is defined as

n>1n |_|1 p

Employing usual expansion for the logarithmic fumct and definition (5.8) we can rewrite (5.7) in

the form
L= —équ@qu p+ |n(1— qa)} , (5.9

Where|¢1 <1.Herel [Ej acts as pseudo-differential operator in the folimway

{2Jto-

J'e“kx #x)dx is the Fourier transform af(x). The region of integration in (5.10) is

where 47) =
-k* =k - k?>2+¢&, where € is an arbitrary small positive number, and it dals from the
definition of zeta function (5.8).

When the d’Alambertian is an argument of the Riemaeta function we shall call such string a
zeta string”. Consequently, the abogeis an open scalar zeta string. The equation ofamdor

jlxk( j dk -k*=k?-k?>2+¢&, (5.10)

the zeta stringg is
-9

, (5.11

1 (5.11)

(gl e,

which has an evident solutign= .0
The usual crossing symmetric Veneziano amplitude is

Afab)=gZ[ IXT-x"d.x =g Z(Zl(a)a )Z(Zl(;)b)zgl(;)c). (5.12)

with the condition a+b+c= 1l i.e.

where a=-a(s)=->-1, b=-alt), c=-alu)

s+t+u=-8. In the equation (5.12),.] denotes the ordinary absolute vali,is the field of
is the Riemann zeta function. The

real numbers, kinematic variablesa,b,cC0C, and ¢
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corresponding Veneziano amplitude for scatteringpeddic strings was introduced as p-adic
analogue of the integral form of (5.12), i.e.

Alab)=g? jQp|x|i‘l|1— X, (5.13)

where Q, is the field of p-adic number{s,lp is p-adic absolute value amix is the Haar measure

on Q,. Performing integration in (5.13) one obtains

a—ll_p 1 p
b)=g? P , (5.14
Alab)=g e (619

where p is any prime number.
The exact tree-level Lagrangian of the effectivalacfield ¢, which describes the open p-adic
string tachyon, is

m
g

£,="2" !—1¢p2"‘5¢+i¢"”], (5.15)

- N[T o

p-1 2 p+1

where p is a prime,0 =-37 +0? is the D-dimensional d’Alambertian and we adop thetric
with signature (— + ... +). The equation (5.15) carrd@written in the following form

[p| +1
D [
m 1 ),

0
1 om? P Ip
L =—r — = gpf g+ ¢'™ | (5.16)
= o) 2

where primep is treated as a p-adic number. Using p-adic ndrrp an (5.16) gives real prime in
(5.15).

It is worth noting that prime numbgp in (5.15) and (5.16) can be replaced by any nhtunaber
n>2 and such expressions also make sense. Now we towantroduce a Lagrangian which
incorporates all the above Lagrangians (5.15), vatiheplaced byn[IN . To this end, we take the

sum of all Lagrangian€,, in the form

0
+00 +00 D n2 1 —— 1
L=Sce=Yc L | _2momps = g (517
Zl L, nz;”g,fn—l{ Sm e n+1¢“} (5.17)
whose explicit realization depends on particulasict of coefficientsC,, string massesn, and
coupling constantgy,, .

We have considered three cases for coeffici€&)tan (5.17): (i) C, = n- where h is a real

2+h ?
n

2 _ _
parameter; (ii)C, :nn—zl; and (iii) C, = u(n) nnzl’ where 1(n) is the Mobius function. For the

case (i), we obtain the following Lagrangian
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mP| 1 0 &on"
L =—|—= +AC 1 5.18
h gz |: zd(zmz j¢ ;n_'_lw] j| ( )

where AC denotes analytic continuation. For the casetfig,corresponding Lagrangian is

_m°| 1 0 0 @
L—?{ (Zmz 1}+Z[2m2j}¢+1_¢}. (5.19)

With regard the case with the Mobius functipfn), recall that the Mobius function is defined for

all positive integers and has values 1, 0, — leddmg on factorization ofh into prime numbers
p . Its explicit definition as follows:

un)=0, n=p'm;  un)=(-1, n=pp,.p, p#p;  wn)=1, n=1, (k=0). (5.20)

Since the inverse Riemann zeta function can bedefas

i () o+ir, 0>1, (5.21)

then the corresponding Lagrangian is

m°| 1 1
L=— ——¢7D¢+J':M(qo)dqo ., (5.22)
7 Z( j
2m?

