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Abstract

This paper is a further review of some interestegylts that has been obtained in various
researches concerning the “brane collisions ingtand M-theory” (Cyclic Universe), p-adic
inflation and p-adic cosmology.

In the Section 1we have described some equations concerning coswalution in a Cyclic
Universe. In theSection 2 we have described some equations concerning dsenalogical
perturbations in a Big Crunch/Big Bang space-tithe, M-theory model of a Big Crunch/Big Bang
transition and some equations concerning the swolutif a braneworld Big Crunch/Big Bang
Cosmology. In theSection 3 we have described some equations concerning émergting
Ekpyrotic curvature perturbations before the Bigh@asome equations concerning the effective
five-dimensional theory of the strongly coupleddmetic string as a gauged version of N = 1 five-
dimensional supergravity with four-dimensional bdanes, and some equations concerning the
colliding branes and the origin of the Hot Big Barmg the Section 4 we have described some
equations regarding the “null energy condition”latmn concerning the inflationary models and
some equations concerning the evolution to a smaooiberse in an ekpyrotic contracting phase
with w>1. In the Section 5 we have described some equations concerning pheoximate
inflationary solutions rolling away from the unsabmaximum of p-adic string theory. In the
Section § we have described various equations concerniagtadic minisuperspace model, zeta
strings, zeta nonlocal scalar fields and p-adic ashelic quantum cosmology. In tis&ction 7 we
have showed various and interesting mathematicaiexions between some equations concerning
the p-adic Inflation, the p-adic quantum cosmolotie zeta strings and the brane collisions in
string and M-theory. Furthermore, in each sectise,have showed the mathematical connections
with various sectors of Number Theory, principahg Ramanujan’s modular equations, the Aurea
Ratio and the Fibonacci’'s numbers. In conclusinrtheAppendix A, we have described further

new hypothesis and new mathematical and physipa&icés concerning the brane collision.



1. On some equations concerning cosmic evolution inGyclic Universe.

The action for a scalar field coupled to gravitydaa set of fluidsp in a homogeneous, flat
Universe, with line element ds’ = a?(r)(~ N%dz? + d%?) s

s=| d&d{N‘l(— 3a'2+%a2¢i2j -N ((aﬁ)“zi o+ a“\/(w))} . (L1)

We user to represent conformal time and primes to reprtedenvatives with respect to. N is
the lapse function. The background solution for shalar field is denotedg(r), andV(g) is the
scalar potential.

The equations of motion for gravity, the matter aodlar field¢g are straightforwardly derived by

varying (1.1) with respect ta, N and ¢, after whichN may be set equal to unity. Expressed in
terms of proper timé, the Einstein equations are

H? = 8’;6( ¢2+V+/J’pR+/J’pMj (1.2)
2= 8"3(402 V4 Bipa s /spMj (1.3)

where a dot is a proper time derivative.
With regard the trajectory in tf(eao,al)-plane, the Friedmann constraint reads

ag- al——[(a/?)m—(ao -azfv (%)] (1.3b)

Now we solve the equations of motion immediatelfjpbeand after the bounce.
Before the bounce there is a little radiation pnésence it has been exponentially diluted in the
preceding quintessence-dominated accelerating plaséhermore, the potentia!((p) becomes
N2
negligible as¢ runs off to minus infinity. The Friedmann constitaieads (ij =%qd2 , and the
a

scalar field equation, (azqd)'=0, where primes denote conformal time derivativese General
solution is

(g:\/gln(AHS(in)r), a=Ae¢"'® = AJAH(in)r,

a,= Al + 1AH(in)r), a = A} - A*AH(in)r), (1.4)

where A =%/Y¢ . We chooser = Qo be the time whem vanishes so that< Before collision.
A is an integration constant which could be setrityltby rescaling space-time coordinates but it is
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convenient not to do so. The Hubble constants aseatkin terms of the brane scale factors are
a,/a2 anda’,/a? which atr = Otake the values- A°H(in) and - A°H(in) respectively.

Re-expressing the scalar field as a function operdime t = jadr , We obtain

- E In(gHS(in)tj. (15)

The integration constaan(in)<O has a natural physical interpretation as a measfirthe

contraction rate of the extra-dimension. We remeantifiet when the brane separation is small, one
can use the usual formula for Kaluza-Klein theory,

ds = e-@’dsj + ez\/%'dyz, (1.5b)

where ds; is the four-dimensional line elemeny, is the fifth spatial coordinate which runs from
zero toL, andL is a parameter with the dimension of length. Tleeme have that:

2
glﬂ
Ldt,  dt

d(ef J g
Hy =k = :g@&, (L.6)

2
where L, = Le&’ is the proper length of the extra dimensianjs a parameter with dimensions of
length, andt; is the proper time in the five-dimensional metric,

1 1
dt, = ae’\g(pdr = e’ﬁ(”dt . (1.7)

with t being FRW proper time. Notice that a shgft can always be compensated for by a rescaling
of L. As the extra dimension shrinks to zek, tends to a constan,(in).
Immediately after the bounce, scalar kinetic enelgyinates andH, remains nearly constant. The

kinetic energy of the scalar field scalesaa$ and radiation scales @s”, so the former dominates
at small a. It is convenient to re-scala so that it is unity at scalar kinetic energy-réidia
equality, t,, and denote the corresponding Hubble constént The Friedmann constraint in eq.
(1.3b) then reads

(af =%Hf(l+ a‘z), (1.8)

and the solution is
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\/%Hfrz +V2H 1. (1.9)



The brane scale factors are

1 1 2

a, = a(/rle”’% +)Ie‘¢”£): /1(1+ H T] + A28 H 2H & (out)r

r
3
22

1 12
alsa(—/]‘le"”@+/1e"”’\@): A[1+H—;TJ—26A1Hr3H§(out)r . (1.10)
22

1 1
Here the constantA=2%(H, /H.(out)): has been defined so that we magghand a, to the

incoming solution given in (1.4). As for the incargi solution, we can compute the Hubble
5 2 1

constants on the two branes after collision. They & AH, (out)+2 3A*H3HZ2 on the positive
5
and negative tension branes respectively. Apx 22 1°H,, the case of relatively little radiation

production, immediately after collisiora, is expanding buta, is contracting. Whereas for
5
H, >221°H,, both brane scale factors expand after collisibmo scalar potentia}\/(q)) were

present, the scalar field would continue to obeydblution (1.9), converging to

_ [2, (5 Hs(out)
@ = 3In(Z ¥ j (1.11)

r

5
This value is actually larger thap, for H, <H"°22, the case of weak production of radiation.

However, the presence of the potenti’e(to) alters the expression (1.11) for the final restmatue
of the scalar field. Ag crosses the potential well travelling in the pesitirection,H; is reduced

to a renormalized valud:|5(out)< H,(out), so that the final resting value of the scalaldfiean be

smaller thang,. If this is the case, thelm, never crosses zero, instead reversing to expansion
shortly after radiation dominance. If radiation doance occurs well afteg has crossed the
potential well, eq. (1.11) provides a reasonabtenade for the final resting value, if we use the

corrected valueﬁs(out). The dependence of (1.11) is simply understoodiewtie Universe is
1
kinetic energy dominateda grows att® and ¢ increases logarithmically with time. However,
1
when the Universe becomes radiation dominated antt?, Hubble damping increases aigd

converges to the finite limit above.
With regard the egs. (1.6-1.11), we note the follmirconnections with number theory:

2°* =3/32 =31748021041(d)°"" + (@)™ =3171;
2%/2 = /8 = 28284271257 ()" + ()™ = 2,826;
27 =03149802620(0) > + (@) "7 = 03168,
210 =§/2 211224620481 (@) + (@)™ =11231;



2°/2 = /32 = 56568542491( )" + (o) """ = 56553,

Note that, 32=8x4=24+ 8 where 8 and 24 are the “modes” that corresponthéophysical
vibrations of a superstring and the physical vibrat of the bosonic strings.

J5+1

Here, we have used the following expressiorf®)"’’, with ® ==, =1618033987. thatis

the Aurea ratio, n is a natural number and 7 are the compactified diransions of the M-
Theory.

Using the following potential
V() =V,[l-e*)F(p), (1.12)

we consider the motion of back and forth across the potential wall. may be accurately
approximated by-V,e . For this pure exponential potential, there igngpte scaling solution

- 1-3 2
a(t):|t|P, V=—V0e (/J:—M' p:?, (1'13)

which is an expanding or contracting Universe sotutaccording to whethet is positive or
negative. A the end of the expanding phase of yleéccscenario, there is a period of accelerated
expansion which makes the Universe empty, homogenaad flat, followed by rolling down

the potential\/(qo) into the well. Afterg has rolled sufficiently and the scale factor hagum to
contract, the Universe accurately follows the abaealing solution down the well untig
encounters the potential minimum. Let us consitier iehaviour ofg under small shifts in the
contracting phase. In the background scalar figjdaton and the Friedmann equation, we set
p=@+op and H=H;+d,6 whereg and H, are the background quantities given from
(1.13). To linear order id¢ , one obtains

. 1+3p .. 1-3
S+ tp5¢— t2p5¢:o, (1.14)

with two linearly independent solutiondp=t™ andt' ", where p <<1. In the contracting phase,
the former solution grows astends to zero. However, this solution is simplyir@mitesimal shift

in the time to the Big Crunchdp ¢.

We next the incoming and outgoing collision velgciwhich we have parameterized Iag(in) and
H5(out). Within the scaling solution (1.13), we can ca#talthe value of incoming velocity by
treating the prefactor of the potentiﬁ(qo) in eg. (1.12) as a Heaviside function which istyifor
@>q,., and zero forp< g, , whereg, is the value ofg at the minimum of the potential. We
compute the velocity of the field as it approaclges and use energy conservation at the jump in
V to infer the velocity afterg,, is crossed. In the scaling solution, the totalrgyeas ¢

3p°

t2

approachesg,,, from the right is %qf +V = , and this must equal the total energ%gb2

evaluated forg just to the left ofg,, . Hence, we find that 9=+/6p/t =,/6pV,,, /(L-3p) at the
minimum and, according to eq. (1.6),
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Note that from the eq. (1.15), we obtain:

H.(in)= (1.15)

£
[Hs(in)* = —C—SZ—M“‘;'feGC-z )

where the number 8 is connected with the “modeat torrespond to the physical vibrations of a
superstring by the following Ramanujan function:
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At the bounce, this solution is matched to an egpansolution with

H.(out)=—(1+ x)H.(in)>0, (1.16)

where y is a small parameter which arises because ofnélasticity of the collision. We shall
simply assume a small positive is given, and follow the evolution forwards in 8nSincey is
small, the outgoing solution is very nearly thedimeverse of the incoming solution gsstarts

back across the potential well after the bounce:sttaling solution is given in (1.13), but with
positive. We can treajy as a perturbation and use the solution in eq4jldiscussed above,

dp=t™" and t'°". One can straightforwardly compute the perturlpaiio JH, in this growing
mode by matching ag,. as before. One finds H, =12yHZ2/c*> whereH;S is the background

3
.. . . - .
value, at the minimum. Beyond this poidtl; grows as t'%'° eﬁ for largec, whereas in the
[E—C/Z
background scaling solutioH, decays withg as e
field has attained the value

Jo
. The departure occurs when the scalar

B 2 ¢
%ep_%in +Elnﬁ’ N|S(

As ¢ passes beyong,,, the kinetic energy overwhelms the negative poitatnd the field passes
onto the platea, with H, nearly constant and equal to



J6

. (out) = ){%jms(m), (1.18)

until the radiation, matter and vacuum energy bexsignificant andH, is then damped away to
zero. Note that we can rewrite the eq. (1.18) dsvio

2 ﬁ \/— 1 g@nin
C j © o VBMmlE g

12y c J1-6¢7

Also this equation is related with the number &, with the “modes” that correspond to the
physical vibrations of a superstring by the follaggiRamanujan function:

. (out) = ){

© COSTEXW
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and with the number 12 (12 = 24 / 2) that is reldtethe physical vibrations of the bosonic strings
by the following Ramanujan function:

[ COSTIXW __ vy 4
antilog™ conszhm D't;[:fz

e’ q (itw')

T

The time spent to the left of the potential g ¢,,,) is essentially identical in the incoming and
outgoing stages foy << ,hamely

| = ———. (1.19)

A7

For the outgoing solution, whep has left the scaling solution but before radiatimmination, the
definition eq. (1.6) may be integrated to give tinge since the Big Bang at each valuegqf

3 3

_cde_ [2 2’ 2 @
tlp)=|—=L=.|=|dp—= = —— . (1.20
v jqo BI ¢H5(qo) 3 H,(out) (1.20)

Also this equation can be rewritten as follow:




C +1-6¢7°

The time in eq. (1.20) is a microphysical scalee Thrresponding formula for the time before the
Big Crunch is very different. In the scaling sotuti(1.13) one has for large

tlg)=] \f Jd qo% 3 /X(12)(J sble %n- (1.20b)

2 ec(w_wmin )/2 6€c(¢_¢nﬂn )/2

tlp)=- v

(1.21)

c - 2 |tmin| .

The large exponential factor makes the time tadBigeCrunch far longer than the time from the Big
Bang, for each value af . This effect is due to the increasehty after the bounce, which, in turn,

is due to the positive value gf . As the scalar field passes beyond the potentdl v runs onto
the positive plateaw,. The value ofH 5(out) is nearly cancelled in the passage across thafmte

well, and is reduced tdﬂ5 given in eqg. (1.18). Once radiation dominationibggthe field quickly
converges to the large(Hubble-damped) limit of eq. (1.9), namely

@ = \/gln(g (out)/H,j, (1.22)

where H, is the Hubble radius at kinetic-radiation equal&yso the eq. (1.22) can be rewritten as

follow
(07 BN e
In| 22 min /H. |. (1.22b
NN PN |-

C J1-6¢c72

The dependence is obvious: the asymptotic valug afepends on the ratio dﬁs(out) to H,.

Increasing ﬁS(out) pushesg further, likewise loweringH, delays radiation domination allowing
the logarithmic growth ofz in the kinetic energy dominated phase to contiouéonger.

The solution of the scalar field equation is, ag&panding eq. (1.9) for large, converting to
proper time t = ja(r)dr and matching,

@= V3H, a‘3j dtaV,, (1.23)

&)

where as above we defiraft) to be unity at kinetic-radiation equal density. Wi&eve thatg may
reach its maximal valueg, and turn around during the radiation, matter omgssence
dominated epoch. For examplg,., is reached in the radiation era, if, from eq. 8},2

tua — 8 |7V () )
t—~1o“(t J [v (%)] <1, (1.24)

m m @
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wheret  is the time of matter domination.
For turn around in the matter era, we require

1 1
6 3
3x10™ < (tt—fJe(vi(%)j <30. (1.25)
m @

Finally, if the field runs to very large., so that\(q,lv(%): ce “* is exponentially small, then

only turns around in the quintessence-dominated era
For our scenario to be viable, we require therébéoa substantial epoch of vacuum energy

domination (inflation) before the next Big Crunchhe number of e-foldings\, of inflation is
given by usual slow-roll formula,

g%

v
N, jdqov— = (1.26)

Il

for our model potential. For example, if we demamak the number of baryons per Hubble radius
be diluted to below unity before the next contmctiwhich is certainly over-kill in guaranteeing

that the cyclic solution is an attractor, we st >10”°, or N, > 60. This is easily fulfilled ifg.
is of order unity Planck units. Hence, the eq.g§L&an be rewritten as follow:

e
—>60. (1.26hb)

— (do " ~
_Id¢V_¢~ c

With regard the egs. (1.24-1.25, 1.26b) we havefdahewing mathematical connections with the
Aurea ratio:

@) + ()" = 2903444185+ 0,059693843 29,0941;
)" + ()" = 0576974982 0,38196601 % 0,95894;
@) %" = 0,4914670835 arcsir(0, 491467083$D1£ 29437054

®)*7 + ()" = 2903444185+ 3110060654 60135048

()

(@)

(@)

(@)™ =08715438560 arcco£08715438569ELO 29361456,
()

(@)% =0,4914670835 arccof0, 491467083)5@170 60562946,
(@)

®)?" =08715438560 arcsir(0, 8715438569)9170 60,638544



From the formulae given above we can also calcubeenaximal valugg. in the cyclic solution:

for largec and fort, >> 7't , itis

min ?

~ |2 L
R %n~\/;|n()(tminj, (1.27)

where we used ™" =t , the beginning of the radiation-dominated epocbnfeq. (1.27) we obtain

3
2 V2
L :1(—0 Ne[vmi“'] © . (28)
tmin X VO

This equation provides a lower bound §n The extreme case is to také,,|=1. Then using
V, =10, ¢=10, N, =60, we find t, =10 seconds. In this case the maximum temperature

of the Universe is =10°GeV. This is not very different to what one finds m simple
inflationary models.

We have shown that a cyclic universe solution exsbvided we are allowed to pass through the
Einstein-frame singularity according to the matghiconditions, egs. (1.15) and (1.16).
Specifically, we assumed thatH(out)=—(1+ y)H,(in) where y is a non-negative constant,

corresponding to branes whose relative speed eftbsion is greater than or equal to the relative
speed before collision. Our argument showed that,ebich y = Q there is a unique value of

H5(out) that is perfectly cyclic. Now we show that an g®&se in velocity is perfectly compatible

with energy and momentum conservation in a colidi@tween a positive and negative tension
brane, provided a greater density of radiatioreisegated on the negative tension brane.

We shall assume that all other extra dimensionsranduli are fixed, and the bulk space-time
between the branes settles down to a static sfiethe collision. We shall take the densities of
radiation on the branes after collision as beingeigi By imposing Israel matching in both initial

and final states, as well as conservation of tetaérgy and momentum, we shall be able to
completely fix the state of the outgoing branes angarticular the expansion rate of the extra
dimensionH,(out), in terms ofH,(in). The initial state of empty branes with tensidhand - T,

and with corresponding velocities <0 andv_ >0 obeys

T

_ 3 Tv. Tv
E[ot - \/1_ Vf \/1

T
. Py=—2 - Y 129
-V “ \/1—vf \/1—v_2 (1.29)

The first equation follows from Israel matching thie two branes as the approach, and equating the
kinks in the brane scale factors. The second amd #guations are the definitions of the total
energy and momentum. The three equations (1.29)yirttyat the incoming, empty state has
v, =-V_, E, =0 and that the total momentum is

TY1-V2 =T 1-V?;

p = TLH,(in) <0, (130)

- L)
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where we identifyv, —v_ with the contraction speed of the fifth dimensi{jﬂﬂs(in)|. For the eq.
(1.15), we can rewrite the eq. (1.30) also as vallo

1 §¢¥nin
ﬁwminPe ? 1
¢ \/1_6(:_2 1 3, ?
} L —@Nminpe 2
4 C 1-6c?

=TL -

<0. (1.30b)

1_

The corresponding equations for the outgoing state easily obtained, by replacing with
T+ p, =T, for the positive tension brane, ardl' with =T + p. =-T_ for the negative tension
brane, assuming the densities of radiation prodwatethe collision on each bran@, and o_
respectively, are given from a microphysical catioh, and are both positive.

Writing v, (out) =tanH#,), whereé, are the associated rapidities, one obtains twatisals

sinhé, = - Qtot| +|R, (T2 TZ)) sinhg. =+~ th|—|mt| (r? TZ)) (1.31)

where T, =T +p,, T. =T -p_ with p, and p_ the densities of radiation on the positive and
negative tension branes respectively, after colisBoth p, and p_ are assumed to be positive. In

the first solution, with signs (- +), the velocgtief the positive and negative tension braneshere t
same after the collision as they were before ithisecond, with signs (- —), the positive tension
brane continues in the negatiwe direction but the negative tension brane is alswing in the

negativey direction. The corresponding values fofout) andV are

| t0t|+| t0t| (TZ_T—Z) |Rot|_| tot| (T2 TZ)

Lout)=— , t) = ,
o VRL+2fr +72)+ R2(r -2f o) JR& +2T2+72)+ B2(T2 -T2
V= JRe + 212+ 77)+ BT -T) _Raofrzam)er(rz-T2f (1.32)
| tot|(T2+T ) (T2 T2)+| t0t| (T+2_T—2) | t0t|+| t0t| (T2+T2) ’

where the first solution fo¥ holds for the (- +) case, and the second for(the) case. We are
interested in the relative speed of the branelaroutgoing state, since that gives the expansin r

of the extra dimension, -v,(out)+v_(out)=LH,(out), compared to their relative speed
—2v, =-LH,(in) in the incoming state. We find in the (- +) siglof

|Hg(out)| _ v, (out)-v_(out) _ \/ P2 +4T? (1.33)

‘ H5(in)‘ 2V, p2 +2(T2+T2) +R (Tf T_Z)Z ,

tot

and in the (- —) solution

11



He °”t| (r2-17) P2 +4T?
‘ ‘ Rst P2 +2(-|-2 +i|-tz) +p2 (Tf T_2)2 . (1.34)

with B, given by (1.30) in both cases. We note that wereanite the relation above mentioned,
i.e. —v, (out)+v_(out) = LH.(out) also as follow:

1

3
VB Vo262
C +1-6¢7

v, (out)+v_(out) = LH (out) = L| - (1+ x) - (1.34b)

At this point we need to consider how the dersitieradiationp, and p. depend on the relative
speed of approach of the branes. At very low queelﬁ(in] <<1, one expects the outer brane

collision to be nearly adiabatic and an expondgtehall amount of radiation to be produced. The
(- +) solution has the speeds of both branes neguwl before and after collision: we assume that
it is this solution, rather than the (— —) solutiehich is realised in this low velocity limit. As

ILH,(in) is increased, we expegt, and p_ to grow. Now, if we considep, and p_ to be both

<< Ra

<<T, then the second term in the denominator domin#tesore radiation is produced on
the negative tension brang, > p, , then

= (1+)()={1+%} (1.34c)

and so y is small and positive. This is the condition neegg to obtain cyclic behaviour.
Conceivably, the brane tension can change ffoto T'=T —t at collision. Then, we obtain

(1+X)=[1+W] (1.34d)

For the (- +) solution, we can straightforwardly tedenine an upper limit for
IHs(out)/ Hy(in) =1+ x). Consider, for example, the case there the bemsion in unchanged at

collision, t = 0. The expression in (1.33) giv@ﬂ (out)/ H, (in)| as a function off,, T_ and R,.
is greatest, at fixed_ and P, whenT, =T, its smallest value. FOR? <T?, it is maximized for

2

T?=T%-P2, and equal to }(Z,T_F%t when equality holds. FoR, >T?, it is maximized when

tot ?

T_=0, its smallest value, anB’ = 2T?, when it is equal to\/; 1154700538 This is more than

enough for us to obtain the small valuesyoheeded to make the cyclic scenario work. A reducti

in brane tension at collisiorts> flrther increases the maximal value of the ratim.obtain cyclic
behaviour, we neegy to be constant from bounce to bounce. That is,paved to the tension

before collision, the fractional change in tensad the fractional production of radiation must be
constant.

12



We note that for\/g =1154700538 we have the following mathematical connectionthvihe

Aurea ratio:

\E =1154700538= (®) ™" +(®)**'" = 0933565132 0,220384833 11539499

\/g =1154700538= () """ + ()" = 0618033988 % 0,538643725% 1156677713

2. On some equations concerning cosmological perturbans in a Big Crunch/Big Bang
space-time and M-Theory model of a Big Crunch/Big Bng transition.

We consider a positive or negative tension brarte wosmological symmetry but which moves
through the five-dimensional bulk. The motion thghuthe warped bulk induces expansion or
contraction of the scale factor on the brane. Ttwesfactor on the brane obeys a “modified
Friedmann” equation,
2 1 10+ K Y
+ L=
T VS

. -

*
T 3MIL

2.1)

where p, is the density (not including the tension) of reattr radiation confined to the brare,
is the brane scale factor, aht, is the induced Hubble constant on the positivgdtiee) tension

brane. Choosing conformal time on each brane, agleoting the o® terms equations (2.1)
become

L bt -Kb2+e, b?=-—t

b2 =+ 2
3M3L 3M 3L

pbf-Kb2+e. (2.2)

where prime denotes conformal time derivative. €ogesponding acceleration equations iy
and b"_, from which € disappears, are derived by differentiating equati¢2.2) and using

d(pb4):b3(p—3P)db with P being the pressure of matter or radiation on tiweeb. We now

show that these two equations can be derived frosingle action provided we equate the
conformal times on each brane. Consider the action

§ = [dtNc*x[- 3M2L(N b2 -Kb?)- p,b! + L[N 2b2-Kb2)- pb?],  (2.3)

where N is a lapse function introduced to make the actiore reparameterization invariant.
Varying with respect td, and then settindN = gives the correct acceleration equationsidor

and b"_ following from (2.2). These equations are equimtléo (2.2) up to two integration
constants.
We rewrite the action (2.3) in terms of a four-dite®nal effective scale fact@ and a scalar field

¢, defined by
_ @ _ : Y
b, =acosh—~= |, b_=-asinh ——|.
r{@j F(Jéj
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Clearly, a and ¢ transform as a scale factor and as a scalar tdietter rescalings of the spatial
coordinatesx. To interpret¢ more physically, note that for static branes th [space-time is
perfect Anti-de Sitter space with line elemeay? + eZY’L(— dt® + dS(Z). The separation between the
branes is given by

d= L|n(ﬁj = Lin| S0t
a. X2
(&
so d tends from zero to infinity ag tends from minus infinity to zero. In terms afand ¢, the
action (2.3) becomes

§= Idtd3x[— am3L (a2 - Ka2)+%a2¢2} £S,, (2.4)

which is recognized as the action for Einstein gyawith line element az(t)(— dt? +¥ d)édxj),
y; being the canonical metric ad®, S* or E* with curvatureK , and a minimally coupled scalar
field ¢. The matter actior§, is conventional, except that the scale factor appg is not the

Einstein-frame scale factor but instedd = acosf{go/\/g) and b_ = —asinh(qo/\/g) on the positive
and negative tension branes respectively.

Now we wish to make use of two very powerful prpies. The first is the assertion that even in the
absence of symmetry, the low energy modes of treedimensional theory should be describable
with a four-dimensional effective action. The satanthat since the original theory was coordinate
invariant, the four dimensional effective action shbe coordinate invariant too. Since the five-
dimensional theory is local and causal, it is reabte to expect these properties in the four-
dimensional theory. If furthermore the relationvbeen the four-dimensional induced metrics on
the branes and the four-dimensional fields is lott@n covariance plus agreement with the above
results forces the relation to be

g,, = (cosl{(p/ \/5))2 g,‘fj O = (— sinh(qo/ \/5))2 gffj (2.5)

When we couple matter to the brane metrics, thgpeessions should enter the action for matter
confined to the positive and negative tension saespectively. Likewise we can from (2.4) and
covariance immediately infer the effective actionthe four-dimensional theory:

S= J'd“xﬁ(M?j R—%(@M)ZJ + Sn;[g‘]+ Snj[g+], (2.6)

where we have defined the effective four-dimendi&tanck masM; = (87164)_1 =MJL.

The two brane geometries are determined accordintpe formulae (2.5), and the background
solution relevant post-collision is assumed to @insf two flat, parallel branes with radiation

densitieg, . The corresponding four-dimensional effective tlyelwas radiation density, , and a
massless scalar field with kinetic energy dengity The four-dimensional Friedmann equation in
conformal time then reads

14



a'2=%(,o,a4 + ,oq,a“)z 4A4(r4 + A"j, (2.7)

a2

where we have defined the consta#isandr,, and used the fact that the massless scalar &ineti
energyp, [J a™®. The solution to (2.7) and the massless scallat éiquation(azqd): 0 is:

a? = 4Ar(L+1,7), wz\/gln(ﬁj. (2.8)
From these solutions, we reconstruct the scalefsacn the branes according to (2.5), obtaining:
b, =1+ Ar+r,r, (2.9)
so we see that with the choice of normalizationtifier scale factoma made in (2.7), the brane scale

factors are unity at collision. We may now directiympare the predictions (2.9) with the exact
five-dimensional solution, equating the terms lmi@ar to obtain

_ (. _L(n+r)
A4—(1/L)(1+Tjtant(y0/2), r4—m, (2.10)

where y, is the rapidity associated with the relative véjoof the branes at collisio = tani(yo)

andr, is the value of the radiation density on each brane at collision. Thence, the eq. a8)
be rewritten also:

L2(r, - 1) L(r, +r)
=1+ (/L) 1+ —=—=1 |t r +——+ =/ r. (21
b, =1+ (/ )( T ]ani‘(yol i +12tani(y0/2)r (2.100)

Furthermore, we define the fractional density nasrh on the two branes as

f=l=, (211)

so that we have

12fr,

r,—r = tanh(y,/2). (2.12)

Now, we describe the perturbations of the brandevsystem in terms of the four-dimensional
effective theory. We shall now describe the scalarturbations, in longitudinal gauge with a
spatially flat background where the scale factod &ine scalar field are given by (2.8). The
perturbed line element is

ds? = a2(r)|- (L+ 20)dr? + (1- 2W)ax?].  (2.13)
Since there are no anisotropic stresses in thariaed theory, we have =W,
A complete set of perturbation equations consistthe radiation fluid equations, the scalar field
equation of motion and the Einstein momentum cairstr

15



,=-4lev -a0) v,=3a 0 () en()= () a0
O'+HD =§azp,vr +%¢1(5¢), (2.14)

where primes denote derivatives,d, is the fractional perturbation in the radiatiomsigy, v. is

the scalar potential for its velocity i.el =Cv., d¢ is the perturbation in the scalar field, and from
(2.8) we have the background quantities

=2 (1+2rr \/7(”
a [2r+r7)]’ 1+rr

We are interested in solving these equations inahg wavelength Iimit]kr| <<1. Solving all the
above equations fadIna, one finds

.9
Mrw) [@+w)

i=1..N, (2.15)

for adiabatic perturbations. The components of laekground energy density in the four-
dimensional effective theory are scalar kineticrgpewith w, =1, and radiation, withw, :%. It

follows that for adiabatic perturbations, at longwslengths we must have

0, =§5

[ 2"

(2.16)

In longitudinal gauge, the fractional energy densperturbation and the velocity potential
perturbation in the scalar field (considered asiia fwvith w=1) are given by

3, =2(@—cpj, v,=%  (217)
¢ ¢

From the equations (2.14) above (and usjiiga) it follows that

[5(,, —§5rj' - 2k2(vr —@] . (218)
2 ¢

Maintaining the adiabaticity condition (2.16) up d¢oder (kr)2 then requires that the fractional
velocity perturbations for the scalar field and thdiation should be equal, = dp/ ¢/ . Expressing
the radiation velocity in terms a¢ , the momentum constraint then yields

Sp= (1%%} (—2(‘”';5@)], (2.19)
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where p, = %qdz a?’.

The above equations may be used to determine dldenketerms in an expansion |kr| of all the
guantities of interest about the singularity. Walkbhoose to parameterize the expressions in terms

of the parameters describing the comoving energgitie perturbation, &, = —g%‘zkzdb, which

has the following series expansion about : 0O
£, =£D(r)+5E(r), (2.20)

where g, and &, are arbitrary constants, and
D(T)=1-2r4f-%k2rzlnlkr| fo., E[)=r?+.. (2.22)

For adiabatic perturbations, we obtain

9 1 371 3
Jq,zso(—dszz Shnlkrl+ 4k2]+ezm+0(r,rln|kr|), (2.22a)

v¢,:80(%(1—r4r)j+0(r,rln|kr|), 5r=§5¢+0(r2,rzln|kr|), vr=v¢,+0(r,rln|kr|),

q::go(— & 2[8In|k| 3[5r] £,—> +0(r.rke]), (2.22b)

8kr? 8 k2 8k
3 1,13 1
(jg)—g (SKZ S@L-2r r)+—|n|k 7+ PR sz 52@+0(T,T|n|kr|), (2.22¢)

(o == ( e (k? +16r2)+ —In|kr|j+0(r,rln|kr|), (2.22d)

"
where,,, is the curvature perturbation on comoving slicesoduced by Mukhanov.

With regard the (2.22c) we note that is possibke ftllowing mathematical connection with the
Aurea ratio:

1

NG

\/g + 1 -13/7
= 0,40824829= ()" :( 5 j = 0,409147710,409.

Furthermore, in the egs. (2.22b-2.22c) there isnimmber 8, that is related to the “modes” that
correspond to the physical vibrations of a supegtoy the following Ramanujan function
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ol ]

and that 2, 3, 5, 8 and 13 are Fibonacci’'s numbers.
Now, we consider the propagation of metric perttioos through a collision of tensionless branes

where the background space-time is precis#ty/Z,xR*. The form that we take for the five-
dimensional cosmological background metric is

ds? = n(t, y)(- dt? +t2dy?) + b2(t, y)g,dxdx’,  (2.23)
and we write the most general scalar metric peatioh about this as

ds? = 2(t, y)(- (L+ 20)dt? - 2Wditdy+ t3(1- 2r )dy? — 20, adx dt + 2t20, Bdydx ) +
+b2(t,y)((L-2W)o, 20,0 x)dXdx . (2.24)

For perturbations onM® x R® it is straightforward to find a gauge in which theetric takes the
form

ds’ = (1+gk2)(j(— dt® + tzdy2)+ ([1—§k2)(j5”. + 2k kj)()dxi dx', (2.25)
and y satisfies a massless scalar equation of motiodrx R®. To be precise, the gauge is
a==0Q F=b-WY-K?y, d:z%kz)(, w:%kz)(, W=0. (2.26)
Notice that the non-zero variables can all be eelab y according to

_(_2,.2 . 1)
(r,qa,w)_( 3,+3,+3jk)(. (2.27)

We shall, henceforth, refer to these as the “Mitaigo conditions”. Furthermore, imposing tizg
symmetry, we obtain Neumann boundary conditiongygn

x(y.)=0, (2.28)

where y, =+y, /2are the location of the twd, fixed points. In the model space-time, the lowest
energy mode fory is y-independent and has the asymptotic form

x(t.y)=Q+Pinkt, (2.29)
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with Q and P being arbitrary constants. We have the followigligtions:
Qu=-Q,+2(y-In2R,, P,=P,. (2.30)

These relations are sufficient to determine therimdéfuctuations after the bounce. We are only
interested in the long-wavelength part of the spect and, for the cases of intered®, is

suppressed bi® compared taQ. As a result, we obtain the approximate matchirg r

Qout = _Qin ) Pout = Rn . (2-31)

The key conditions (2.26) through (2.28) are si&iisprecisely for all time in a compactified Milne
modZ, background.

Now, we wish to use the four-dimensional effectfmeduli) theory to infer the boundary data for
the five dimensional bulk perturbations. In any rfdimensional gauge, the four-dimensional
metric perturbationh,, and scalar field perturbatiordg determined the induced metric

perturbations on the branes via the formulae (2.5):
o =hy, +2(nQ,) om,, , (2.32)

where Q, :cosf(wlx/g) and Q_= —sinh(w/\/g) and the metric perturbations are fractional i.e.
&, =a’h,, &; =bh; . This formula is particularly easy to use in ffienensional
longitudinal gauge. This gauge may always be choaed it is completely gauge fixed. In this
gauge the five-dimensional metric takes the form

ds? = n(t, y)(- (1+ 20, )dt? - 20 dtdy+t2(1- 2, )dy?)+ b2(t, y)((L- 2%, )3, JdXdx . (2.33)
In the absence of anisotropic stresses the brajectories are unperturbed in this gauge. An

immediate consequence is that the four-dimensiongitudinal gauge scalar perturbation variables
®, and ¥, describing perturbations of the induced geometrgach brane

ds? =b?(r, )~ (L+ 20, )dr? + (1- 2w, )dk?),  (2.34)

are precisely the boundary values of the five-disi@mal longitudinal gauge perturbations
®, =0 (y,) and ¥, =¥ (y,). Using (2.32) and (2.34), we find for the indugesiturbations

= i _r = _i _r
o, =0, + 5 tand ;_6j540, WY, =0, \/gtanl" \/_;6j5¢
= i T - —i 0
O =0, + \/gcotd \/_’6)540 Y =0, \/gcotd \/_;6j5¢ (2.35)

The brane conformal times may be expressed in tefrhdy integrating,

r,=[ a_ (2.36)



where g=b/n. So for example the boundary value of the bulkrimeierturbation®, on the
positive tension brane is given explicitly by

® (ty,)= %(IOI(L Y. )'1dt)+%tanh(¢([ qalt,y. ) dt) \/E)W([ aft.y.)'dt), (2:37)

wherey, is the location of the positive tension brane.
Also in these equations (2.35-2.37), we have tHeviing connection with the Aurea ratio:

J5+1)

13/7
> j =0,4091477]0,409.

1
J6

=0,4082482% (o) ™" = (

Now, using (2.22) and the following equation

_ £, tanh(y, /2) _ o Y : 2,2
)= 552 2000012ty i), e siml ) ofpe k)
(2.38)

to find Q and P before and after the bounce for all componentthefmetric perturbations and
matching according to the rule given in equatior812 results ind,,, inheriting two separate

scale-invariant long wavelength contributions i® §host-singularity state. The first occurs as a
direct consequence of the sign change in (2.31, iarindependent of the amount of radiation
generated at the singularity. The second is prapwt to the difference in the densities of the
radiation on the two branes. At leading order ilogties we have

2
G_:i]kfol_z (V|: +V4 )_w+0(rv V L_ prz), (239)

AZ4, M = out 3 kz

whereV, andV,, are the relative velocities of the branes befoie ater collision. Note that since

out
PO¢g,, matching P is in fact equivalent to matching, across the collision. In terms of four-
dimensional parameters includimg given in (2.12) defining the abundance of theatidn and the
fractional density mismatch defined in (2.11), we find again at leading orislevelocities

3 & (\/4 OUI) 3¢, frNg

A —4fout (240
Som = 64 K22 28k> L (2.40)

This is the final result, relevant to tracking pebations across the singularity in the ekpyrotid a
cyclic models.

The result for the long wavelength curvature pédtion amplitude in the four-dimensional
effective theory, propagated into the hot Big Baftgr the brane collision is:

9¢, tanH6/2) . 3N
0= T cosH(H/Z)(H sinh6)~ sac: (24D
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where @ is the rapidity corresponding to the relative sp¥g, of the branes at collision, and the

second formula assum¥s,, is small.L is the bulk curvature scale, a?éli_z has a scale invariant

power spectrum.
With regard the eqgs. (2.40) and (2.41), we havefahewing mathematical connections with the
Aurea ratio and the Fibonacci’'s numbers:

64 =48+ 16 =24 + 24 + 8 + 8;64=8"=34+21+8+ that are Fibonacci’'s numbers;
24=3x8; 64=(3x8)+(3x8)+8+8, with 3 and 8 that are Fibonacci's numbers;

8 ()" (806342224

Furthermore, in the eq. (2.40) 2, 3 and 8 are rrboi's numbers and 8 is connected with the
“modes” that correspond to the physical vibratiafisa superstring by the following Ramanujan
function:

" COSTIXW o g
antilog =~ COSIVX D':2L42
—n—w‘ g tw
1 e ‘g (iw)

G

The d + 1-dimensional space-time we consider igectdproduct of d — 1-dimensional Euclidean
space, R, and a two-dimensional time-dependent space-timavk as compactified Milne
space-time, ool . The line element fork. x R*™ is thus

ds’ = —-dt* +t°dg” + dx*, 0<6<f,, -w<t<w, (2.42)

where X are Euclidean coordinates &, 8 parameterizes the compact dimension ansl the
time. The compact dimension may either be a ciroleyhich case we identify with 8+ 6,, or a

Z, orbifold in which case we identify with &+ 26, and further identifyd with 26, -6. The
fixed pointsd = Oand 8 = g, are then interpreted as tensionl&ssbranes approaching at rapidity
g,, colliding att = 0 to re-emerge with the same relative rapidity. Dinleifold reduction is the

case of prime interest in the ekpyrotic/cyclic misderiginally motivated by the construction of
heterotic M theory from eleven dimensional superya In these models, the boundary branes
possess nonzero tension. However, the tensionsithdominant effect near= @nd the brane

collision is locally well-modelled by#, x R*™.

Now consider a string loop of radid® in M theory frame. Its mas®l is 27R times the effective
string tension,L, where L is the size of the extra dimension. The effectisiastein-frame

gravitational coupling is given byx> =«7,/L. The gravitational potential produced by such a
loop in d spacetime dimensions is:
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M
®=-k7
o (d _Z)Aj—sz_s

(2.43)

where A, is the area of the uniD -sphere, A, = ZHDTHIF((D +1)/2). Specializing to the case

of interest, namely 2-branes in eleven-dimensidhaéheory, the tensionu, is related to the eleven
dimensional gravitational coupling by a quantizaticondition relating to the four-form flux,
reading

12 =2 1(nk?)  (2.44)

with n an integer. Equations (2.43) and (2.44) then impht the typical gravitational potential
around a string loop is
o=-— 0 o (2R =-g2/n (2.45)
64,R°N

up to numerical factors.
With regard the (2.45) we note that are possibéeftilowing mathematical connections with the
Aurea ratio and the Fibonacci’'s numbers:

105=89 + 165+ 34 + 8+ 8;105=21x 5
64=8°=34+21+8+1=48+16=24+24+8+8=(3x8)+(3x8)+8+8;
and 3,5, 8, 21, 34, 55 and 89 are Fibonacci'sharm Furthermore, we have that

105 \/§+1 5/7 \/§+1 -21/7
o4 - 16406251640; (@) + ()" :( 5 j J{Tj =1,64625(11,646.
Thence, the gravitational potential on the scalethaf loops is of orded? and therefore is

consistently small for small collision rapidity.n8e the mean separation of the loops when they are
produced is of order their siZ€, this potential® is the typical gravitational potential throughout
space. Multiplying thet component of the background metric (2.42)13y2® and redefiningt,

we conclude that the outgoing metric has an expansipidity of order = 6?0(1+ CHOZ) with C a

constant of order unity. We conclude that for snglithe gravitational back-reaction due to string
loop productions is small.

2.10n some equations concerning the solution of a branewd Big Crunch/Big Bang
Cosmology.

We shall employ a coordinate system in which thee-tiimensional line element for the
background takes the form

ds? = 2(t, y)(- dt? +t2dy?) + b2(t, y)d?,  (2.46)

where y parameterizes the fifth dimension amtl i = 12,3, the three non-compact dimensions.

Cosmological isotropy excludedtdX or dydx terms, and homogeneity ensurasand b are
independent oik. Thet,y part of the background metric may then be takdretoonformally flat.
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We find it simplest to work in coordinates in whithe brane locations are fixed but the bulk
evolves. The bulk metric is therefore given by @,4vith the brane locations fixed gt=+y, for

all time t. The five-dimensional solution then has to satisbgh the Einstein equations and the
Israel matching conditions on the branes. The Hitistein equations read, = -AJj, where the
bulk cosmological constant isA =-6/L°. Evaluating the linear combinationsG{ +G’ and
GY +G: -(3/2)G', we find

v l vV
B =By + B; — By +126" =0, (2.47) v,r,—v,yy+§(ﬁ§—ﬁi)—2e2 =0, (2.48)

where(t/L)=€", f=3Inb andv =In(nt/L). The Israel matching conditions on the branes read

where all quantities are to be evaluated at theeblacationsy =ty .