where M(¢) ="t = 9= ¢ -+ -4 + ¢~ ' -

Thence, we can rewrite the eq. (5.22) also

Pl 1 1 ‘o
L:m_z o g+ j”’zn:ly(n);d*dq) . (5.22b)
9’| 2 ( 0 j 0
2m’

With regard the multiplicative approach, our stagtpoint is again p-adic Lagrangian (5.15) with
equal masses, i.enf) =m’ for every p. It is useful to rewrite (5.15), first in the form

m° p° 1| —n L "
Ly=—F— 1S9 p*™ +pig+g™ (5.23)
"G pz—l{ 2 {

and then, by addition and subtractionggf, as
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ol o st e

Now we introduce a Lagrangian for the entire p-adictor by taking products

R R IR

p p

in (5.24) at the corresponding places. Then thvg bagrangian becomes

Tl ) e

where™(s)=1/{(s) and new scalar field is denoted py For the coupling constar, there are

. . L o p
two interesting possibilities: (1)g,2) = 02 -1

ﬂqo ¢f|‘|(1 ¢ 1)}. (5.26)

(2)ic=1in (5.26), and (2)g, =r| ,

wherer may be any non zero rational number and it giwmsﬂ p|r|p =1. Both these possibilities
are consistent with the adelic product formula

Ax,(a,b)u Ap(a,b):gi|‘p|g§.

Let us rewrite (5.26) in the simple form
£ ——4{5‘1 +z*( ﬂw go(g), (5.27)

with m=1 and dJ(qo):Aenp(l—(op_l), where AC denotes analytic continuation of infinite
product |_| p(l—qop‘l), which is convergent i|f¢1w <1 (for example|(/1m =0,618033987%. One can

easily see tha®(0) =1 and ®(-1)=0.
For (5.27), the corresponding equation of motion is

{z (E—l}z*[ ﬂqo 200(p) + #0'(g), (5.28)

2

and has¢ = Oas a trivial solution. In the weak-field approxiioa (¢(x)<<1), equation (5.28)

becomes
e (g o

Note that the above operator-valued zeta functeonbe regarded as a pseudo-differential operator.

Then (5.27) and (5.28) are transformed to the malefgrm. Mass spectrum dfl > is determined by
solutions of equation
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S(M2 )L (M)
7 ( ; 1J+z ( 2] 2. (5.30)

There are infinitely many tachyon solutions, whick below largest on1?=- 35
The potential follows from- £ atll = 0, i.e.

V(g =[7+o(gl#, (5.31)

since ¢(-1)=-1/12 and ¢(0)=-1/2. This potential has local minimur(0)=0 and values
V(1)=7.

6. Mathematical connections.

Now, we describe some possible mathematical coilnmsctWe take some equationsSettion 1.
With regard the eq. (1.16), we note that can betedlwith the eq. (5.3) &ection 5 concerning the
p-adic strings and with the fundamental equatigarging the Palumbo-Nardelli model, hence we
have the following connections:

ZI dx<j p(x)dx=
= gﬁfﬂ)xxp(_—so[X]jx ujdzaf)(‘{_%k‘(‘j)xﬂ(a’"r" )} -

I dzax\/_{ 16765 89””9“"Tr(GwGpa)f(40)—19””6#@”4:

I Id”’ G)" ‘2“°[R+40 cba”cb——\H\ 10T 0 2|2)] (6.1)

O

With regard the eq. (1.34), it can be related whihegs. (5.3), (5.5) concerning the adelic strings
with the Palumbo-Nardelli model and with the Ramanumodular function concerning the number
24, i.e. with the “modes” corresponding to the pbaisvibrations of the bosonic strings. Thence,
we obtain the following connections:

3] < 241£2J'_11 p(x)dx = gﬁj'.?)x)(p( Sb[x]j |_‘”d U)(p[—lkj X”(J T )}

h
= g2 [ X -

s [ ai o', < [ o5 =

_J-dzex\/_[ 1676 8gﬂngJTr(Gﬂvaa)f(w)_lgwaﬂquo}:

I Id”’ G)" ‘2“°[R+40 cba”cb——\H - wTrQ 2|2)}:

O
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© COSTEXW e‘”‘zw' dx
coshrx V142
A, 2w

e * qlitw)

o (213252 75| ©2

The egs. (1.45) and (1.52) can be related withetheg(5.3), with the Palumbo-Nardelli model and
with the Ramanujan modular function concerning thenber 8, i.e. with the “modes” that
correspond to the physical vibrations of the supegs. Thence, we obtain the following
connections:
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Now we take some equationsSdction 2. With regard the egs. (2.48) and (2.51), we nodt ¢an

be related with the eq. (5.3) Béction 5 concerning the p-adic strings, with the Palumboelgtir
model and with the Ramanujan modular functions eamog the number 8 and 24, i.e. with the
“modes” that correspond to the physical vibratiohthe bosonic strings and superstrings. Thence,
we obtain the following connections:

84(a(t)- a(N))’N*2logN &' + 32og N [N “2a?(t)t?)q""2 M 10og® N (21+12((a(t) - a(N))* N>
1/9Q 1/9Q

(logN)"#q™* [ p?dB+1056@(t)*q"*N*(logN)"* [ 5%°dB =
° 0

= 62| {8« [ oo - X )=

J-w COS7EXW oW iy
antilog ™ COSVK E; %:\'/2
e ¢ q.(itw)

(RS

SaN" <[l6la)T(a)iasE +E +E < (E+2E)+E,+ £, =26 +[E+E,)+E,<

<126a(t)(a(t) - a(N))N*loglogN +1260>(t}tN(logN }"?Q™"2 + (a(t) - a(N )Y’
{84N¥2R¥210gN + 240N%(logN)'2Q 2R} + a2(t)t*{7392N /2(log N ' R™? + 4224N>
(Iog N)1/2Q—5/2R3}+6_14a2(t)N 312 4 a(t){14N 3/2R—1/2 + 28NQ1’2(Iog N)l/z}:>
1 d 1,0
= 2| - SIX] <[] oo - x|
L

© COSTEXW

e™dx | s
antilog ™ COSIVK Dt%\f\'/z
1 e * g itw)

-1o . (66)
log{\/[loilll\/EJ +\/(1o+47x/§ﬂ

We note that, various numbers contents in the eqs. (2.48) aid &econnected with 8 and 24
and with various Fibonacci’'s numbers. Indeed, we have:

84=12[7(2+5); 240=24[2[5=8[30=8[2[3[5; 1260=12[21[5;
4224=24[B[21113+8);  7392=24[4[7(2+5)113+8)=24[28M11; 10560= 24115 2°;

126=3°[14; (Notethat:14=1+5+8; 28=2+5+ 2126 =3+ 34 + 89).
Also here, as in th&ection 1, we note that the numbers 8 and 24 can be related withuhea
ratio. Indeed, we have:
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(@F" + ()" + ()" +(0)™7" =12; 12[2=24; 129;l =16; 12% =8.

Also here® = @' =16180339881.

Now we take some equations@dction 3. With regard the eqgs. (3.26) and (3.33), we note that can
be related with the Palumbo-Nardelli model, and with the Ramanwanlar functions concerning
the number 24, i.e. the modes of bosonic strings. We have:
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With regard the egs. (3.43), (3.44) and (3.50), we note thateaeldted with the egs. (5.11) and
(5.22) of theSection 5, i.e. with the equations concerning the zeta strings and thenaelacal
Lagrangians. Furthermore, the eq. (3.50) is also connected wifRatn@nujan modular function
concerning the number 8, i.e. the modes regarding the physicatioits of the superstrings.
Thence, we have the following mathematical connections:

h(n) <3p(n 1’4J-\/_ \/%\/x_] o(x)=

1 |xk i
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Now we take some equationsSction 4. With regard the eqgs. (4.19), (4.21), (4.22), (4.26), (4.29)
and (4.32), we note that can be related with various equations cimgctira zeta strings and the
zeta-nonlocal Lagrangians 8éction 5. For example, we have the following mathematical
connections:

antilog
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With regard the eq. (4.21), it can be related also with the number ®&jth the “modes” that
correspond to the physical vibrations of the superstrings:
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With regard the eq. (6.11), it can be related also with the frequenagci®d with the Aurea ratio

by the value%. Indeed, we can write this equation as follow:
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