Now we express the metric as a series of Diriabédeumann polynomials iy, and y, bounded
at ordern by a constant timeg,, such that the series satisfies the Israel magchonditions
exactly at every order iry,. To implement this, we first change variables fromand n to those
obeying Neumann boundary conditions. From (2.49)n is Neumann. Likewise, if we define

N(t.y) by
1

nt=—w———
N(t,y)-y

. (2.50)

then one can easily check thaift,y) is also Neumann on the branes. Si¢eand b/n obey
Neumann boundary conditions on the branes, we xjaanel both in a power series

00

N=N()+ NP (Y),  bin=gt)+ Y al)R(y), (251)

n=3 n=3

where P,(y) are polynomials

P(y)=y -— -y, n=34,. (252
n-2

satisfying Neumann boundary conditions and eachhted by |ﬂ(y)|<2y3/(n—2), for the
relevant range ofy . Note that the time-dependent coefficients in #rnisatz may also be expanded
as a power series ig,. By construction, our ansatz satisfies the Isna@iching conditions exactly
at each order in the expansion. Substituting thies@ansatze (2.51) into the background Einstein
equations (2.47) and (2.48), we may determine thatien order by order in the rapidity,. At
each order iny,, one generically obtains a number of linearly petedent algebraic equations, and

at most one ordinary differential equationtin
The first few terms of the solution are
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+(£ - 2tzjy§ +... (2.54)

1
N, ==
ot 72

—%tyé + ilg-olyi+.. (@53) N,=-

1
24 6

and

3 7
% =1—§t2y§ +(t2 —gt“jy{)‘ +.. (255) qg,=-2%+ .. (2.56).

With regard the egs. (2.54-2.55) we note that assiple the following mathematical connections
with the Aurea ratio and the Fibonacci’s numbers:

5 \/g 1 -39/7
- +
= =0,069440() > =| X< = 0,06849207
72 2
=217
g =08750(®)*'" = [¢§2+ 1) = 087154

Furthermore,72(=24x 3)and 8 are connected with the “modes” that cornedpo the physical

vibrations of the bosonic strings and to the plajisidbrations of a superstring by the following
Ramanujan functions:

J-w COSTIXW g
antilog =~ COSIVX D':2L42
—n—w‘ : t W
. &g )
3 10+11/2 10+ 742
log || ———= |+ || ——=
4 4
Jm COS7EXW oW iy
antilog = COSIVX E %42
—iw' : tw
e ¢ g(itw)

w{ \/(10+11J§j+ \/[10+47 fzﬂ .

To calculate the affine distance between the bralmsgy a spacelike geodesic we must solve the
geodesic equations in the bulk. Let us first comsttie situation in Birkhoff-frame coordinates for
which the bulk metric is static and the branesnaoging. The Birkhoff-frame metric takes the form

ds’ =dY? - N2(Y)dT2 + A%(Y)dX?, (2.57)

where for Schwarzschild-AdS with a horizonYat , O
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2(\_ cosH2Y/L) 2roy_ cosi2Y, /L)[ sinh(2y /L) T
A(Y)_cosr(zvolL)’ N*(Y)= cosf(ZY/L)Linh(ZYO/L) - (258)

At T =0, the Y -coordinate of the branes is represented by thanpeterY,; their subsequent
trajectoriesy, (T) can then be determined by integrating the Isragthing conditions, which read

tanh(2Y, /L) =+,1-V? , where V, =(dY,/dT)/N(Y,) are the proper speeds of the positive- and
negative-tension branes respectively. From thigjrther follows thaty, is related to the rapidity
y, of the collision by tanhy, =sed(2Y,/L).

For the purpose of measuring the distance betwseiranes, a natural choice is to use spacelike
geodesics that are orthogonal to the four tramsiati Killing vectors of the static bulk,
corresponding to shifts it andT . Taking theX andT coordinates to be fixed along the geodesic
then, we find thatY, is constant for an affine parametdr along the geodesic. To make the

connection to our original brane-static coordinagstem, recall that the metric function
b%(t,y)= A%(Y), and thus
y2 = (bb,tt,/l +bb,yy,/\)2
AT b4 _92

=n?(-12 +1%y2),  (2.59)

where we have introduced the constafl=tanhy,=V/c. Adopting y now as the affine
parameter, we have

=(bfb* + n(b* - 625, + 20b bt + (Bl07 -t (p* - 67)),  (2.60)

wheret is to be regarded now as a functionyof We can solve this equation order by ordefyjn
using the series ansatz

ty)=Yey". (261

where the constants, are themselves series 3. Using the series solution for the background

geometry given in the eqgs. (2.53)-(2.56), and inmmpshe boundary condition tha(yo) t,, we
obtain

2 3 4 3 2 2 4 7
c, =t, +t°%—2t§y§’ + +?;it° Yo —t§(1+ 5t§)y§ +(%)+11t° + 4t jy t°(13+25a° +79&°)y0 +O(y§)

60
(2.62)
5t2 o1 23* 53°
C =2ty + (3°+5t ]y —8tys + (188+ 6°+ 4°Jy§+0(y5) (2.63)
2 2 2 4 5
= WO ey (-2 vag g S O
2 4 48 2
2 2\, ,4
o, =-50% GRS 2L o) (5 gy
3 18
_ 5ty (Bt 7ts ). StoYe
C,=—0 4|04 0 +0 2.66
* 24 (48 4 )° " 12 (y°) (2.66)
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¢ = 600y0+o(y0) (2.67)

61,
72C
¢, =0+0(y,). (2.69)

+0(y2) (2.69)

C=—

Substitutingt, = x,/y, and y = ay, we find x(w)=x,/y, +O(y,), i.e. to lowest order iry,, the

geodesics are trajectories of constant time lyiwlglg along thea direction. Hence in this limit,
the affine and metric separation of the branesnddfwith the following equation

d,=L[

" 11-ax,

dw+ O(yg) = Llnﬁ-_F ))z“J + O(yg), (2.70)

vl

must necessarily agree. To check this, the affisiadce between the branes is given by

3),,3 3 5),,5 2 41,,6
ol_La - [ Ty =21y, + (& +gt0 DB _ gizye s (to 108 + 1592 )ys _ 2{t2 +30t8)ys |
~Yo

6C 3

3 _ 5 8 \VA
[ +31118 22§?O+127950)y0+o(y§), 2.71)

which to lowest order iry, reduces to

d 5% 53x; . 853/ 8 2
—a =y + 70 4 + +o(x)+0ly?), (2.72
L7073 T o0 T 1ee ( ) (yO) 2.72)

in agreement with the series expansion of (2.70).
We obtain also the following equation:

A, _ jl nx4<t4o( )e gda)= 2X4£40(X4)=

- -
= le_l E lzx4(A)JO(IZx4)+ BOYO(EX4))— 4(A)J1(I2x4)+ BO\(l(Ex“))] (2.72b)

To evaluate the perturbatiaful, in the affine distance between the branes, conside

—— . _1; dA " ooy e\ | XA &, X5
o= i B B 20, 08| |43 T
(2.73)

where dots indicate differentiation with respectthe affine parameted, and in going to the

second line we have integrated by parts and madeofighe background geodesic equation

XO’ = E gyv,a

are unperturbed, this expression is further singalifby the vanishing of the surface term.

Converting to coordinates whetg=x,/y, and y =wy,, to lowest order iny, the unperturbed
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x“x" and the constraintg,, x“x” =1. If the endpoints of the geodesics on the branes



geodesics lie purely in the. direction, and so the perturbed affine distancé&éntical to the
following perturbed metric distance
Tl

Nt dy = j”x“‘(“ez dw. (2.74)

Explicitly, we find

= S+ (-4B+4AL Jys +
L t, 121, 3 }y(’ ( b )y°
[ B(2+21692 +1382)+ 2AL2(L+11102 +37%7) o AAL(L+ 422)- B4 +572) o
12@, ° 6 °
_[ Bla+88885: + 952866 + 288755 )+ 4AL:(1-152481: + 2935117 +36015¢ )] , oly;)
10084, Yo ™o

o, _ 2B+ Ay, _[B(4+3t§)+ Alt, +9t2)

(2.75)
which, substituting, = X,/ Y, and dropping terms cﬂ)(yg), reduces to

~ ~

2B B

x 95
2 =22 _ A - — % —3A% -2
X % =% X~ L

L

A>¢;’ - 2758 5 ?’;foZ +0o(x), (2.76)
where B = By . Also this expression is in accordance with théeseexpansion of (2.74). However,

the perturbed affine and metric distance do noﬂeeagto(yé).

With regard the egs. (2.72) and (2.76) we havddhewing mathematical connections with Aurea
ratio and with Fibonacci’'s numbers:

5/7 -20/7
5 =16660(0)"7 +(®)? = [*/_5—+1J + [*/g * 1) = 1663054757

2 2
12/7 -14/7
53_ 2650(®)*" + ()™ = J5+1 + V5 +1 = 2,663697
20 2 2
17 -16/7 -10/7
fg: 50773810 (¢)21/7 ((.D)—16/7 (D 10/7 [ S+ 1) + (\/E; 1) + (\/E; 1) =50718

§=11255( )7 (D) = ( 5+1j [
S (5
2

343 5+1) (45 1”'7
+ +
Z_1429165( P+ () = ( j +[Tj =14,3078.

10/7
j =112089,

=717
%’- 6250(d )" - ()" ( j = 6,236067977

20/7
29—765-286458311( R () ( j =2,87090%
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Furthermore, we have that:

53=21+34-2; 853=2+8+ 233+ 610; wh2r8, 21, 34, 233 and 610 are Fibonacci’'s
numbers;

9=3%: 25=34-3; 275=233+34+8: 343 =233+ 34+ 8+ 185+ where 3, 8, 13, 34, 55
and 233 are Fibonacci’s numbers.

3. On some equations concerning the generating ekpyiot curvature perturbations
before the Big Bang

With regard the ekpyrotic perturbations includimg\gty, we consider the action fod decoupled
fields interacting only through gravity:

Id“xﬁER—li(am)z—ivi(m)] (3.1)

2 i=1 i=1

where we have chosen units in whicBZG=M_? = . I a flat Friedmann-Robertson-Walker
background with line elemends’ = —dt? + a2(t)d x%, the scalar field and Friedmann equations are

given by
@+3Hg+V,, =0 (3.2)
and
11
H =§{§Z¢f +Z\/i(¢?)] (3.3)
where H =a/a andV, , = (6\/i /0¢() with no summation implied. Another useful relatis

H =—%Z¢f. (3.4)

If all the fields have negative exponential potaisti\/i(q)z -V.e“% then as is well-known, the
Einstein-scalar equations admit the scaling sahutio

a=(-0, g=InC-A). V=2 p=yZ. @)

Thus, if ¢ >> 1for all i, we have a very slowly contracting universe wgk< . 1

We focus on the entropy perturbation since thi liscal, gauge-invariant quantity, and on the case
of only two scalar fields. The entropy perturbateauation
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. .. . . . 2
B+ kz+(¢zzv,m_zﬂ¢5v,¢m+¢fv,wzJ+ @V@—ﬂ\(%] &=0 (3.6)

q+eg q+4

in flat spacetime is replaced by

os+3Hdks+ ®. (3.7)

P q+d q+d g+ i

For simplicity we will focus attention on straighte trajectories in scalar field space. Sir¢e , 0
the entropy perturbation is not sourced by the Newin potential® and we can solve the
equations rather simply. We shall assume that #udround solution obeys scaling symmetry so

that ¢12 = m Denotingr derivatives with primes, and introducing the ralsd entropy field

k? (@VM ~ 200N 4o, * (‘fv,(/wz j + @y — WV, ] ]c%z 4k*6

B=alr)®, (3.8)

eg. (3.7) becomes

" a“ —_
B +(k2 Y + az\[wjds =0. (3.9
The crucial term governing the spectrum of theypbdtions is then
a.Il
ﬁﬂg—vwfj. (3.10)

When this quantity is approximately 2, we will aggjet nearly scale-invariant perturbations. It is
customary to define the quantity

85%@H@E#+#:@+ﬁwa (3.11)

2H? 2H?

In the background scaling solution,
2

£ :E(li—yz). (3.12)

We proceed by evaluating the quantity in (3.10amexpansion in inverse powers o&fand its
derivatives with respect t& , where N =In(a/a,,,), wherea,, is the value ofa at the end of

the ekpyrotic phase. Note that decreases as the fields roll downhill and the remting ekpyrotic
phase proceeds. We obtain the first term in (3odQJifferentiating (3.4), obtaining

§-=2H2a{?—15j. (3.13)
a 2

The second term in (3.10) is found by differentigt{(3.11) twice with respect to time and using the
background equations and the definitionNf We obtain
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a®V,, = -a’H 2(252 ~6¢ —ge‘ij+ ole’). (3.14)

Finally, need to express = (a'/a) =aH in terms of the conformal time. From (3.13) we obtain
H=3@1-¢), (3.15)

which integrates to

%= dr(s-1). (3.16)
Now, inserting 1= d(r)/dr under the integral and using integration by passcan re-write this as

Hi=er1-1- (er)_lj'rs'rdr (3.17)
p . : :

Using the same procedure once more, the integthlsrexpression can be written as

(er)*[[e'rr = f_; ~(er)? j;% (er)dr. (3.18)

Now using the fact that'= ¢, and that to leading order irie , ¥ can be replaced by its value

in the scaling solution (with constasf), €7 =¢", we can re-write the second term on the right-
hand side as

(e [ err e = (e J';dr%(g'?“]“ . (319)

which shows that this term is of ordbre® and can thus be neglected. Altogether we obtain

_— 1 ¢
gt =jodr(£—1):£r(1—z—£'—';J. (3.20)

Using (3.13) and (3.14) with (3.20) we can calaldéhe crucial term entering the entropy

perturbation equation,
a" 3, 3¢
r’l—-v, a |=21-—+>--|. (3.21
[a hid j 2( 2& 4£2J (3.21)

The deviation from scale-invariance in the spedtrdex of the entropy perturbation is then given
by

E,N
£

n—-1l=—-

S

M N

(3.22)

The first term on the right-hand side is the gwnal contribution, which, being positive, terids
make the spectrum blue. The second term is thegravitational contribution, which tends to make
the spectrum red.
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Now defining # to be the curvature perturbation on comoving spatices, forN scalar fields
with general Kahler metrig, (qo) on scalar field space, the linearized Einsteinasdeeld equations

lead to
2 2
R= (g” ‘” %wj (3.23)

Dt?

where theN — lentropy perturbations

9, (9)¢' o

S0 -9 g.m( )" (.29

are just the components d/ orthogonal to the background trajectory, and therator D?/ Dt?
is just the geodesic operator on scalar field spébengs simplify because the scalar field space is
flat, so the metric isg; =9, , and D/Dt reduces to an ordinary time derivative. Consiugonly

ij?
two scalar fields, we have

S=-p&/\F+@d&, S=+q¥kl|¢+¢ . (3.25)

For a straight line trajectory in field space, tight-hand side of (3.24) vanishes even if theamtr
perturbation is nonzero.

We assume that the scalar field bounce occurs thiéeekpyrotic potentials are turned off, so that
the universe is kinetic-dominated from the 4d poifview. The scalar field trajectory is

@ =-yq, for t<t,, and @ = jig, for t>t,, with ¢ constant and negative in the vicinity of the
bounce. The bounce leads to a delta function onighé&-hand side of (3.23),

D? (o
qu=5(t—tb)2@(tb), (3.26)
t
where t, is the time of the bounce of the negative-tendcane. As can be readily seen from

(3.23), if the entropy perturbations already hasguared a scale-invariant spectrum by the timpe

then the bounce leads to their instantaneous csiawvemto curvature perturbations with precisely
the same long wavelength spectrum. We can estithateamplitude of the resulting curvature
perturbation by integrating equation (3.24) usiB26). Since we have assumed the universe is
kinetic-dominated at this timeH :1/(3t). Since the entropy perturbation

= (@00 - gom) @ +&  (.27)

is canonically normalized, its spectrum is given by

2
hj Kidk 1 (3.28)

(O7) =1

up to non-scale invariant corrections. This expogsenly holds as long as the ekpyrotic behaviour
is still underway: the ekpyrotic phase ends atreeti,, approximately given by1vmm| = 2/( 2teznd)

After t_,, the entropy perturbation obeyd&+t™&= , Which has the solution®s = A+ BIn(-t).

end ’
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Matching this solution to the growing mode solutish in the ekpyrotic phase, one finds thattpy
the entropy grows by an additional factor]o#ln(tend/tb). Employing the Friedmann equation to

relate @ = g to H, putting everything together and restoring thenBkamass, we find for the
variance of the spatial curvature perturbatiorhmdgcale-invariant case,

NVl V2 2pdk _ pdk
g 1+In(t, /t —=|—
3TM} (1+;72)2( #Inftea/t,) k 7k

(R*)=n A2, (k) (3.29)
for the perfectly scale-invariant case. Notice thatresults depends only logarithmically §nthe

main dependence is on the minimum value of thecefe potential and the parameter.
Observations on the current Hubble horizon indidﬁ;,e(k): 22x107°. Ignoring the logarithm in

1
min|5 =10°M,,, or approximately the GUT scale. This is of cousstirely

consistent with the heterotic M-theory.
With regard the egs. (3.29) we have the followirgtmematical connections with the Aurea ratio:

(3.29), this requires)V,

-16/7

ST 0,03377Di(c1>)‘“"7 L[5} 0,03329. If we take M,, =0, 4340 then we
37 2[5 25| 2
have that

1 \/g 1 -25/7

_ + .
Sz - 0179307948 ()7 = [Tj = 01793145665 Furthermore, we obtain
Pl

arcsir(0,179314566$B1%) + arccoséo,179314566$d‘%0 =10,3289+ 79,6702190=55+34+1,

with 34 and 55 Fibonacci’'s numbers.
If the entropic perturbations are suddenly conwkerie curvature perturbations, the curvature
perturbations inherit the spectral tilt given in23). We now begin by re-expressing eq. (3.22) in
terms of &/, the number of e-folds before the end of the etqiymphase (wheredV = (5—1)N

and g >> 1):

2 dine

n—-1=— :
E dN

(3.30)

This expression is identical to the case of the fdawn potential perturbations, except that th&t fir
term has the opposite sign. In this expressigof¥ measures the equation of state during the

ekpyrotic phase, which must decrease from a valwehngreater than unity to a value of order unity
in the lastV e-folds. If we estimate = /7, then the spectral tilt is

n-1=2 -9 (331
NN

Here we see that the sign of the tilt is sensitiver . For nearly exponential potentiaﬂs :1), the
spectral tilt is n,=1+1/N = 102 slightly blue, because the first term dominatéswever, there

are well-motivated examples in which the equatibstate does not decrease linearly with. We
have introducedr to parameterize these casesalf 0.14e spectral tilt is red. For example,
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n, = 097 for a = 2. These examples represent the range that canhieved for the entropically-
induced curvature perturbations in the simplestefmdoughly 097<n, < 102

For comparison, if we use the same estimating jpireefor the Newtonian potential fluctuations in
the cyclic model (assuming they converted to cumaatluctuations before the bounce through 5d
effects), we obtain 095<n,< 097 This range agrees with the estimate obtained by a
independent analysis based on studying inflatoamitls directly.

With regard the values ofi, i.e. 0.95, 0.97 and 1.02, we have the followingtimamatical
connections with the Aurea ratio:

2

\/g + lj—0,33/7

\/g +1 -067/7
095(10,9552046226= () "' = ( j ;

097 00,9773457024 () **'" = ( :

J5+1

033/7
102 01,023179410% ()**" = (Tj ;

A second way of analyzing the spectral tilt is &sw@me a form for the scalar field potential.
Consider the case where the two fields have steefenpals that can be modelled as

V(g)= —Voe_jm and @ = yg. Then eq. (3.22) becomes

4c
n -1= 4(12”{2)- v (3.32)
cMZ ¢

where we have used the fact titfp) has the dimensions of inverse mass and restoeeththors
of Planck mass. The presence bf, clearly indicates that the first term on the righta

gravitational term. It is also the piece that ma&dsdue contribution to the spectral tilt. The sato
term is the non-gravitational term and agrees pedgiwith the following flat space-time result

C
n,-1=-4-2, (3.33)

CZ

although the agreement is not at all obvious arimediate steps of the calculation. For a pure
exponential potential, which has,= , Ghe non-gravitational contribution is zero, artte t

spectrum is slightly blue. For plausible valuescef 20 and y = 1/2 say, the gravitational piece
is about one percent and the spectral til,is ,Jd040 consistent with our earlier estimate.
We note thatt = 20is related with the Aurea ratio by the followingthematical formula:

[(<1>)35’7 + (cb)l“”]@ = {[\/g +1j35/7 + [\/g; 1?? G‘Z—’ 111,090+ 2,618= 13708@2 = 20562.

2 2
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In the cyclic model, the steepness of the potentigst decrease as the field rolls downhill in erde
that the ekpyrotic phase comes to an end, whictesponds tac , > OIf c(qo) changes from some
initial value T >>1 to some value of order unity at the end of theyejic phase afteg changes
by an amountA¢, then c,=C/A@. When ¢ is large, the non-gravitational term in eq. (3.32)
typically dominates and the spectral tilt is a f@ev cent towards the red.

For example, supposel] ¢ and Ic(w)dwleS; then, the spectral tilt is

ns—1:—o.03i, (3.34)
1+

which corresponds t@97<n,< fbr positive0< S <o , in agreement with our earlier estimate.

With regard the value 125, we have the followingtmeanatical connection with the Fibonacci’s
numbers:
125=2+5+8 + 21 + 34 +55.

We note that negative potentials of this type wighy large values of have been argued to arise

naturally in string theory. Our expression for gpectral tilt of the entropically induced curvature
spectrum can also be expressed in terms of theroasy “fast-roll” parameters

(vY_1 (v
£={V—’¢)J —? /7 —(\/’(pj’(ﬂ. (335)

Note that £ =1/(2(1+ yz)g). Then, the spectral tilt is

n —1=41|\;—2V2)5—4¢7. (3.36)

]
Pl

This result can be compared with the spectral indéxhe time-delay (Newtonian potential)
perturbation, where the corresponding formula is

n-1=- 42 E-47. (3.37)
Mg,

Here, the first term is again gravitational, buthias the opposite sign of the gravitational
contribution to the entropically induced fluctuatispectrum. So, the tilt is typically a few per ten
redder. Finally, for inflation, the spectral ti# i

n-1=-6c+27 (3.38)
where the result is expressed in terms of the stlvparameters & =(1/2)(M,V,/V) and

n=MgV,, IV . Here we have revealed the factors Mf, to illustrate that both inflationary

contributions are gravitational in origin. This g& the same range far, as the Newtonian
potential perturbations in the cyclic model.

34



3.1 On some equations concerning the effective five-densional theory of the strongly
coupled heterotic string as a gauged version of &1 five-dimensional supergravity with
four-dimensional boundaries

We will now briefly review the effective descriptioof strongly coupled heterotic string theory as
11-dimensional supergravity with boundaries givgrHorava and Witten. The bosonic part of the
action is of the form

S=S.+S, (3.39)

where S is the familiar 11-dimensional supergravity

\/E 5'1---'11(:

1728 |1|2|3G|4...|7G|8...|u} (3.40)

1 1
S = _?IMM\/ - g[R"'Z]rGUKLGUKL +

and S,,, are the twoE; Yang-Mills theories on the orbifold planes exgdlicgiven by

—

8\ A

J H{tr(F‘l))z—ltrRZ}- 1 (ij
My 2 ar

10 13714 2

.[M @V~ g{tr (F(z))z —%trRz} :
, (3.41)
Here Fg) are the two E; gauge field strengths an@,, is the 3-form with field strength

Gy =240,,Cyy- In order for the above theory to be supersytrimas well as anomaly free, the
Bianchi identity forG should receive a correction such that

l 2/3
(dG)yyisec = "ol (%Tj {J (1)5(x11)+ J (2)5(x11 - 7;0)}ﬁ (3.42)
where the sources are given by

With regard the egs. (3.40) and (3.42), we havefadhewing mathematical connections with the
aurea ratio and the Ramanujan modular equations:

J5+1

5/7
V2 =1,4142135621()”" = (TJ =14101875 1728=432(#%=24[24[3 =24’ [B;

432=306342Hz[1, 4101875817 432=2[3’[8;

1 J5+1
22 2
Fibonacci’'s numbers, while 24 is related to thegitsl vibrations of the bosonic strings by the
following Ramanujan function:

-3167/7
= 011253953971 () """ =( j = 01133912969 We note that 2, 3 and 8 are
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© COSTEXW oW iy
antilog ™ COSVK Dt%\;‘f

e " (itw)

(]

While the standard embedding of the spin connectitmthe gauge connection

trFYOFY =yROR  (3.43b)

leads to vanishing source terms in the weakly cmlipieterotic string Bianchi identity, in the
present case, one is left with non-zero soure&®R C R on the two hyperplanes. As a result, the
antisymmetric tensor fiel and, hence, the second term in the gravitino sypenetry variation

V2
JH = D|’7 +E(FIJKLM _8gu rKLM )GJKLM” .. (3-44)

do not vanish.
With regard the mathematical connections with theed ratio and Fibonacci’s numbers, we note

that:
5/7 \/E"'l o
432= 306,342[(CD) =306342 T =306342(1,4101875817 432 — 288 = 144 and 144

is a Fibonacci’s number. Furthermor@88=24[ 48d 24 is related to the physical vibrations of
the bosonic strings by the following Ramanujan fiorc

» COSTOXW ey
antilog™ conszhm D'tZZL;’Z
e + g (itw)

{7

Now, let us start with the zeroth order metric

A, =77, dxdx’ + RE(dXLf +V2Q,,dx*de,  (3.45)
where Q ,, is a Calabi-Yau metric with Kahler formy, =iQ_ . (Herea andb are holomorphic

and anti-holomorphic indices). To keep track of Hualing properties of the solution, we have
introduced modullV, and R, for the Calabi-Yau volume and the orbifold raditesspectively. To

order k2’3, the metric can be written in the form

ds; = (1+ B%ﬂvdx”dx“ +R(L+ DA +V2(Qup + g )X (3.46)
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where the functiond, 7 and h,s depend onx'* and the Calabi-Yau coordinates. Furthermore,
G,ecp @Nd Gy, receive a contribution of order®”® from the Bianchi identity source terms. The
general explicit form of the corrections are

b= —g R0V0_2/30'qxll‘ - 7;0/2) (3.47a) y

7 1
hg = 3 RV 2l 3aqx“‘ -l Z)Q e (347C) Gugep = Ecne‘ABCDEFa)EF(s(x“) (3.47d)

Guear = 0 (3.47e)

N
ookl
N

R0v0-2’3a0x“\ - 7;0/2) (3.47b)

with

2/3
___ 1 [k @ R _
Mm(mj jxa)mtrR OR® v-jﬁ. (3.48)

Here g( ) is the step function which rsl( )for x"positive (negative).
With regard the egs. (3.47) and (3.48), we havefadhewing mathematical connections with the
Aurea ratio:

J5+1
2

% =0,471404520(0) ™" = (

117
j =0,46945%

=717 35/7
22, 942809041(d) 77 + (@) *7 = (\/§2+ 1} " (*/g; 1j = 0,618034+ 0,090170=

=0, 708204 0,708204% =0,944272,

-26/7
% = 016660 ()7 = (*/—ST”] = 01674018269
-1833/7
=0,0281348]— (CD)_18'33’7 - 1(+5+1 = 0,02835642
8\/_ 2 25 2B 2

In the five-dimensional spackl, of the reduced theory, the orbifold fixed planesstitute four-
dimensional hypersurfaces which we denoteM)S/), i =12. There will be anE; gauge fieIdAf})
accompanied by gauginos and gauge matter fieldherorbifold pIaneM‘(ll). We will set these
gauge matter fields to zero in the following. Thedd content of the orbifold pIanM‘(f) consists of
an E; gauge field Af,z) and the corresponding gauginos. In addition, theranother important

boundary effect which results from the non-zererinal gauge field and gravity curvatures. More
precisely, note that

[ NOrFQF®%® = [ JOUR,R* = -16V2 nd(d'ﬂj , FP=0. (3.49)
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In view of the boundary action (3.41), it followssat we will retain cosmological type terms with
opposite signs on the two boundaries. Note thasihe of those terms is set by the same constant
a, given by eq. (3.48), which determines the magiatof the non-zero mode. The boundary
cosmological terms are another important ingredieméproducing the 11-dimensional background
as a solution of the five-dimensional theory.

We can perform the Kaluza-Klein reduction on thdrine

ds’, =V g, ,dx7dx’ +V°Q zdx"dx®. (3.50)

The complete configuration for the antisymmetricsia field that we use in the reduction is given
by

1
Copr Cape =2401,Cp)r  Cops = EAaa)AB’ Gope = Fplasr  Fp =0,A5=0,A,,
1
CABC = EfwABC’ GaABC = aa&‘)ABc (3-51)

and the non-zero mode is

a
GABCD = EEABCDEF&)EFE(XH) ) (3-52)

wherea was defined in eq. (3.48).

We can now compute the five-dimensional effectictom of Horava-Witten theory. Using the
field configuration (3.49) — (3.52) we find frometlaction (3.39) — (3.41) that

Si = Sgrav + Snyper + SDound (353)

where
1 [ 3_ _s 1 .
Sgrav:‘z_,(;fMS\/‘g R+ %% g ¢ MAG%&&} (3.54a)
- _ 1 _ _l -2 -1 ac i 2 apys
S =52 Ju N Q| 3V TONONV + AT EE 2 VG, G
\/E apyde i T _ T 1,2 >
+ g €7 Gy((00.6 - 20.6)+2am, )+ 2V | (3.54b)

1 _ _ 1 2 N2
Souna = y{ 202, ~ava+ 22, Cavial- L] vl (350

16y =M

In this expression, we have now dropped highervdévie terms. The 4-form field streng@,,,; is
subject to the Bianchi identity

(AG) s =5 {305(x2)+ 305(x" - )}

- 3.55
1uvpo 4 \/EmGUT ( )

Hvpo

which follows directly from the 11-dimensional Bam identity (3.42). The currentd’) have been
defined in eq. (3.43). The five-dimensional Newtamstants, and the Yang-Mills couplingrg

are expressed in terms of 11-dimensional quanases
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K am\*"
K==, Q..= . (3.56
5 Vv GUT — ZV( j ( )

Since we have compactified on a Calabi-Yau spaeegexpect the bulk part of the above action to
have eight preserved supercharges and, theretooartespond to minimaN =  $upergravity in
five dimensions. Accordingly, let us compare thsuie(3.54) to the knowrN = Bupergravity-
matter theories in five dimensions. In these thexyrihe scalar fields in the universal hypermuétipl
parameterize a quaternionic manifold with cosetcstre M, = SU(21)/ SU(2)xU (1). Hence, to

compare our action to these we should dualizettreetformC,_;, to a scalar fields by setting (in
the bulk)

Gy = \/1§v %, 0070 ~i1(800°F ~ 20°¢) - 2aA°).  (3.57)

Then the hypermultiplet part of the action (3.5da) be written as
— \ _ ura NV 1 -2,.,2
Snyper - WJ.MS V g[thDaq 0 q +§V a } (358)

where q" =(V,J,f,g?). The covariant derivativd], is defined asd,q" =0,q" + aA k" with
k' =(0,-200). The sigma model metrig,, = 0,0,K, can be computed from the Kahler potential

Ko=-In(S+5-2CC), S=V+&+io, C=¢. (359)

Consequently, the hypermultiplet scalafsparameterize a Kahler manifold with methg, . It can

be demonstrated that' is a Killing vector on this manifold.

To analyze the supersymmetry properties of thetisolsi shortly to be discussed, we need the
supersymmetry variations of the fermions associatiga the theory (3.53). They can be obtained
either by a reduction of the 11-dimensional graatvariation (3.44) or by generalizing the known
five-dimensional transformations by matching ontmuged four-dimensionaN =  fheories. It is
sufficient to keep the bosonic terms only. Bothrapphes lead to

5y, =D, +*/8§(ya ~ 45y )g, 2v v2(g, &(r, -it,) ~0,& (1, +ir,) o' +
\/_| V2 (11
96 Vfﬁy&Gﬁy&(Ts) _ECN g(xl )Va(rs)
&' = Y2y~ o, gl in), 0,2l i)+
Iy, i_i_ A1), ) i
+§V y,0°Ve ﬁw g(x )(rs)jg (3.60)

where 7, are the Pauli spin matrices. Thence, we see ligatelevant five-dimensional effective

theory for the reduction of Horava-Witten theoryaigaugedN = Isupergravity theory with bulk
and boundary potentials.
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The theory (3.53) has all of the prerequisites se&ey for such a three-brane solution to exist.
Generally, in order to have ED-2)-brane in aD -dimensional theory, one needs to have a
(D —1)-form field, or, equivalently, a cosmological caast. This cosmological term is provided by

the bulk potential term in the action (3.53). Frtme viewpoint of the bulk theory, we could have
multi three-brane solutions with an arbitrary numbkparallel branes located at various places in

the x'* direction. As is well known, however, elementararie solutions have singularities at the

location of the branes, needing to be supporteddawyce terms. The natural candidates for those
source terms, are the boundary actions. Givenribenaly-cancellation requirements, this restricts

the possible solutions to those representing a @laparallel three-branes corresponding to the
orbifold planes. It is clear that in order to fimdthree-brane solution, we should start with the
Ansatz

ds = a(y)fdx“dxn,, +b(yfdy’ (3.61)
v =v(y)

where a and b are functions ofy = x" and all other field vanish. The general solution this
Ansatz, satisfying the equations of motion derifreth the action (3.53), is given by

V2

a=aH"?, Db=hH?* V=pH® and =3

aly|+c, (3.62)
where a,, b, and ¢, are constants. We note that the boundary sources teave fixed the form of

the harmonic functiorH in the above solution. Without specific informatiabout the sources, the
function H would generically be glued together from an adbitrnumber of linear pieces with

slopes i%a. The edges of each piece would then indicatéoitetion of the source terms. The

necessity of matching the boundary sourcey at an@ 7o, however, has forced us to consider
only two such linear pieces, nameyy][o, 7;0] and yD[— 7;0,0]. These pieces are glued together at
y =0 and 7p . Therefore, we have

o =22 aloly)-aly-m)) @69

which shows that the solution represents two palrtlitee-branes located at the orbifold planes. We
stress that this solution solves the five-dimensiaheory (3.53) exactly, whereas the original

deformed Calabi-Yau solution was only an approxiomto orderx?”. It is straightforward to
show that the linearized version of (3.62), thattie expansion to first order in:O(K2’3),

coincides with Witten’s solution (3.46) — (3.47) amp appropriate matching of the integration
constants. Hence, we have found an exact gendrafizaf the linearized 11-dimensional solution.
We still have to check that our solution preserva of the supersymmetries. Whey, andV

are the only non-zero fields, the supersymmetnystiaemations (3.60) simplify to
i — i \/E -1 i o i — i -1 i i -1 i L
Y, =D,e — - ae(YNV 7, (z) € &' =2V 7y 0Ne —ﬁaf(y)\/ () &', (3.64)

With regard the egs. (3.54), (3.55), (3.57), (3.@é0d (3.62-3.64), we have the following
mathematical connections with Aurea ratio and whhn Ramanujan’s modular equations:
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J5+1

2

-5/7
0,7071067811(d) ™" =[ ] =0,709125

NS

1 1 \/E 1 -76717
- +
0,0589255651—— () """ = — = 0,0590213661
2[5 2B 2

J5+1

2

J5+1

2

15/7
2.2 = 28284271251(d )" =( J = 2,8043399

L o17e770(0) 7 = (

42

1 1 1 (V5+1)
- +
——— =0,0562697691— () **" = — = 0,05640;
a2 205 2B 2

-25/7
% =01767766951(d) " = (*/E; 1] =0179314

-2533/7
j =017525

-31/7
% =0117851133() " = (\/§2+ 1] =0118708

-18/7
4% = 0,029462782]%@3)_18/7 = %(*@; 1] =0,0290137

-28/7
g = o,01473139ﬂZi(qa)‘zs’7 = %(*@; 1) =0,0145898

-11/5
g = 0,471404520(d )™ = [\/g; 1] =0,469451

Furthermore, the number 8, 12, 24, 48 and 96 aneexied with the “modes” that correspond to
the physical vibrations of a superstring and togutgl vibrations of the bosonic strings by the
following Ramanujan functions:

Jm COS7EXW oW g
antilog——COSIVK E %42
—iw‘ : t W
1 e * qitw)

el ]
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© COSTEXW oW iy
antilog™ Cofghm Dt%\;‘\frz
e ¢ q,(itw)

(5]

We note also that 8 is a Fibonacci’'s number.

The Killing spinor equation®y. = 05' =0 are satisfied for the solution (3.62) if we reguir
that the spinog' is given by
£=H"g, ye&=(n)e (365

where g} is a constant symplectic Majorana spinor. Thisnghthat we have indeed found a BPS
solution preserving four of the eight bulk superges.

3.2 On some equations concerning the colliding Bras and the Origin of the Hot Big Bang

We have derived the five-dimensional effective @ctiof heterotic M-theory in the precedent
subsection 3.1). Now, we shall use a simplified action describiggavity g,, the universal

“breathing” modulus of the Calabi-Yau three-fold, a four-form gauge fieldA ., with field
strength¥ =dA and a single bulk M5-brane. It is given by

RYE 1. v
S—T5J'M5d5x\/—g 33‘5(6(0)

3e*5?
-

£ HVKA

3
— [— 9 _ J £ ¢
3;aiM53,[M‘$i)d4g(i)( h(i)e 4 2 AV&ZOﬂX(‘I’)(?VX(I)GKX(,)OAX(l)j, (366)

where y,0,£,{ =0,..., 4, u,v....=0,....3. The space-time is a five-dimensional manifol] with
coordinatesx”. The four-dimensional manifoldﬂ/l}i), i =123 are the visible, hidden, and bulk
branes respectively, and have internal coordinafgs and tension aM.. Note thata, has
dimension of mass. If we denoter, =-a, a,=a -, and a, = 3, then the visible brane has
tension —aMZ, the hidden branda — 8)M?, and the bulk brang®M_. It is straightforward to
show that the tension of the bulk brag® 2, must always be positive. Furthermore, one caityeas
deduce that the tension on the visible braneM_?, can be either positive or negative. We will take
a >0, so that the tension on the visible brane is negafurthermore, we will choosg such that
a - [ >0, that is, the tension of the hidden brane is pasifThe tensomsz is the induced metric
on M. The functionsx(iy)(f(f’)) are the coordinates i, of a point on[" with coordinates() .

In other Words,X(‘i’)(E(f’)) describe the embedding of the branes ifiig The BPS solution of Lukas,
Ovrut and Waldram is then given by
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ds? = D(y)(- N2dr? + A°dk?)+ B?D*(y)dy?; e’ = BDY(y);

F10s = —GANB'D(y) for y<Y
Fow =—(@-B)ANB'D?(y)  for y>Y, (3.67)
where
D(y)=ay+C for y<Y
D(y)=(a-B)y+C+py for y>Y, (3.68)

and A B,C,N andY are constants. Note tha#, B,C,N are dimensionless an¥ has the
dimension of length. The visible and hidden boupdaranes are located at= @&nd y=R,
respectively, and the bulk brane is locatedyatY, 0<Y <R. We assume thal > 6o that the
curvature singularity abD = @loes not fall between the boundary branes. Nate ¥+ 0O lies in
the region of smaller volume whilg = R lies in the region of larger volume. Note thateirigg the

solution of the four-form equation of motion intq.€3.66) yields precisely the bulk action with
charge —a in the interval 0<sy<Y and charge-a+/ in the interval Y<y<R. The
formulation of the action eq. (3.66) using the féanm A is particularly useful when the theory
contains bulk branes, as is the case in ekpyrotiori.
The following equation
2H
EAE 4atHc(1— acH°2j|Ar(k)| , (3.69)

C

expresses the density perturbation in terms ofithe delay at the time of coIIisiorAr(k). If we
consider the exponential potentisl = —ve ™" , then the eq. (3.69) yields

2
4mL\/Emr(k»

3= "nc+2

(3.70)
Now we compute the spectrum of quantum fluctuatiohshe branedy, and use the result to
compute the time delayy (k).

For the calculation of quantum fluctuations, itsigfficient to work at the lowest order if/a .

Without loss of generality, we can therefore skt N = . Inlthat case, the bulk brane Lagrangian
is given by

£, =3/ §BE D(Y\n™a,Yo,Y —v(v)} . @371
Note that this agrees with, given in the following equation

£, :MEDZ(Y)YZ - NZ\/(Y)] (3.72)

when we setA=N = 1land spatial gradients of to zero. Let us first consider the spatially

homogeneous motion of the brane which will be dbedrbyYo(r). It is governed by the following
equation of motion
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Lo viv)=E, @73

where E is a constant. Eq. (3.73) is simply the statentieat the energyE of the bulk brane is
conserved to this order i/ a . Since we have chosen the visible brane to liggat0 and the

hidden universe to lie ag = R, we focus on the brancti< i@ which case the bulk brane moves
towards the visible brane. The solution to eq.3Big then given by

r)=[ _ D(v)y (3.74)

2E VY'

with 7 <0, and with the collision occurring at= .Qet us now consider fluctuations around the
background solutionY,(r). Namely, if Y =Y,(r)+dY(r,x), with dY(r,x)<<Y,(r), we can
expand the action to quadratic orderdn

LAy, |, 1dy,

L
dy, 2 dy?

e = % Dgl— o+ (é(aY) + {azDgz(v0 -E)-aD; }(aY)Z, (3.75)

where we have used eq. (3.73), and where we haxadirced D, = D(Y,) and V, =V(Y,) for
simplicity. The key relation is the fluctuation edion as derived from the action (3.75)

xzt]ldxf2 [a"‘”‘ r? - }f =0;  x=[(-7), (3.76)

apert

where f. = D, [dY, and wherea,, is defined by

pert

MEDO’S a%—DOdzvg . (3.77)
a dy, dy;

pert

The fluctuation eq. (3.76), can be compared with ¢brresponding equation for the perturbations
of a scalar field with no potential and minimallgupled to an FRW background with scale factor

a(r)
. +2§5¢% +k?3g. =0. (3.78)

Defining f, =aldg , eq. (3.78) becomes

K —[Erz - xz} f.=0. (3.79)
a

Let us now discuss the Hubble horizon for the pbetions. Recall that in usual 4d cosmology (see
eg. (3.79)), we have

x=k(-7)= (jca[q—) ko al-1)=ky H? (3.80)
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where H ' =a?/a is the Hubble radius as derived from the scatéefaa. By definition, a mode
is said to be outside the Hubble horizon when aselength is larger than the Hubble radius. From
eg. (3.80), we see that this occurs when . THerefore, a mode with amplitudg crosses outside

the horizon whernx = ¢(1). Similarly, in our scenario we can write

x=k(-7)=k,, D¥?*(-7)=k, , H2,, (3.81)

phys phys " pert?

wherek . =k/D{?. The role of the Hubble radius is replaced by

phys

H! =DY?(- r):Dgfij"M (3.82)

pert o J2(E-V(Y))'

which is to be thought of as an effective Hubbldiwa for the perturbations. So, the length scale at
which amplitudes freeze depends an (rather thana,., ), but the amplitude itself, as derived from

eg. (3.76), depends oa,.,. The feature of two different scale factors is elaaspect of ekpyrotic

scenario. With regard the comparison to inflatignaosmology, we have that in inflation, the
wavelengths are stretched superluminally while hbeizon is nearly constant. In the ekpyrotic
scenario, the wavelengths are nearly constant vindehorizon shrinks. We can obtain a spectrum
which is scale-invariant. Writing the equation ftve perturbations in the form of eq. (3.76) is
useful since one can read off from it the spedlape of the power spectrum. It is determined by

the value of(apen/apen)rz. In particular, one obtains a scale-invariant speac if (ape,t/ apen)r2 =2

when the modes observed on the CMB cross outselkdhzon.
Combining egs. (3.74) and (3.77), we find

) o
Bper 12 2 il g Do _p Vo [ Y')dY (3.83)
2., dy, dY 2 E my7Z

The spectrum will be scale-invariant if the riglainkl side of eq. (3.83) equals 2 when the modes of
interest cross outside the horizon. Thence, we:have

ﬁrzzog{ad\’o—ood%j{ﬁ Jzt()(YI)le }2 (3.83b)

e dy, °dy; E-V(Y))

With regard the eq. (3.83b), we have the followingthematical connections with the Aurea ratio:

\/E 1 14/7 \/g 1 -14/7 5
- + +
()" + ()" =( 5 j +[ 5 j = 2618034+ 0,381966=3; - (B=2;

@wmn+(¢yn+(¢ywnz[j§i}J +(J§+¥j +[J§+1J _

2 2 2

=4,236068+1,618034+ 0,145898= 6 %[6: 2. We note also that 2 is prime number and

Fibonacci’'s number.
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Thence we can rewrite the eq. (3.83b) also asviollo

Spen 2 _ D,* advo -D, dz\/zo
a dy; dy;

v D)y T _
b )

1417 -1417
= Z[(@)" + (@)1 = %[( “ 52”] + [\/§2+ 1] } - £ (2618034- 0381969 = 2;

We can add a potentiaI(Y) of the form that might result from the exchangewsépped M2-

branes. We would like to think of as the potential derived from the superpotenfialfor the

modulus Y in the 4d low energy theory. Typically, superpdi@s for such moduli are of
exponential form, for example,

W=ge®, (3.84)

wherec is a positive parameter with dimension of mas® ddrresponding potential is constructed
from W and the Kahler potentidd according to the usual prescription

3

2
pl

WW |. (3.85)

v =e“™i| K'DWDW -

where D, =0/0¢ +K;/M? is the Kahler covariant derivative; =0K /d¢g, K; =9°K/0¢gd¢’

and a sum over each superfielg is implicit. Eqgs. (3.84) and (3.85) imply that decays

exponentially withY . Here it will suffice to perform the calculatiorsing a simple exponential
potential, namely

V(Y)=-ve™, (3.86)

wherev and m are positive, dimensionless constants. Note thdhe case where the potential is
generated by the exchange of wrapped M2-branegaremetemm is of the form m=cTy/a,
wherec is a constant], is the tension of the M2-brane, ands the volume of the curve on which

it is wrapped. The perturbation modes of interestthose which are within the current Hubble
horizon. As the wavelengths corresponding to thoseles passed outside the effective Hubble
horizon on the moving bulk-brane, the amplitudesabee fixed. Scale invariance will require

mD >>1 during this period. We know that, if the potential is negligible compared t& , the

spectrum of fluctuations is not scale-invariantnt® we consider the limit whefg| <<|V,|. This
condition, as seen from the equation of motion¥preq. (3.73), is satisfied i¥, = @nitially, or,
equivalently, if the bulk brane begins nearly atré&or the brane to be nearly at rest, one mus ha
[E|=|V,| initially. As the brane traverses the fifth dimiams |V| increases exponentially, whereas
E is constant. Hence, the conditit <<|V,| is automatically satisfied. The bulk brane begigni

nearly at rest is precisely what we expect for arlyeBPS initial state. Applying the condition
[E| <<V,|, eq. (3.74) reduces to
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Yo : 2 2D? 2
D(Y')e™" /ZdY'} = 0 1- . (3.87
J. ( ) m2 azve—maYo mDO ( )

where we have neglected the endpoint contribution=a0. On the other hand, eq. (3.77) gives

i 2 2 —maY,
pert _ M@ V? 1+ 1 . (3.88)
a D) mD,

pert

Combining the above two expressions, we obtain:

2 a a
. ZDo_maY — (14_ 1 j/ pert . 2 = 2(1_'_ 1 j/ pert (1_ 2 j;
ma“ve " mD, ) aeq mD, ) &,eq mD,

4
ﬂr2:2(1+ : j(l— 2 j (3.89)
apert mDO mDO

The right hand side of eq. (3.89) is approximaggiyal to 2 in the limit of largenD,. Thence, we

have
Mﬁ:z{& ! J(l— 2 ]:2. (3.89b)
apert rnDO rnDO

Also here, with regard the numerical result of €189b), we have the following mathematical
connections with Aurea ratio:

2 2

((13)21/7 + ((D)m + (q))—zsn _ (\/E +1] + [\/g +1] + (\/E +1] _

2 2 2

\/g 1 14/7 \/E 1 -14/7 5
_ + +
(@) + ()™ = [—J + ( J = 2618034+ 0381966=3; - (3=2;

= 4,236068+ 1618034+ 0145898= 6 % b=2.

Hence, the exponential potential of eq. (3.86) Itesin a nearly scale-invariant spectrum of
perturbations provided th4E| << [\/0| and mD, >> 1 are satisfied when modes pass outside the

effective Hubble horizon.
We next compute the perturbation amplitude, by gigig. (3.76) to caIcuIat|AYk|. The conditions

[E|<<\V,| and mD, >> 1 must be satisfied when wavelengths pass outsidehttizon. These

conditions can be relaxed once the mode is weBidatthe horizon. In the limit thahD, >> 1
when the relevant modes cross outside the horeapn(3.76) reduces to

d2f,
o ~[2-%]t. =0, (3.90)

X
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with solution
fi = x"2(Cy(K)35,,() + C,(k)I_go(x)),  (3.90)

where J,,,, are Bessel functions. The coefficieris(k) and C,(k) are fixed by requiring that
modes well-within the horizon (i.ex >> ) be Minkowskian vacuum fluctuations, that is

fo L e® ofor x>>1 (3.92)

6k 2B

=i

Using this initial condition, we find the followingmplitude for modes outside the horizon (with
X<<1)

Af, = KA _ il . (3.93)
(27" (~1)(2m)"* J6pmB
Substituting eq. (3.87) and usinf, = D,dY, , we find
AY = ma ve e (3.94)
© 22n)?3puie  D; '
Finally, we define the time-dela&r(k) by
AY, | ma ( 2 j
Ar(k :| K= , (3.95
arl) Y, | 1672 /3miB\ mD, (3-99)

where we have used the equation of motion¥preq. (3.73). Note that the time-dependence of
Ar(k) is mild, a necessary condition for the validity tbe time-delay formalism. The factor of
mD, =mD(Y,(z)) is to be evaluated at time when a given mode crosses outside the horizon
during the motion of the bulk brane. LBY denote the value oD, at horizon crossing for mode
k. Since horizon crossing occurs whes , of, equivalently, wher(— r) =k™, eq. (3.87) gives

2 m’a /vemC
D =—I ) 3.96
< m Og[ oK 5 ] ( )

Substituting egs. (3.95) and (3.96) into eq. (3.W® find

e a’m' 2y ( 2 j 3.97
2 4772, /38M 2B(mC+ 2){ mD, (397

This expression fofé’k| increases gradually with increasilkg corresponding to a spectrum tilted

slightly towards the blue. The blue tilt is duehe fact that, in this exampl® is decreasing as the
brane moves. That is, the spectral index,
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+—d IOg|5k|2 ~1+_ 2

n =1 ﬁ (3.98)

° dlogk

exceeds unity. The current CMB data constrains gpectral index to lie in the range about
08<n,<12. Therefore, for our results to be consistent wikperiments, we must have

mD, > 20 (3.99)

a constraint that is easily satisfied.
With regard the value s afi;, i.e. 0.8 and 1.2, we have the following mathecahtconnections

with Aurea ratio:

) =[¥5

2

717
J =161803398111,618034; ZL618034G§ =12135255

0 -4217 -56/7
(@) + ()7 +(0) > = (JE; 1] + {\/g; 1} + (*ET”J =1+ 0,055728+ 0,021286=

=1, 077014,077014% =0,8077605

For the value of the eq. (3.99), we have the fallgamathematical connections:

\/E 1 35/7 \/g 1 21/7 ,\/E 1 -14/7
- + + +
(@) + (@)Y + ()™ = (Tj +[ 5 J +( 5 J =11,090170+ 4,236068+ 0,381966=

= 15,708204EI:— =20,944272

Thence, we obtain:

mD, > 20=

541 35/7 541 2117 \/6 1 -14/7
- 5+ V5 + +
=(¢)35’7+(q>)21’7+(q>)14’7=[ 5 J +( 5 J +( 5 J =11,090170+ 4,236068+ 0,381966=

:15,708204EI£3l =20944272 We note that 20,9442721; 21 =13 + 8, where 8

and 13 are Fibonacci’'s numbers. Furthermore, theben 8 is connected with the “modes” that
correspond to the physical vibrations of a supirgtoy the following Ramanujan function:

Jm COS7EXW oW dx
antilog~—COSIVK E %42
—iw‘ : tw
1 e * qitw)

el ]
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Furthermore, we consider the power-law potential
V(Y)=-vD(Y)'=-v(aY +C)*, (3.100)

wherev> 0andg< Oare constants. In this case, eq. (3.83) gives

b, )
Zeerpzapt 2o (3.101)
apert [1_4j

q

for |q| >>1. Hence, a power-law potential can also lead toearly scale-invariant spectrum

provided that its exponent is sufficiently largeeWan straightforwardly extend our analysis to an
arbitrary potentiaV (Y). Let us suppose that(Y) satisfies

d?v
dy?

dv

av —21. (3.102)
dy

‘D(Y) ~|> anv(Y), ‘D(Y)

>>q

Then, eq. (3.83) reduces to

a n
Fpert 72 2(\\//\/2 j (3.103)

apert
Hence, the conditions for scale invariance are @3%02) as well as

V"
y7 =l (3.109)

Also for the numerical value of egs. (3.101) andl@3), we have the following mathematical
connections with the Aurea ratio:

\/E 1 14/7 \/g 1 -14/7 5
- + +
(@) + ()™ = ( j +[ j = 2618034+ 0,381966=3; ~(B=2;

2 2
21/7 717 -28/7
(q))21/7 + (q))7/7 + ((D)—zsn _ \/g +1 + \/E +1 + \/g +1 _
2 2 2
=4,236068+1,618034+ 0145898= :6 é B=2;
1417 -14/7
()7 + (o)™ = (*/_STHJ + [@j = 2,618034+ 0,381966= 3; % [(B=1.
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If g, is the unperturbed, homogeneous metric (see ej/)(@ith A and N functions of time),
the perturbed 5d metric can be written as

g/.n/ = G;zv + Az(t)D(y't)h,uv ()_{'t)’ (3105)

where 4,v =0,...,3 We can treat the tensor perturbatidm)s as functions ofx andt only. We are

interested in the tensor perturbations which satis¢ conditions: h,, = 0 h} =0, and aihj =0.
The perturbed 5d Einstein action to quadratic oisler

Shuct = M753 Jd*x/-gR= M?:Id“xaz(h”h; ~ona'n)  (3.106)

where the second expression is obtained by iniegratver y. The tensor action is analogous to

the scalar action given in eq. (3.75). From th@actve can derive the tensor analogue of the scala
fluctuation equation of motion, eq. (3.76)

2T ..
x2d fe —[Erz—xz}fg =0, (3.107)

dx |a
where
h = | (;"—:;355' (r) (3.108)
and

f/ =ah.. (3.109)

The critical difference between this tensor equmaéind the scalar fluctuation equation, eq. (3.i86),
that the effective scale facter . in eq. (3.76) has been replaceddy

pert

We introduced a potential to insure that,
(a la

pert ! “pert

led to a nearly scale-invariant spectrum,

ert

)r2 =2. However, a(r) in the tensor equation is approximately constaeta]l that

a= (BI§°)M5)1/2 + O(,B/a)). Consequently, the root mean square tensomution amplitude

_ kS/ZhlZ _ K
‘Ahk‘ - (277)3/2 - (277)3/2 .

(3.110)

is not scale-invariant.
With regard the eq. (3.110), we have obtained dtleviing mathematical connections with the
Aurea ratio:

(277)*% =15,74960995

-32/7 40/7
(0) %7 + (@) = (\/§2+ 1] +(\/§2+ 1] =157500424311575;
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19/7
(@)™ = (*E; 1} =0,2708618458 arcsir(0,270861845§391%) =15715558

(¢)28/7 + (CD)M” + (CD)O - (\/E +1j28/7 . (\/g +1j14/7 . [\/32+ ]}o 10472136

2 2

10,4721363;— =15708204.

The cyclic story can be described in terms of ahnary four-dimensional field theory, which can
be obtained by taking the long wavelength limitloé brane picture. The distance between branes
becomes a moduli (scalar) field. The interbrane interaction is replaced by a sdafd potential,

V(w). The different stages in the cyclic model in tihane picture are in one-to-one correspondence

to the motion of the scalar field along the potantirhen, the actiorS describing gravity, the
scalar field¢ , and the matter-radiation fluid is:

167G

s=[d'x/-g [—fk——arp) ()+ﬂ“(¢)pR] (3.111)

where g is the determinant of the Friedmann-Robertson-falketric g,,, G is Newton's

constant andR is the Ricci scalar.
The S factor has the property thgf -~ « as a - 0 such thatafs - constant. The revised

solution to the equation of motion g, Dl/(a,é’)4 which approaches a constantas. . The

energy, once thinned out during the dark energyidat®d phase, remains thinned out at the
bounce. Theg-factor simply reflects the fact that the extra-dimsion collapses but our three-

dimensions do not. As a result, entropy produceathdwone cycle is not concentrated at the crunch
and does not contribute significantly to the emyralensity at the beginning of the next cycle.

Hence, cycles can continue for an arbitrarily lotigie and there is no practical way of

distinguishing one cycle from the next.

If the cyclic model can be described in terms dafimary field theory, then it may seem surprising

that it is possible to generate a nearly scaleriamti spectrum density perturbations. There are
actually three distinct ways of producing a neasbale-invariant spectrum, and that inflation

represents only one of them. The three ways cambeacterized by

w

)

w

the effective equation of state of the scalar figlhse | is wherew= Jand the universe is
expanding, the example of inflation. Case Il isomtcacting universe witw= 0Case Il is a
contracting universe withv >> | Ihat is the situation that applies in the cyoficdel.

What is required to obtaiw>> ?1From the expression fow, it is apparent that this is only
possible if the potential is negative. In particuléor a negative exponentially steep potential
V= —exr(cqo), the solutions to the equation of motion have aiisg solution in whichg? /2V is
constant and approximately — 1. Consequemntlyis much greater than unity and nearly constant.
The generation of fluctuations forw>> 1can be understood heuristically by examining the
perturbed Klein-Gordon equation:
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o' = —[kz +%" +\/,¢,,,j5¢; (3.112)

where ¢ (x,t) has been expanded in Fourier compone‘i;{ét) with wavenumberk and prime is
derivative with respect to conformal time The a''/a term is due to gravitational expansion, and

the last term is due to the self-interaction of swalar field.This equation applies equally to
inflation and to cyclic models The cyclic model corresponds to the limit whdre gravity term is
negligible and, instead, the perturbation equaisodriven by the potential term. For the negative

exponential potential, for example, the scalingiBoh corresponds td/, , = 2/n?.

We have defined thatw >> . We take the following valuesw=  498nd w= 423 We obtain
the following mathematical connections with the dauratio:

(@) + ()" +(0)*" + ()" =1,618034+ 0,618034+ 0,236068+ 0,013156= 2,485292
V5+1 )
2

2,4852922 = 4,970584 (for & = (

21/7 3
(q>)2”7=(¢)3:(£2+1} = 4,236067977 (¢)‘21’7=(¢)‘3:(£2+1j =0,236067977

arcsir(0,23606797?G1%) =13654585 arcsir(023) Gl%o =1329013.

We note that 3, 21 and 13 are Fibonacci’'s numbers.

For inflation, the most stringent constraints are on the flat pathe potential, the range of the
inflaton field where the density perturbations ayenerated. The constraints are commonly
expressed as bounds on two “slow-roll” parameters:

£= (%jz <<l (3.113)

V . .

For thecyclic model the analogous constraints are on the steep podfiche potential where
perturbations are generated. The constraints caxfressed in terms of two “fast-roll” parameters:

= (%jz <<l (3.115)

and

7=1-YV 1. (3.116)

(v

The first constraint forces the slope to be stemg the second fixes the curvature, where each
applies to the range @ where the fluctuations are generated that aremilie horizon today. The

result is thathe constraints in the two models are remarkably snilar .
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We note that if we take fop =0,090170, we have the following mathematical connectionthwi
the Aurea ratio:

\/E 1 -21/7 \/g 1 -49/7
- — + +
()27 + ()" =( > j +[ 5 J = 0,236068+ 0,034442=0,270510;

O,27051(]i3 =0,09017G

(¢)—35/7 — \/g +1
2
Fibonacci’'s number.

-35/7
j =0,090169944 arcsir(0,09016994%¢G1%):5,173384D5 that is a

4. On some equations concerning the “null energy contibn” (NEC) violation regarding
the inflationary models.

The metric of the higher dimensional theory%&s-flat (RF) or R -flat up to a conformal factor
(CRF):
ds’ = **(—dt? + a(t)d x3) + g, dy"dy", (4.1)

where thex are the non-compact spatial dimensiops {ym} are the extra dimensioné(t) is the
usual FRW scale factor; and

Omlt,Y)=€7°T,, (4.2)

where g, has Ricci (scalar) curvatu® = , @s evaluated in the compact dimensions. We leall t

metric R -flat (RF) if Q =const. and conformally? -flat (CRF) if Q(t,y)=0Qlt,y).

Now we develop some basic relations that make #sipte to detect easily when a higher
dimensional theory is forced to violate the NEC.

To describe a spatially-flat FRW spacetime aftenahsional reduction, the metr@mn(t,y) and
warp function Q(t,y) must be functions of timeé and extra-dimensional coordinatg8 only. We
parameterize the rate of changegf, using quantities and o, defined by

ldg 1

——m = +0, 4.3

2 dt kfgmn m (43)

where g™o, . = O0and wheref ando are functions of time and the extra dimensions.

The space-space components of the energy-momeatsartare block diagonal with3x bBock
describing the energy-momentum in the three nonpemindimensions anl xk block for thek
compact directions. The 0-0 component is the highreensional energy densify .

Associated with the two blocks of space-space comapis ofT,;, are two trace averages:

(4.4)

mn?

1, 1
pszéyéjTW and pk=Ey|§”’T
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where y,, are respectively th8x &ndkxk blocks of the higher dimensional space-time metric

Violating the NEC means thd,,n"n" < for at least one null vectar” and at least one space-

time point. We find simple methods for identifyiragsubset of cases where the NEC must be
violated. For this purpose, the following two lensraae very useful:

Lemmal If p+ p, or p+ p, is less than zero for any space-time point, thenNEC is violated.

The second lemma utilizes the concept of A-averagehtities:
(@), =([Qead y)([eJady) @45)

that is, quantities averaged over the extra dinogisswith weight factoe™ where, for simplicity,
we restrict ourselves to constaAt. Using the fact that the weight function in tWe-average is
positive definite, a straightforward consequence is

Lemma 2 If (p+p,), <0 or (p+p), <0 for any A and any{t,x }, then the NEC must be
violated.

To illustrate the utility of A-averaging, we introduce the CRF metric into thghbr-dimensional
Einstein equations, and then try to express terepemident ora in terms of the 4d effective scale

factor using the relatiora(t) = e”%a(t), where:

e’ = E"‘jem\/gdky (4.6)

and ¢ is the 4+k-dimensional Planck length. The 4d ¢ffecscale factora(t), obeys the usual 4d
Friedmann equations:

ay 1
(Ej —:—3,04(1 (4.7)

<\ 2 L.
a a

(—j +22=-p,. (4.8)

a a

Note that the 4d effective energy densjy, and pressurep,, are generally different fronp

andp,in the higher dimensional theory if the warp fadg®mon-trivial. Then, using the Einstein
eguations, we obtain

eo(e2(o+ ), = (pu + pu) =S 20 26 -(0).F), (o), @9

2k VA 2k
e?(e?(o+p), =%(p4d +3p,)+ Z(ZA - j k212<(f (@), - k212<<‘>i -(0%),+
{—5+1?0 +k+ A(—3+Eﬂ<em (GQ)2>A +%é%(&3<f%\). (4.10)

There is a range where
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10-5k +k?
4>A>2———=A, (411
=6 A, (4.11)

which is the case fot3> k >3 (for CRF). Some theorems below rely on choosig 2; for this

value to be within the range given in eq. (4.1tlis hecessary th&> k > 3. Since this includes the

relevant string and M-theory models, we will imflic assume this range & for CRF models.
We note that 3, 8 and 13 are Fibonacci’'s numbers
The two relations in eq. (4.9) can be rewritten

e?(€(p+py)), = Py L+ ) ( )* +non-positive terms foall A (4.12)
+

k

e?(e(p+p)), = %,04(, (1+3w)+ W%di(a <£>A)+ non-positive terms fosomeA,  (4.13)

where the values oA that make the last term non-positive are thosedhain the range in eq.
(4.11). Recall thatw represents the ratio of the total 4d effectivespuee p,, to the total 4d

effective energy densitp,, .

On the left hand side of egs. (4.12) and (4.13th tz;oand(...)A depend on the warp factd®, but
the combination is invariant under shif€ - Q +C, where C is a constant. Furthermore, the
combination tends to have a weak dependenc® orfror example, ifo+ p, is homogeneous in
{ym}, the left hand side reduces K)(,o+ pk), where the dimensionless coefficielit is not very

sensitive toQ or A; in particular,
K =41(A+2)/1(A)(2),

where

|(A)=[egdy. (4.14)

In this notation, thek -dimensional volume of the compact spac¥,is | (0); then, K is equal to
71V, , a coefficient which is strictly less than uniSimilarly, if o+ p, is smooth andQ has a
sharp maximum on some subspace of dimensioand volumev,, then the left hand side of eq.

(4.13) is O()(t™ /v, 0+ P)ee+ Where (0+p,),. is the value of p+p, evaluated on the
subspace wher@ is maximal.

If the NEC is violated, it must be violated in tbempact dimensions; it must be violated strongly
(w, significantly below the minimally requisite valfier NEC violation); and the violation in the
compact dimensions must vary with time in a marthat precisely tracks the equation-of-state in
the 4d effective theory. The magnitude of the NE&ation is proportional tgo,, according to eq.

(4.13), which is roughlyl0'® times greater during the inflationary epoch tdaning the present
dark energy dominated epoch. Hence, the sourceE@ Molation for inflation must be different
and10™ stronger.

The fact that NEC violation is required to havelahbn in theories with extra dimensions is
unexpected since this was not a requirement inotiginal inflationary models based on four
dimensions only. Curiously, a criticism raised emhes about models with bounces from a
contracting phase to an expanding phase, such asetlekpyrotic and cyclic alternatives to
inflationary cosmology, is that the bounce requires violation of the NEC (or quantum gravity
corrections to GR as the FRW scale faaifi) - O that serve the same function).
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If is true that the violation of the condition NECondition of null energy) is required for the
inflationary universe model and for the cyclic wmise model, then it is possible that for the cyclic
model the acceleration and initial exponential &goan of the inflationary phase, is equivalent to
the collision between the two Brane-worlds andhi ¢onsequent acceleration of the expansion of
space immediately after the Big Baridnis could be the explanation of the various cosmological

and mathematical connections between the two models. Then, the inflation and the Big Bang
would be only phases of the cyclic universe. Every cycle has its phase of Big Bang and its phase

of inflation.

4.1 On some equations concerning the evolution to a smth universe in an ekpyrotic
contracting phase withw>1.

With regard the evolution to a smooth universenneipyrotic contracting phase withv> , ive
find that the ekpyrotic smoothing mechanism is gthn the sense that the ratio ot the proper
volume of the smooth region to the mixmaster-likgion grows exponentially fast along time
slices of constant mean curvature.

In this system the spacetime is described in t&hascoordinate systeliu, x‘) and a tetradef , e,,)

where both the spatial coordinate indeand the spatial tetrad index go from 1 to 3. Choosg
to be hypersurface orthogonal with the relationweenn tetrad and coordinates of the form

e&=N"9, and e,=e,'d, where N is the lapse and the shift is chosen to be zetoo&e the spatial
frame {ea} to be Fermi propagated along the integral cunfe.oThe commutators of the tetrad
components are decomposed as follows:

[e.e]=ue -(HO +0f (4.15) e,.e,|=2a,d, +&,,n” (4.16)
5 5] = \eQa0p) TEapsN " B,

where n”? is symmetric, andr® is symmetric and trace free. The scale invariatratl variables
are defined by d,=¢,/H and d,=e,/H while scale invariant versions of the other

gravitational variables are given by
{E,5,, AN }={d,0,,a%n,liH. @.17)
Note that the relation between the scale invatietndd variables and the coordinate derivatives is

0,=N7"9, (4.18) d,=Ed, (4.19)

a a”i?

where &/ = NH is the scale invariant lapse. The matter modalssalar fieldg with potentialV
of the form
V(g)=-V,e™, (4.20)

whereV, and c are positive constants. The scale invariant matigables are given by
W=0,p (421) S,=0,¢ (422) V =VI/H?. (4.23)

The time coordinat¢ is chosen so that
e'=3H. (4.24)
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Note that this means that the surfaces of consitaet are constant mean curvature surfaces. Note
also that the singularity is approachedtas. —c. Due to equation (4.24) the scale invariant lapse
satisfies an elliptic equation

~0%9, N +2A%0, N + N(3+3, 5% +W? -V )=3. (4.25)

We note that 3 is a Fibonacci’'s number. Furthermeove have the following mathematical
connection with the Aurea ratio:

14/7 0 -14/7
(q))14/7 + (q))o + ((D)—14/7 _ [\/g +1J + (\/E +1J + [\/g +1J = 2,618034+1+ 0,381966=4;

2 2 2
4P =3.
4

The gravitational quantitie€,, A,, N” and 2, satisfy the following hyperbolic evolution
equations

9.E, =E, - W¥(E, +3°E}) (4.26)
1 1
0,.A, = A +§z§aﬁw—anvHv(?aﬂzg—Ab —zfAﬁj (4.27)
NP =N - g9y N +N(-NP +2N@, 5z - grlag 58 (4.28)
00y =5 + 0,0 N + A0 N +£,5,N ) 0" N + - 35,5 =0, A —2N_N,  +

B>y
NN + 6,0 07N, - 24N, )+ S, S, . (4.29)

<ap>

Here parentheses around a pair of indices denetsyimmetric part, while angle brackets denote
the symmetric trace-free part. The equations ofondor the matter variables are as follows:
0,9= NW (4.30)
3,S, =S, +Wo, N + Mo W - (S, +2£S, ) (4.31)
AW =W + 57N + ./V(@”Sa —3W-2A7S, —g—va . (4:32)

In addition, the variables are subject to the vanig of the following constraint quantities

(€. =£7[0,EL - A EL|- NVE! (4.33)
(€,) =0 ,N +£%9, A, —2A N (4.34)
(C), =0,%5 =350 A;, —£,, NSL -WS, (4.35)
2 1 1 > 1 1 1 1—
=1+29 A -A°A —-=N%N ,+—(N",| -=3%¥3y —-—W?-=8S -V 4.36
GG 3 a A)/ 6 af 12( y) 6 af 6 6 a 3 ( )
(C), =S, -9,0. (4.37)
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With regard the value 12 of eq. (4.36) we have rttaghematical connection with the following
Ramanujan’s modular equation:

The number 12 = 24 / 2, is related to the physidafations of the bosonic strings by the following
Ramanujan function:

© COSTEXW

e™"dx| s
antilog ™ COSVK Dt%\;‘\'fz
e * g itw)

(5]

For simplicity, we choose the initial conformal metto be flat and(x,y,z) to be the usual

cartesian coordinates for that metric, and we chdbg spatial triad to lie along those spatial
directions. Thus, the scale free spatial triad beeo

E =H @™, . (4.38)
It then follows from equation (4.16) that
A =-2)"Edy (4.39) N, = 0 (4.40)
The shear is essentially the trace-free part ofetktensic curvature, and the constraint equations

simplify for a particular rescaling of the tracedrpart of the extrinsic curvature with the confarm
factor. We therefore introduce the quantty, defined by

Sop =W 2. (4.41)

Similar considerations apply to the matter variapleading us to define the quant®ygiven by
W=¢7"Q. (4.42)

Here we will specifyQ, ¢ and a part ofZ, and solve the constraint equations for the confbrm
factor ¢ and the rest ofZ, . From equation (4.35) and our ansatz for the sScafriant variables

we obtain
0'Z, =Qd,p. (4.43)

In the vacuum case this equation simply becomesdhditions thatZ, is divergence-free, which
is in turn simply an algebraic condition on the Feucoefficients ofZ, . Note that since ,; must

be trace-free, so mu&, . A simple, but still fairly general divergencedrand trace-fre€, is the
following:

59



b, K 0
Z, =| K aCosx+h a, COSX . (4.44)

0 a,cosx —b —b,—acosx

where«, a, a,, b and b, are constants. We still keep this divergence-frae of Z, but now
add to it a piece that has a non-zero divergence siwiply specify the Fourier coefficients of
andQ via

Q(x,t=0)=%cos(mlx+d1) 4.45)  gxt=0)=f,codmx+d,), (4.46)

where f,, m, d,, f,, m, and d, are constants. This turns equation (4.43) intoalgebraic
equation for the Fourier coefficients of this na@radivergence piece &, which we then solve.
Now imposing equation (4.36) our ansatz yields

doy = GH 2 —§V}/ﬁ oS 2z iy, @an)

which is solved for the conformal factgr using the numerical methods.

With regard the eq. (4.47), the number 8 is coreteetith the “modes” that correspond to the
physical vibrations of a superstring by the follaggiRamanujan function:

r COSTEXW oW iy
antilog——COSIVK E §42
—iw‘ : tw
1 e * qitw)

o[

The constraint equations (4.33) and (4.34) areraatically satisfied by this ansatz. We then
satisfy equation (4.37) by using the given valug db compute the initial value d§, .

Now we show results from a single example that destrates the generic behaviour: evolution
from a highly inhomogeneous, anisotropic univergé wignificant curvature at the initial time to a
universe containing distinct volumes of either sthpdhomogeneousv>> Matter dominated
regions, orw= 1mixmaster-like regions. Wheneverva>> redgion forms it grows exponentially
fast in proper volume relative = régions. The particular initial conditions forghexample are
(4.44 — 4.46)

a =070, a,=010, =001, b =180, b,=-015, f, =200,

m =1, d=-17, f,=015, m,=2, d,=-10, and V,= 0] c=10 (4.48)

for the scalar field potential parameters (4.20).
With regard the values of (4.48), we take the feifgy: 0,10 0,15 0,70 1,70 1,80 and 10. We
have the following mathematical connections with Aurea ratio:
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2 2 2

-35/7 -49/7 -63/7
(¢)—35/7 + (cb)—49/7 + (cD)—63/7 _ (\/E + lj + (\/g + lj + (\/g +1j _
=0,090170+0,034442+ 0,013156=0, 137767 0,137767&4 =0103326,

(¢)—28/7 + ((D)—42/7 + ((.D)—56/7 + ((.D)—84/7 _ [@J + (\/E + lj + [\/g +1j + [\/g +1j _

2 2 2 2

= 0145898+ 0,055728+ 0,021286+ 0,003106= 0,226018:J2§ =0150679

(¢)—7/7 + (cD)—21/7 + (¢)—35/7 _ (\/g +1J + (\/g +1J + (\/g +1j _

2 2 2

=0,618034+ 0,236068+ 0,090170= 0,94427Zﬁ4 =0,708204

(q))7/7 + (¢)—7/7 + (cD)—42/7 _ (\/E +1J + (\/E +1J + (\/g +1J _

2 2 2

=1618034+ 0,618034+ 0,055728= 2,2917963§4 =1718847,

(¢)—7/7 + ((D)—21/7 + (¢)—49/7 + (¢)—84/7 _ (\/g +1j + [\/g +1j + (\/E +1J + (\/E +1J _

2 2 2 2

=0,618034+ 0,236068+ 0,034442+ 0,003106= 0,8916492 =1,783298_ 09012 = 180;

2 2
Now, let x,(n) be a complex character to the modulus 5 suchxt{&) =i, and let

\/E 1 35/7 \/E 1 1417
+ +
(@) + (@) = ( J + ( j =11090170+ 2,618034= 13708204!33: =10,281153

K= V10-2V5-2 0284078227  (4.48b)

J5-1
The function
f(s)= 1_% L(s, x,)+ 1+2'K L(s.x,), (4.48c) whereL(s,x)= i)(rssn) :
n=1

is called the Davenport-Heilbronn function andsf&s the Riemann-type equation

( gj_sur[ﬂjf (s)=g(t-s). (4.48d)

2

We note that10,281153-« C 10Furthermore:
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-14/7
(db)'l‘”7 = (\/§2+ 1] =0,381966, 0,381966£4 =0,286475. Thence, we can write also:

J10-245 -2 S+
)= V10=2A5 =2 _ 0407800028410 Y2 | R mo2s6s.
J5-1 2 4

It is enlightening to visualize the evolution vigetbehaviour of the matte(ﬂm), shear(Qs) and
curvature(Q, ) contributions to the normalized energy densitfingel as

Q. 51W2+lsasa+1\7 (4.49) QSEEZ”‘?ZW (4.50)
6 6 3 6
2 1 1 2
Q =-20 A+ A°A +=NN ., -—(N",], (451
K 3 a Ab 6 af 12( V) ( )

where Q_+Q_+Q, = 1 by (4.36).

We note that the eq. (4.51), i.e. 12 = 24/2, iatesl to the physical vibrations of the bosoningti
by the following Ramanujan function:

» COSTOXW ey
antilog™ conszhm D'tzzljvz
e + g (itw)

T

The effective equation of state parametertakes the following form in Hubble normalized
variables:

L +£S"Sa -V
w= % 2 . (4.52)

“w? +ES"S(, +V
2 2

It is evident that at late times the region thas$ sanoothed out and become matter dominated
coincides withw>> 1 whereas the mixmaster-like regime evolvesmse . Wk can calculate the
behaviour of the solution in the asymptotic matteminated region as follows. At late times, all
spatial derivatives have become negligible. Thesttaimt (4.36) then reduces to

W2+2V

1=0, (4.53
5 (4.53)

and slicing condition fotV (4.25) becomes
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IW=—_ . (454)
3V

Furthermore,V is finite and non-zero. This implies from (4.2023, 4.24) thatg takes the
asymptotic form

dxt)=@()+2  (455)

and thusw (4.21) tends to

W=_2 (456)
cN
Combining these relations gives
— c? 2
W=c, (457) V =3—E, (4.58) JV:?, (4.59)

and from (4.52)
w=c*/3-1 (4.60)

We have thatc=+/2=1414213562 WCLCc and V =2. Thence, we have the following
mathematical connections with the Aurea ratio:

(¢)—7/7 + ((D)—21/7 + (¢)—35/7 _ (\/E +1j + (\/E +1j + [\/g +1J _

2 2 2

=0,618034+ 0,236068+ 0,090170= 0,94427233 =1416408

\/§+1 1417 \/§+1 -14/7 5
()7 + ()" = [ j + (—j = 2618034+ 0,381966=3; _[(B=2;

2 2
21/7 717 -28/7 _ \/§+1 217 .\ \/§+1 77 . \/§+1 —28/7 i
er e o) _( 2 j ( 2 j { 2 j i

=4,236068+1,618034+ 0145898 ;6 % B=2;

Let S denote the proper spatial volume element assacwitd the spatial metridy of t =const.

slices i.e.,.S=+/deth . The fractional change & with respect to time is
9,InS=-1h o
. nS——Ehj N, (4.61)

which can be written as
0,InS=3¥. (4.62)
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In the asymptotic regime where spatial gradien¢sreagligible, /' approaches a constant (4.54),
and thus (4.62) can be integrated to give

S, 0e", w>>1 (4.63) S 06, w=1 (4.64)

where we have used (4.54) whexe>> , ahd note tha¥/ =0 whenw= 1 Thus, at late times the
ratio R of the proper volume of matter to mixmaster-liegions of the universe grows as

- i[[zmjx 0 e—t(l—6/cz)'
X

(4.65)

Thus, as long ax>+/6 (which is equivalenttav> Y1 R - © ast - -,
We note thaty/6 = 2,449489743 is related to the following mathematical connactwith the
Aurea ratio:

717 2817 4217
(¢)—7/7 + ((.D)—28/7 + (¢)—42/7 _ \/E +1 + \/E +1 + \/E +1 _
2 2 2
=0,618034+ 0145898+ 0,055728= 0,819660 3 = 2,458980

5. On some equations concerning the approximate ilationary solutions rolling away from
the unstable maximum of p-adic string theory.

The action of p-adic string theory is given by

0 0
1 N = AR DN | O B A= R
S=—3[d* -Zgp ™ p+——¢" == [d*N - Zge ™ p+ 51
gﬁj »{ 2P a? T a1 (5.1)

where 0=-97+0? in the flat space and we have defined

2 2
—iz P and mﬁszms.
sp-1 Inp

g

(5.2)

(@]
13!\:||_‘

The dimensionless scalar fietu(x) describes the open string tachyan, is the string mass scale
and g, is the open string coupling constant. Though tit®a (5.1) was originally derived fop a

prime number, it appears that it can be contingednty positive integer and even makes sense in
the limit p — 1 Setting 0 = 0 in the action, the resulting potential takesftren
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The action (5.1) is a simplified model of the basostring which only qualitatively reproduces
some aspects of a more realistic theory. That be@d, there are several nontrivial similarities
between p-adic string theory and the full stringatty.

The field equation that results from (5.1) is

0

e"™p=¢ (5.3)

We are interested in perturbing around the solutienl, which is a critical point of the potential,

representing the unstable tachyonic maximum.

One may wonder whether the field theory (5.1) ngivalows for slow roll inflation in the
conventional sense. Naively one might expect thaafslowly rolling field the higher powers @f

in the kinetic term are irrelevant and one may apimnate (5.1) by a local field theory. The action

(5.1) can be rewritten as
S= Id x[ Xx-V(x)+. } (5.4)

where we have defined the fiejd as

= 5.5 P [ Inp 5.6
X=X (55) Xo 0. (pl)ms (5.6)

and the potential is

msz 2 m;‘ p2 X i
Viy)=—xy*-— Al (57
) inp” R pz—l()(oj &)

In (5.4) the . . . denotes terms with higher pova#ri3. Thence, the eq. (5.4) can be rewritten also

+1
[dnp p (ij
S=|d o +..|. (5.7b)
J {295 2Ap-0" )™ inp gs p* =1 xo

Working in the context of the action (5.4) let umsider the slow roll parameters describing the
flatness of the potential (5.7) about the unstatd&imum y = x,. It is straightforward to show that

M2 1 av()()j2 "0 (a8
)(6)( s =0 59

2 V(x,)
2
_ 49 p*-1( M
Xexo 2 1. (5.9

vz 1 V()
"V(x,) ox’ np p> (m

With regard the approximate solution for the clealsbackground, we must solve the Friedmann
equation
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1

H2=——p, (5.10)
3M; "7

to second order i. To find the energy densitp,, we turn to the stress energy tensor for the p-
adic scalar field. A convenient expression Tgy is:

4 _ o 5 1 _a _(1-7)n 1 i _(1-r)o
=M m - p+1 : m m 1 E PP
T, = 20° Q| 8 "W - jodr[ﬂe qo]{e ¢] + - J'Od{aae qo]{a e qOH +

o — -(1_2)”
—mT;Z [[drjo,e"p|oe ™ p|. (511)
pIp

One may verify that thg , is symmetric by changing the dummy integrationalde 7 — 1-7 in

the last term. For homogeneoqa@;) the above expression simplifies, and Tgy we find

1l

a (1-7)o
L P P SR LV N N P
Py ="Too 294@ @ p+1¢ +m,2)~[0dr Oe "g|e @+

il (a-7)n
(! 3 T
+ﬁjodn9t(e pqo}t[e "qo}]. (5.12)
p

One can evaluate the above expression term by texeping up toO(eM): u®. The final result
reads

4

e 2ol 20 s o) T o). 19

29’ p+1 2g;(p+1)

The O(u) terms cancel out and matching the coefficientthen Friedmann equation gives us the
simple results

4
2_ M p-1
A

and
H,=0 (5.15)

for zeroth and first order respectively. T@ﬁ) contribution toT,, is quite complicated but once

we use (5.15) it simplifies greatly. Matching cogéint at orderO(uz) in the Friedmann equation
gives

4 3 2
Hy=- M gu= L PINPIM |, 5 46
4gpmpMp 8g: p-1 Mp
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We note that the number 8 in the eq (5.16) is @abci’'s number and can be connected with the
“modes” that correspond to the physical vibratiafisa superstring by the following Ramanujan
function:

© COSTEXW

e Vx|
antilog > COSV& E :2L42
—n—w' tw

1 e * g, (iw)

o

Because of our sign convention fbr, , the fact thatH, >0 means that the expansion is slowing as
¢ rolls from the unstable maximum, as one would ekpea conventional inflationary model.

We are approximating the background dynamics &Sittier which amounts to working in the limit
u - 0 so that

-1
H?=HZ =15 P
" 6M2 g2(p+1)

(5.17) p=@ =1 (5.18)

We expand the p-adic tachyon field in perturbatlweory as
ot, %)= O t) + oplt, X) =1+ gt X).  (5.19)
The perturbed Klein-Gordon equation (5.3) takestine
"™ 3p= pdp. (5.20)

One can construct solutions by takidg to be an eigenfunction of thie operator. If we chooség
to satisfy

-0d0¢ =+Bdg (5.21)
then this is also a solution to (5.20) if
B=m’lnp=2m¢ (5.22)

where in the second equality we have used (5.2).
For fields which are on-shell (that is, when (5.&130lved) the field obeys

(_l—e_mms)&ﬂ: (1—eB/m$’)5(0: (1_ B/ )ﬁ(_ B)dw= (1_eB/m§ )(——1|3)D5¢: g_r;ﬁl[ldgo (5.23)

Thus, for on-shell fields the kinetic term in thadrangian can be written as

mi1 _mmz)w _mp-11 1
=——¢l-e T pt+..=— = +.==¢gllg+... (5.24
on-shell g’2) 2 g’2) 2|T]§ 2¢ﬂ¢ 2¢ ¢ ( )
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In (5.24) we have defined the “canonical” field

¢p=A¢ (5.25)
where
A="P 506
Vg, (6:26)

The field ¢ has a canonical kinetic term in the action, astieehile (5.21) is satisfied. Now, let us
return to the task of solving (5.21), bearing imdhthat d¢ = Adg is the appropriate canonically

normalized field. We write the quantum mechanicalugon in term of annihilation/creation
operators as

(%)= ,[ (2n)" 3k["3‘1<¢|< e + h-C-] (5.27)

and the mode functiong, (t) are given by

1 7 Zw K
t)== e? HO 5.27b
A1) 2\ a°H, v (aHoj ( )

where the order of the Hankel functions is

9 9 2mS
Z+— = |= 5.28
4 4 HZ ( )

and of coursea=€™". In the second equality in (5.28) we have use#2j5and (5.2). In writing
(5.27) we have used the usual Bunch-Davies vacuaomrmadlization so that on small scales,

k >>aH,, one has
-1

a
oo

which reproduces the standard Minkowski space dlttdons. This is the usual procedure in
cosmological perturbation theory. On large scakess aH,, the solutions (5.27) behave as

k 3/2-v
w15l

which gives a large-scale power spectrum for thettiations
2 ng-1
¥ \2m)\aH,

n,—1=3-2v.

with spectral index
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From (5.28) it is clear that to get an almost soa@riant spectrum we requing, << H,. In this
limit we have

2
n, —1D—ﬂ(ﬂ] (5.29)
3\ H

0

which gives a red tilt to the spectrum, in agreenveth the latest WMAP data. Far, '  098ne
hasm, [J0.2H,. Comparing (5.27) to the corresponding solutioa iiocal field theory we see that

the p-adic tachyon field fluctuations evolve asutjio the mass-squared of the field wagm’
which may be quite different from the mass scaléclvione would infer by truncating the infinite
series of derivatived?V /dx*( x = x,)-

2
We note that fom, = 095from the eq. (5.29), we obtain thaIF =0,075. Thence, we have the

0
following mathematical connections with the Aurata:

2 2
From the eq. (5.28), we have that:

_[9,2m _ |9 _ _ _
vt T 0,075=+/ 225+ 0,075=/2,325=1524795068
0

\/E+1j°+(£+1

2 2
We note that for the eqs. (4.48b-4.48c-4.48d), axeehthat

\/§+1 =717 \/§+1 -35/7 4
0950(@) ™" + (o) " = ( j +( j = 0618034+ 090170= 0,708204% = 0944272

-28/7
1524800(d)° + ()" = ( J =1+0,145898= 11458983;'— =1527864

K _N10=205-2_0098407822; 1527864 - 0,002840 = 1,525024.

100 J5-1

We now want to fix the parameters of the model @y paring to the observed features of the CMB
perturbation spectrum. There are three dimensisresametersg,, p and the ratiom,/M . The
important question is whether there is a sensilaleampeter range which can account for CMB

observations, i.e., the spectral tilt and the am@é of fluctuations. Using (5.14) in (5.29), weaca
relate the tilt to the model parameters via

_ :8(p+1)(ﬂj2 _(m) _8p+) o2 o
|n5 1| pz rns gs M pz |ns_]l' ( . )

p
Also for this equation, we note that the numbes 8 Fibonacci’'s number and is connected with the
“modes” that correspond to the physical vibratiefisa superstring by the following Ramanujan
function:
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" COSTIXW e g
antilog =~ COSIVX D':2L42
—n—w‘ : t W
1 e ‘g (iw)

RIS

Thus one can have a small tilt while ensuring thatstring scale is smaller than the Planck scale,
provided thatg?/ p << 1Henceforth we will use (5.30) to determing/M , interms of p, g,

and |ns—:IjD0.05. All the dimensionless parameters in our solution/H,, A/m, @ and
H,/m,, are likewise functions ofi, — ,1p and g,. From (5.14) and (5.30) we see that for> , 1

my M, 6M, 1
— Uv6g,— g, [—0U=4/3n,-1. (5.31
H, J—g”ms Fpm T G

It may seem strange to hawé exceedingm, since that means the energy density exceeds the

fundamental scale, but this is an inevitable priypefthe p-adic tachyon at its maximum, as shown
in eq. 6.13. This is similar to other attempts to get tachgoor brane-antibrane inflation from

string theory, since the false vacuum energy isthesbrane tension which goes lik& / g, .
Next we determinel/m,, where A is the mass scale appearing in the power series iwhich
provides the ansatz for the background solutions.céhsider the following equation far in the
H, >>m, limit
A ze(ﬂ2+3H0)/mf, = p.

The positive root ford gives

A0 In. -4 . (5.31b)

m, 3

In order to fix the amplitude of the density pebations we consider the curvature perturbaton
We assume that

(=

H
¢
as in conventional inflation models. To evaluate pinefactorH /¢ we must work beyond zeroth
order in the smallu expansion. We take& =1-u to evaluate the prefactor, even though the
perturbationdy is computed in the limit thag = .IThis should reproduce the full answer up to
O(u) corrections. The prefactor is

3/2
_ED HO |:|2 gs 1 lrns—l
¢ Alu p |n,-Ju
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With regard the egs. (5.31) and (5.31b), we haeefdtHhowing mathematical connections with the
Aurea ratio:

my M, 6M, 1 _
06 O 0=,/3n, -1 = 0193649167
H 95 95 > 3n,

\/E 1 -28/7 4
- +
0193650 ()" :( > J = 01458984 = 0194531

A g fIn=Y 0100009444
m, 3

-28/7 -49/7 -63/7
01290101(d) "7 + ()7 + (@)™ = (\/3 * 1} + (\/g + 1] N (JE + 1] _

2 2 2

= 0145898+ 0,034442+ 0,013156= 0,193496225 =0128997010,1290.

We should evaluate at the time of horizon crossing,, defined to be approximately 60 e-foldings
before the end of inflation,,, assuming that the energy scale of inflation ghhiThe inflation

ends wheru =1/ p*?. From egs. (5.31-5.31b) we see thit/ A = 2/|nS —Jj; therefore we can write
the scale factoa(t) e in the form

at) Ou(tf'™™  (5.32)

so thata, =e*a_,, corresponds to

u,=e Yy, = e 1 (5.33)

1/2 °

We note thatH,/A :2/|ns—]j for n,= 095 is equal to 40. This value can be related with the
following mathematical connections with the Aurtiga

1417 0 -385/7
(@) + () + () = (—\/E * 1] + (\/E * 1] + (\/E i 1] =2,618034+1+0,090170=

2 2 2

= 3,708204!:—!;1 =4,944272,

\/§+1 35/7 \/§+1 717 4
(@) + ()" :{ 5 j +( 5 j =11090170+ 1,618034=12,7082043, =16944272

2 2
Ho/A=2/n,~1 = 40; 4,9+ 16,9 + 18,2 = 40.

\/§+1 35/7 \/§+1 14/7 4
(q3)35’7 + (q;)l“” = ( j + ( j =11,090170+ 2,618034= 13708204@5 =18277605
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The power spectrum of the curvature perturbatianvsn by

2
H k
PZ:‘—

Py = Ag(aHoj (5.34)

¢

where the amplitude of fluctuations, can now be read off as

8 gs2 eﬁqns‘ﬂ

2
= == . (5.35)
g 3T p |nS —]F
Thence, we can rewrite the eq. (5.34) as follows
‘H 2 8 gz eﬁ(jns—:u ( 3 b)
P,=— P, = = . (6.35
¢ ¢ o 3772 p |nS _1|3

As an example, taking, I 096ne can fix the amplitude of the density pertudvest A? 010
by choosing

Y5 q048x107. (5.36)

Jp

Setting A =107° and using (5.35) we obtain an expressiongoin terms of p and|n, ~1

Combining (5.37) with (5.30), we also obtain

n,-1"*x10°. (5.37)

= 3 p—:le_3q”5_”|ns—]j><10_5. (5.38)
p

The string scale is bounded from aboverasM , < 094x107° and that for typical values gf, n,

it is close tom//M , I 061x10°. Furthermore, from (5.37) thal, is unconstrained and thaf,,
p are not independent parameters.
Now we define the Hubble slow roll parameters, 77, by

_ 1 ¢ _ 9
&y =W§F, (539) Ey — Ny =H—¢. (540)

72



These are the appropriate parameters to describegatle of time variation of the inflaton as
compared to the Hubble scale. Using the solugidnl—-u (recall thatg = A¢, A= msp/(x/igs))
we find that

1p+1 egny _ _In-1
£ D2 . e n -1, (5.41) n, O 5 (5.42)

H

We see that the Hubble slow-roll parameters ardlsiffais means that p-adic tachyon field rolls
slowly in the conventional sense. One reachesaheesconclusion if one defines the potential slow
roll parameters using the correct canonical fieldich is ¢ (5.25):

10v

M?2( 10V 1
P( Vo |pon = —§|ns -1, (5.44)

2
— 2
- V%j -a=0, (543) M}

With regard the egs. (5.42) and (5.44), we have tha

—%Ins -1 =0,025;

=0,236068+ 0,090170+ 0,008131= 0,33436§D§4 =0,250776 % x0,250776= 0,0250776

On the other hand, consider the potential slowpatbmeter which one would naively define using
the derivative truncated action (5.4):

M_ﬁ(z ov

2
_ 10%V _ (p-1)1
5 VaJ =0, (545)  MZ=——| ——[—j§|ns—]j (5.46)

PV ax? Inp

where in (5.46) we have used equations (5.9) ar@D)5We see that (5.46) can be enormous,
though the tachyon field rolls slowly. Taking thardest allowed value ofp, p=10*, and

n, 0095 we have M 5\/‘1‘62\//6)(2‘ =10". Since large values op are required if one wants to

obtain g, = 1 it follows that it is somewhat natural for p-adidlation to operate in the regime
where the higher derivative corrections play anangmt role in the dynamics.

6. On some equations concerning p-adic minisuperspacenodel, zeta strings, zeta
nonlocal scalar fields and p-adic and adelic quantm cosmology.

Consider the standard Minkowski signature minisspace model of a homogeneous isotropic
universe with a cosmological constaht The usual parametrization of the metric

ds = -N2dt? +a%dQ?  (6.1)

leads to classical solutions which are trigonomatriunctions of time. In the p-adic case we prefer
to work with rational functions. We shall use tlldwing ansatz
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ds? = - N(t)’ dt? +q(t)dQ2. (6.2)

alt)

Here N anda are functions of time andQ? is the metric on the unit 3-sphere. The actiortfics
metric is the same as the corresponding usual case

Sat)h :% N dtN(;Lz —)lzq—lj. (6.3)

We assume that the cosmological constdanis a rational number. The classical equations of
motions have the form
G=24. (6.4)

The solution of this equation for the boundary dbads

q0)=q. ofT)=a,, (6.4b)

is the following
q(t) = At + [qZT;Oﬂ - AT}t +q. (6.5)

Here q(t), p(t)DQp. The Green function corresponding to the transifrom the pointg, to the
point g, has the form

G,(0.0)=, dTK (6.0, T) (6.6)
where K; (oﬂ,O|q2,T) is the propagator
Kr (o0 T) =[x, (S [dt). ©7)

In the path integral one integrates over trajeetowith the boundary conditions (6.4b). One can
perform the Gaussian path integral (6.7) in thealsway using shifting to the classical solution.
One gets

Ky (6.0, T)=c(T)x,(S.) (6.8)

where S, is the action calculated on the trajectories (6.5)

S =5,(0,,,T)=- +[/1(0a+q2)-2]£+%- (6.9)

The factorc(T) is the same as for a free particle
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A(T)
clt)="2.. (6.9b)
]

p

Therefore one has the Green function

_i o gr (D) (_xT T, (@-a)
gp(qllqz)_.[deT |_|_|1p/2 /Yp(_ 24 +[/](0a+q2)_2]z+T . (610)

The corresponding wave function has the form

W(a)=. dTApE,TZ))({ : {q—2+()|q—2)1_)';13D 6.19)

T 12| 8T 4

where we restore the explicit dependence on thecRlength.
We note that the number 24 in the eq. (6.11) carelated to the physical vibrations of the bosonic
strings by the following Ramanujan function:

Iw COS7EXW oW iy
antilog ™ COSVK Dt%\;‘\'fz
& +"q (iw)

(]

Now let us estimate the integral dn applying the stationary phase approximation. Témdke-
point equation has the form

. NT? 2 Jg 1

which yields

T2 =-2EN2AA) g g0

As is known, forp E](mod4) there is the square root of — 1 @, so we get nontrivial saddle
points. Forp 53(m0d4) we have no saddle point at all. To make sensheobaddle points in the

casep E](mod4) we should be sure that the square rgﬁbf AQ also has a sense. For this purpose
we have to assume th|ait:||p <1. The corresponding actions have the form

S= —%[11 (1—)Iq)3’2], S :%[11 (1—)Iq)3’2], (6.13)
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In order that these expressions be rational we bavessume tha#l is rational as well as that
Aq = &2 is such a rational that the solution of the equmti

&+n*=1 (6.14)
in respect tay is also rational. Let us consider the Euclideatrime

N(t)

q(t)

The Euclidean action for this metric is the samthascorresponding action in the usual case

ds* =

dt? +q(t)dQ?. (6.15)

_ 1t _ q2 _
st _EL dtN( PINEREA 1]- (6.16)
We shall prove that it is possible to restore
27
We(a)=| dTIeXI{ITHSEjﬂ dq (6.17)
Pl

when |, — 0in the corresponding p-adic wave function. Indeadhe p-adic case for Euclidean
metric, we get a basic Green function

_ /]p(T) T8 T ~q, 2
gp(oa'qz)_.[d-r |T|1p/2 Xp( 24 +[A(0u_q2)_2]z_(02?)j. 6.18

Now let us estimate the integral dnin

IdeT |Tp|1/2 X”( 24 +(/1q-2)z—§] (6.19)

applying the stationary phase approximation. Foyriaere are the following saddle points
T :%[11 (1—)Iq)”2], T= 71[11 (1—)Iq)”2], (6.19b)

for
qu<1

with corresponding actions

s=—3i/1[1¢(1—/1q)3/2], s=3i)|[1¢(1—/1q)3’2]. (6.20)
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Note that now these stationary points have sensalf@ and forq satisfying (6.15) according our
general formula for the wave function of the unseer

w(g*)= me Mx.(s.)20,.),. 6.21)

we write

W (g)= |2_| Al ‘[(1 /]Gﬂslz_l]) \1 Ag)'® 4exp{ 271[1 Ao+ ]}

p=235..[ 4 _ 1 A
(1 Aq"(i 3AD

6.1 Zeta strings and zeta nonlocal scalar fields.

48)

The exact tree-level Lagrangian for effective scdield ¢ which describes open p-adic string
tachyon is

Bf%L{ Lopzge ¢"*1] (6.23)
g p-1

where p is any prime number,=-8> +® is the D-dimensional d’Alambertian and we adopt

metric with signature(— +...+). Now, we want to show a model which incorporates p-adic
string Lagrangians in a restricted adelic way. ustake the following Lagrangian

=1 n>1 n?

L=YC n-1, {—%q)Zn_ZqHzn—ilgd‘”] (6.24)
n>1 el

Recall that the Riemann zeta function is defined as

nz1 n

|_| , s=o+ir, o>1 (6.25)
1-p~°

Employing usual expansion for the logarithmic fumetand definition (6.25) we can rewrite (6.24)
in the form

L = —é{%qf[gj¢+ @+In(1- qo)} . (6.26)

Where|¢1 <1.¢ [%j acts as pseudodifferential operator in the follfgywvay:

Z(ij(x) = G ;17)° | eix"Z(—k—zj(}(k)dk, ~K2=K2-K*>2+e, (6.27)



where (k)= [€™)g(x)dx is the Fourier transform gix).

Dynamics of this fieldg is encoded in the (pseudo)differential form of Riemann zeta function.

When the d’Alambertian is an argument of the Riemamn zeta function we shall call such
string a “zeta string”. Consequently, the abowe is an open scalar zeta string. The equation of

motion for the zeta string is

— 1 |xk _k_2 - :i
Z( jw P 5o e itoane 5( ZJw(k)dk -y 028

which has an evident solutign= .0

For the case of time dependent spatially homogensolutions, we have the following equation of
motion

With regard the open and closed scalar zeta strthg equations of motion are

12k

e Sl 14, o

nx1

jcb(t) (—1)jk >ﬁ+ge‘ik°tz(ﬁjc'5(ko)dko=1f”(2t). 629

2

|xk

nz1

( j()dk Zevnnzl ., 6.30

and one can easily see trivial solutiprd= . 0

The exact tree-level Lagrangian of effective scdield ¢, which describes open p-adic string
tachyon, is:

m  p? 1 z,i
L =—P - =dp ,,¢+ ¢P+1 . (6.32)
P ,2) p—l[ 2

where p is any prime number;=-8> + [ is the D-dimensional d’Alambertian and we adopt
metric with signatureg- +...+), as above. Now, we want to introduce a model wiichrporates
all the above string Lagrangians (6.32) wihreplaced bynON . Thence, we take the sum of all
Lagrangiansg, in the form

_+oo _+oo D n2 1 _72:]2 1 "
L=>CL =>»C —> -— "p+——¢" |, (6.33
nz.l”“;”gfn—l{ 2 O

whose explicit realization depends on particulasich of coefficientsC,, massesn, and coupling
constantsg,, .
Now, we consider the following case
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_n-1
Cn - n2+h !

(6.34)

whereh is a real number. The corresponding Lagrangiatisrea

D

L, = wznzm Tpe> D

g nln

qo”*l (6.35)

and it depends on parameter According to the Euler product formula one caitevr

400 __ U 1

S = |‘| . (6:30)

n=1 1 p 2m

Recall that standard definition of the Riemann fet&tion is

Z(S):iézﬂ 1_5, s=o+ir, o>1, (6.37)

which has analytic continuation to the entire caempt plane, excluding the poird= , Wwhere it
has a simple pole with residue 1. Employing detni(6.37) we can rewrite (6.35) in the form

m°| 1 O “n" g
L= -2 + . (6.38
T a e B 3w

O
Here
Z[ 2’

j acts as a pseudodifferential operator

it

where g(k)= je(‘ikx)q(x)dx is the Fourier transform af(x).

}p(k)dk, (6.39)

We consider Lagrangian (6.38) with analytic congithens of the zeta function and the power series
-h

> N gt ie.

n+1

-h

eackn:
n=1

mP| 1 0
Ly :T{__@(Zmz

. 5 qd”l} , (6.40)

where AC denotes analytic continuation.
Potential of the above zeta scalar field (6.4@qeal to—L, at= 0, i.e.

-h

o= 2 ¢0)- AT T 0|,

2 ~n+
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where h# 1since (1) =w. The term with -function vanishes ah=-2-4,-6 ,..The equation
of motion in differential and integral form is

Z(zaz + hjqo: ACY ng", (6.42)

n=1

e el a4

respectively.

Now, we consider five values oh, which seem to be the most interesting, regardhng

Lagrangian (6.40)0h= Oh=zx1 andh=x+2 For h=-2, the corresponding equation of motion
—2]&(k)dk: do+1). 6.44

now read:
O 1 ixk k?
— —-2lp= -
Z( 2ny j¢ (2m)° I w© Z( 2’ (1-¢f

This equation has two trivial solutiong{x)=0 and ¢(x)=-1. Solution ¢(x)=-1 can be also
shown taking @(k) = -4(k)(277)° and ¢(-2)=0 in (6.44).
For h=-1, the corresponding equation of motion is:

z[%quﬁ [.e*¢ (— ‘;nz —1jé(k)dk= ¢ 649

1

TE

The equation of motion (6.45) has a constant frsétution only forg(x)=0.
For h = 0, the equation of motion is

where ¢(-1)=-

I P S S B S o/ W
Z(Zmzj(o_ (Zﬂ)DIRDe Z( 2m2j¢(k)dk 1_¢- (6-4@

It has two solutionsg = @nd ¢ = 3 The solutiong = 3follows from the Taylor expansion of the
Riemann zeta function operator

g Dzj=z(0)+25(n)_(°)[ fnj (6.47)

as well as fromp(k) = (277)°35(k).
For h =1, the equation of motion is:

2

1 w o K - —_1 -0V
WLDE’ (( 2m2+1j¢)(k)dk— 2|n(1 9. ©6.49

where (1) = gives V,(¢g)=oo.
In conclusion, forh= 2we have the following equation of motion:
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1 ik _k_2 ~ _ (ﬂln(l—w)z
WIRDG Z( 2m2+2]¢)(k)dk— [ dw. 649

Since holds equality

—jlln(l_w)dw=zw_iz=5(2)

o w
one has trivial solutiorg = in (6.49).

n--1
n®

_m°| 1 o O @
L—?{ 2"0{3(2# 1j+([2m2j}¢+1_¢] (6.50)

The corresponding potential is:

Vi=-"- 1219 . (6.51)

241~ ¢)

Now, we want to analyze the following casg; =

In this case, from the Lagrangian (6.33),

we obtain:

The equation of motion is:

o oAy oo

Its weak field approximation is:

0 O _
{Z[Zmz —1)+Z(2m2j—2}0—0, (6.53)

which implies condition on the mass spectrum

M2 M2 _
Z(zmz —1j+z(2m2j =2. (6.54)

From (6.54) it follows one solution fav1?> > &t M* = 279m” and many tachyon solutions when

M? < -38n7.

With regard the extension by ordinary Lagrangiae, vave the Lagrangian, potential, equation of
2

motion and mass spectrum condition that, Wh‘gn:n—z_l, are.
n

L:m—:{f{%—i( Dz—lj—i( anzj—l}¢+%ln¢2+ v } (6.55)

g |2 m 2m 2 ﬁ)
_m’ & N -t
V(qo)—?g{i( 1)+7(0)+1-In¢? 1_(0] (6.56)
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M 2 M2)_ M?
Z(Zmz _1J+Z(2m2J—?. (658)

In addition to many tachyon solutions, equatiorb®p.has two solutions with positive mass:
M?= 267n" and M? = 466m°.

Now, we describe the case &, = z(n)" 1 Here 1(n) is the Mobius function, which is defined

n?

for all positive integers and has values 1, 0,defending on factorization of into prime numbers
p. Itis defined as follows:

0, n= pzm
p(n)=1 (-1, N=pp,.Pop %P, (6.59)
1 n=1(k =0)

The corresponding Lagrangian is

+00

L, =Coby + Z Hn), (le (6.60)

-1 n? n=1 N

Recall that the inverse Riemann zeta function eaddfined by

i () s=g+it, o>1 (6.61)

Now (6.60) can be rewritten as

4

°l1 1 e
L//:CO'BO+% _ECUTDJCU"'J-O Mlg)dg|, 6.62

2m?

where M(g) = z:l,u(n)qd‘ —p-¢-¢g-@g+¢ —¢ +¢°-¢g"—... The corresponding potential,
equation of motion and mass spectrum formula, sy, are:

V,(@)=-L,(0=0) :rg—:[%qf(l— Ing?)- ¢ _Lm(go)w} , (6.63)
1

O
- M(p)-C,— 9—-2C,ping=0, (6.64)
Z( : j )
2m?
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2
1M
M 2 2

where usual relativistic kinematic relatiok? = —k? +k? =-M? is used.
Now, we take the pure numbers concerning the €j54) and (6.58). They are: 2.79, 2.67 and

J5+1
2

+2C,-1=0, |g<<1, (6.65)

4.66. We note that all the numbers are related @ith , thence with the aurea ratio, by the

following expressions:

2790(0)*7;  2670(d)¥ +(@)*7;  4660(D)? +(0)*7. (6.66)

6.2 p-Adic and adelic quantum cosmology

Adelic quantum cosmology is an application of adgliantum theory to the universe as a whole. In
the path integral approach to standard quantum alagy starting point is Feynman'’s idea that the
amplitude to go from one state with intrinsic meth; , and matter configuratiog on an initial

hypersurfaceZ, to another state with metrit',, and matter configurationgy bn a final

ij
hypersurface’', is given by a functional integral gf, (— Sm[gw,dbj) over all four-geometrieg ,, ,

and matter configuration®, which interpolate between the initial and finahigurations, i.e.
<hlij 'wlzl‘hj 'w!z>oo = Iﬁ)(gyv)mﬁ)(cp)oo)(w (_ Soo [gyv’q)]) ' (667)

The S, [gw,tbj is the usual Einstein-Hilbert action

J9,..®] :ﬁ( [a=g(R-2n)+2] dWﬁKj —% [d*y=glg"9,90,0 +V(0) (6.68)

for the gravitational field and matter fields. In (6.68),R is scalar curvature of four-manifold ,
A is cosmological constan is trace of the extrinsic curvatuie; at the boundaryM of the

manifold M . To perform p-adic and adelic generalization wstfmake p-adic counterpart of the
action (6.68) using form-invariance under changeeafl to the p-adic number fields. Then we
generalize (6.67) and introduce p-adic complex-e@lcosmological amplitude

(0.2 .02) =[9(g,.),2(0),x,(- S,[0,,.®)). (6.69)

The space of all 3-metrics and matter field contgons (hj (X)qﬂ(i)) on a 3-surface is called

superspace (this is the configuration space in tguancosmology). Superspace is the infinite
dimensional one with a finite number of coordinaiggx), (%)) at each poin& of the 3-surface.

One useful approximation is to truncate the inéirdegrees of freedom to a finite number, thereby
obtaining some particular minisuperspace modelallgsuone restricts the four-metric to be of the

form ds’ =-N?(t)dt* + hdXdx', where N(t) is the laps function. For such minisuperspaces,
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functional integrals (6.67) and (6.69) are redutedunctional integration over three-metrics,
matter configurations and to one usual integralrabe laps function. If one takes boundary

condition g“(t,)=q¢,q°(t,)=q" then integral in (6.67) and (6.69), in the gauge=0, is a
minisuperspace propagator. In this case it holds

(g = JaNg, oz, Nt 0], (6.70)

where
%, (g N|of 0)= | 29°x,(-sla]) ©.71)

is an ordinary quantum-mechanical propagator betweed q° in fixed time N . For quadratic
classical actionsg' (qz, N|ql,0), (6.71) becomes

1/2

62 cl 62 cl
S | X[~ (0 Nj@.0).  (6.72)

200,00 ) 00,00

‘%p(qz' N|ql’0)=/1p(_

If system hasn decoupled degrees of freedom, its p-adic kernelgsoduct

1/2

xl-silegn

q O)) (6.73)

n aZSCI \| azsd
Ko\ N .0)= [ 4| 573 p
p(qZ N|Oa ) D P( 20050 J‘aqgacﬂ”

b

p-Adic and adelic wave functions of the universeyina found by means of the following equation
U (t ap (X) = X(Eat)[/jaﬁ (X)' (673b)

where (//a/,(x) are adelic wave eigenfunctionE:(Ew,E2 ..... Ep,...) is the corresponding adelic
energy, a=(am,a2,...,ap,...) and ,8=(,8w,,82,...,,8 ) are indicies for energy levels and their
degeneration, respectively.

The corresponding adelic eigenstates have the form

“le)=u-le vl ol ). 7

A necessary condition to construct an adelic maseéxistence of the p-adic (vacuum) state
QQq"‘p), which satisfies

[ (a2 Njee o) = lag p) (6.75)

‘(h‘pﬂ

for all but a finite number op .

Now we describe the p-adic and adelic model winoalogical constant in D = 3 dimensions. This
model have the metric
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ds? = o2(- N2(t)dt? + a*(t)(d6? +sin? &dg?)), (6.76)

whereo =G. The corresponding -adic action is
s|a] zljl'dtNaz(t) K S (6.77)
29 N%a®> a’ B

where A = Ag?. The Euler-Lagrange equation of motion
d-N’ail= 0
has the solution

alt) = ZSinthﬁ ((a2 _ aie_Nﬁ)eNm N (aleNﬁ _ az)e-fmt), (6.78)

where the boundary conditions as$0) = a,, a(l) = a,. For the classical action it gives

o =1 o) 283  _ atra,
S/(%.N|ai,0)—m{N\/7 A(sinh(N\/ﬁ) tani{N\/ﬁ)H' (6.79)

Quantum-mechanical propagator has the form

N R
7@(32"\”31’0)—/%( WJW

The equation (6.75), in a more explicit form, reads

1/2

(-5 (a,,NJa, 0).  (6.80)

\

LSOV N 7 B B A
! 2sini{NvA SinhNﬁpo 2 2tan Nﬁaz
xal,,ﬂXp(Zta”'{Nﬂ)ai sinh(Nﬁ)aQaijdai- 6.81)

We note that the p-adic Gauss integral over thioneof integration|><lp <p’is

| Xylax® + px = |O‘V§2(|0‘“|ﬂ|p),|cr|p p><1; (6.81a)

X ,=p™

J Xola® + Bfix= /]p(a)|2a|;1/2)(p[_ i jg( W%

4a

],|a'|p p?>1; (6.81b)
p

X ,=p™

where Q(u) is defined as follows:
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Q(u):l, usl; Q(u):O, u>1.

Using (6.81b), forv=Qwe obtain

QQa2|p):)(p[—% +gtanr{N\/7)a§JQQa2|p) (6.82)

JA

2tanHN\/ﬂp

|/]|p <1 holds. Applying also the (6.81a) to (6.81), weédav

with condition >1, i.e. |N|p <1. For p# 2, left hand side is equal tQQa2|p) if

N O N N7 N Y O O ]
QQa2| )_)Ip( Zsinh(Nﬂ))‘sinh(Nﬁ)‘p p[ 2 Zcoth(N\/_)J {‘smh(Nx/_)‘ (6.83)

It becomes an equality if conditi(}N|p <1 take place.
Thence, we can rewrite the eq. (6.81) as follow:

\/j 1/2 ( N \/j 2]

N N, x
Qqa2|p)_/1p( W]pr 5 W%
an-ﬂX{Ztanl{N\/ﬁ)ai Sinh(Nﬂ)aZaijdal—
:Ap[ VA A ‘|1/2><)(P( N, Vg J [| VAa, |J 6.6

Zsmh(N\/_))‘smh( )‘ 2 Zcoth(N\/_) ‘smh(N\/_)‘

The de Sitter minisuperspace model in quantum cliggas the simplest, nontrivial and exactly
soluble model. This model is given by the Einstdilbert action with cosmological term (6.68)
without matter fields, and by Robertson-Walker meetr

ds? = o?(~ N3(t)dt? + a%(t)dQ?), (6.85)

where g? =§—G anda(t) is the scale factor. Instead of (6.85) we shadl us
7

ds? = 02(— I\(:Z(t(;)dtz + q(t)dggj . (6.86)

The corresponding -adic action for this one-dimensional minisupergpadel is

Sl =3 fon{

-Aq +1j (6.87)
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2

where A = . The classical equation of motioN(= ) 1¢ =24, with the boundary conditions

q0)=q, and q(T)=q,, (T =t,-t,) gives
q(t) = At? +(@ —ATjt +q,. (6.88)

After substitution (6.88) into (6.87) and integoatj one obtains that the classical action is

(0, Te0)= %~ [A(a +q2)—2]£—%. (6.89)

Since (6.89) is quadratic ig, and g,, quantum-mechanical propagator has the form

o= x5 ). 690

The equation (6.75) reads

A,(-8T) ( RTS T AqT ¢ o (AT_qzj
Q0q2|p) |4T|1/2 Xp( 24 2+ 4 +8T qu.[ﬂ)(p 8T+ 4 4T g [dg. 6.9)

WMathematical connections.

Now, we describe some possible mathematical commmsctWe take the eq. (1.26) 8ection 1
We note that can be related with the eqgs. (5.B1}),2) ofSection 5 hence we have the following
connections:

_ vV _e*
Ne = jd(ﬂv—w = C2 =
m;; 2 1 A _(=r)o 1 _a (1-7)n
m o p+l m mp = m an M
= 20 T = Odr[l:le (o}[e qﬂ} = J' dr[a e }[6 ¢}]+
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Thence, mathematical connections between the siiwlgrmula regarding the number of e-
foldings N, of inflation and the equations of the stress epéggsor for the p-adic scalar field in p-
adic inflation.

Now, we take the egs. (2.4), (2.6), (2.72b) an@d4Rof Section 2 We note that can be related with
the eq. (6.91) oBection § hence we obtain the following connections:

§= jdtdsx[—3M§L(az - Ka2)+%a2¢2} £S5, =

A, (-81) P I T o % (AT _g
p — —— 422 4 2 |x M- 2 dq, ; 7.2

S = jd“xﬁ(%‘f R—%(G,Aﬂ)zj + Sr;[g_]-'- S,;[g+]:>

L P — —_ 412 4 2 | i S A 2 q dq : 7.3
|4| |t/2 Xp( 24 2 4 8T qulep 8T ( 4 ] j (73)

a, _ nx4<(4o(x4) _%X‘% - 2X4<(40(X4)
= 21 ; E IZX4(A)JO(IZX4)+ BOYO(EX4))—4(AbJ1(Ex4)+ BOYl(Ex‘l))} =

Xy —

A (-8T) PT3 T 2T @ @ (AT q
P - —— 42 4 2 | 2 4+ — -2 g |da; (7.4
- at]? XP( 24 2 4 & qusl)(" 8T (4 4Tj0“ 4 (74)

A, _pnxé, ok
T = .[_yo ntl_,_dy— .[_1?3 2 dw=

A (-8T) T3 T AT | @ (AT q
P _ LA AT - BV 2 4+ — -2 g |da; (7.5
- jat? X"( 24 2 4 & quﬂ)(p 8T (4 4Tj0'1 i (r9)

Thence, mathematical connections between someieqsaoncerning cosmological perturbations
in a Big Crunch/Big Bang space-time and M-theorydeloof a Big Crunch/Big Bang transition
(2.4-2.6), some equations concerning the solutfanlwraneworld Big Crunch/Big Bang cosmology
(2.72b-2.74) and the equation concerning the derSminisuperspace model in p-adic quantum
cosmology (6.91).

Now, we take the egs. (5.11), (5.12), (5.29), (p&&d (5.46) ofSection 5 We note that can be

related with the egs. (3.30), (3.32), (3.34), (3.83.96) and (3.98) ofection 3 hence we obtain
the following mathematical connections:
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R e

2v

o oY by oy e
_ o+ mﬁ my Lt m; m
® ™ —p+1 j dr[ }[ ¢J+ 0 J'Odr[a e (0}[6 goﬂ +

_ _(a-7)o 4 _n 5 1 _ _(a-7)o
drilo e ™ploe ™ M e ™p-— e = [drile "ple ™ |+
mgpj ( 40]{ , 40}:29,{@ P~ 1” mﬁjo ( w}{ w]

o m
=279

2 2
n-10-2 M L2 dine_ o0 By, dlodd[ 4,
3l H,
=

1+ dlogk m
Fa |ve™ ]
k 2

anv
1 o may” T2 2D2 2
E[IOY D(Yl)e Y/Zde| = ~mav, (1_ j, (7.7)
8 gl¢ g®n: 4 2 _dline 4(1+y2)_4cy¢,
p

mfa’®ve mD,
2o _— = = :>—O.O3L:>
g 37 pn,-1 & d¥ c’MZ ¢ 1+

I 2 C
1s dog|5| xl/[ g |ve" 1=
dlogk m 2k 2

X1/[£Iog( m
m

2 2
:i[IYo D(Y.)emaY'IZdY.ji ~ 2D __ (1_ 2 j' (78)
2vL-o ma’’ve ™ mD,
- 4
we oV (p 1g|ns_]l:>g_d|ns (1+;;2) % _ 003 P _,
V oy ° Inp e dnv c*M 7 c 1+p0

C

14 dlog|5| ><1/[ mfa |ve" 1=

dlogk m 2k 2

2 2
:»i[jY"D(Y')em”Y"ZdY] = 2D (1— 2 j (7.9)
2vL-o ma’’ve ™ mD,

Thence, mathematical connections between some iegsiatoncerning the generating ekpyrotic
curvature perturbations before the Big Bang, some&agons concerning the colliding branes and
the origin of the hot Big Bang and some equationacerning the approximate inflationary
solutions rolling away from the unstable maximunpeddic string theory.

Now, we take the egs. (5.2), (5.11) and (5.12%@ttion 5and the egs. (6.28), (6.43) and (6.62), of
Section 6 We obtain the following mathematical connections:
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o 0
_ms 1 p+l _ms 1 m 1 a
S= d*x - + d = -
G [a —gm Tor et = A e e S =
P
u % (1-r2)u 1 a _%
_ P"’l My el b
= 2g? 9, & "9 p+1 jdr[ne ¢}[ ‘”}Lmﬁjod{a”e w}
rt] _(1-r)o 4 _ o _a (-7
fdf 0, "ploe ™ p|= g 2 et :dr le "ple ™ @+
mgp 29, p+1 m;

j dm [e mpw}{ H z(%j Jie. k2>2+€éXkZ(—k—22J§;(k)dk:£ =

2 +00
'sz( K ] k)dk= ACY n""¢f' =
n=1

2m

4

M

—C,L, +% -%go%wfm(go)dgo . (7.10)
o)

2m’?

Thence, mathematical connections between some iegsatconcerning the approximate
inflationary solutions rolling away from the unsi&abmaximum of p-adic string theory and some
equations concerning the zeta strings and therzetimcal scalar fields.

In conclusion, with regard th®ection 6we have the following mathematical connectionsveen
the egs. (6.84) and (6.91) and the eq. (3.87)@$#ction 3

\/7 \1/2 N \/7
25|nhN\/_ Jsmh(N\/_)‘ Xo| 2 2tanﬂN\/_ja2
]

A _
XP(Ztant{N\/_) sinh(N\/ﬁ)aZainai_
A

L a 2, g ol e, |
P ZsinﬂN\/ﬂ sinh‘N\/ﬂp Xl 72 2coth(Nx/_) ‘smh(Nx/_)‘

2 2
N i|:IYo D(Y.)emaY'IZdY.jI ~ 2D __ 1- 2 : (711)
2vLo ° mD,

m a ve
A,(-8T1) BT T AT @ ¢ (AT q
Q p - 2 2 _ 2
0%'") jaTf® X[ 24 2774 Tar quXP 8T+( 4 4Tj0“ da =
1 Yo 1\ AmaY'/2 |j|2 ~ 2D2 _ 2
:»—ZVUO D(Y")e™"2dY o (1 mDoj. (7.12)
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Thence, mathematical connections between the samatiens concerning the p-adic quantum
cosmology and the fundamental equation concerriageblliding branes and the origin of the hot
Big Bang.

A. Further hypothesis and new mathematical and physidaspects concerning the brane
collision

Now we describe another possible cyclic model miggrthe collision between two branes. We
have two branes: one positive and one negativihemegative Brane, composed by bosonic strings
that have negative charge and that can form mawdonaicro whirling dextrorse structures, the
waves converge long logarithmic aurea spirals,sparting also condensed sintropyc energy to
create new matter both in the micro one that imtlaero material cosmos.

In the positive Brane, composed by bosonic strithgs have positive charge and that can form
macro and micro whirling sinistrorse structure® taves diverge long logarithmic aurea spirals,
bringing away condensed entropyc energy and matandecay the already formed matter in
precedence both in the micro one that in the maaterial cosmos.

Thence, the first physical parameter to be conedles the wavy perturbatior(d)) that is
propagated with a determined velocity from the @esiBrane in the direction of that negative with
a determined undulated pressm). In the instant in which one has the interactiber¢ is the

presence of spherical progressive convergent wayasal of the negative Brana, and the presence
of divergent waves typical of the positive Brana.
We represent with a differential equation this carabon of convergent-divergent waves:

P 2 15
R AN
J: rad c & (A1)

from this, we obtain the following solution:

q):%f(r —ct)+%g(r +ct), (A2)

where (f) and(g) are the arbitrary functions and the first parthaf right hand side is the potential

of a spherical divergent wave, while the secondt pepresent the potential of a spherical
convergent wave.

The solution of the precedent equation contain eayent and divergent waves and if we denote
with (,0) the their density, we can compute the energy bydhowing formula:

1 1 XD
E= iEp(e’p)J-V (DAZCDdV + Ep(e’p)J-SCDEdS’ (A3)

where (V) and(S) are the volume and the surface of the sphericajrpssive Waves(;o(e’p)) is the

density of bosonic strings that have negative positive charge(n) assumes the values of the
Fibonacci’'s seriesi{= 1235813 ,).. We observe that the space composed of a masaridles
and radiations with very high density in a stateest have a potential energy equal to:

1 1
B =5 [ P0ndV +3 [ 00,08, (A%)
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where (p) and (o) are the densities spatial and superficial of thiegs and(g,,) is the value of

the potential in the element of volur{@V) and on the element of surfa(@s).
We note that (A3) and (A4) can be connected. Themeeobtain

1 1 1 1 D
B =5 [ pndV + > [o#,.ds = £ Ples) [, ®0,0dV + >Ples) | P-5-dS. (AS)

The formula (A3) is fundamental both because itficors us how much boundless energy can be
assembled in the Branes in question, both becaaslews us to understand how much the intrinsic
dynamics to the concentric and eccentric undulbaggdhviour are responsible of all the phenomena
of expansion and contraction observed.

A bundle of waves of frequencfy) and of wave numbe(N), transmits, through convergent

waves, an undulated pressurmz=—NE from the negative Brane to the expanding space
C

composed of a cold mass of quasi-particles andatiads with very high density (pratically, an
superstring expanding space). The transmitted etiergnpulse also depends from the absolute
temperature, from the concentration of the bosstrings with negative charge and from that of the
superstrings. We can put:

hy &= KTIog%, (A6)

Bs

where (e) is the absolute value of the electric charff®, is the Planck’s constanfT) is the
absolute temperaturdC,.) and (C,,) are the concentrations of bosonic strings withatieg

charge of negative Brane and those of the supegstof the superstring expanding space.
The convergent waves possess an angular momeirat magnetic moment both negative ones. It is
easy to show that their correlation is given byftiilwing formula:

J.=-el, (A7)

where (e) is the absolute value of the produced maximumgshdw) is the peripheral velocity of
the bosonic string with negative charde) is the variable radius of the dextrorse vortexdpaed
by the bosonic string with negative char(;ﬁm) Is the magnetic moment of the bosonic string.
Thence the eq. (A6) become

~PLC s _ 109 (aB)
N v Ces

Form this equation, we can obte(ir) so that the whirling dextrorse wavy perturbatisequal to:

L NVEKT IogCAs ()
p‘Jms CBS

cDWd = _g(l

With regard to the whirling sinistrorse wavy pebation, also being similar in the formal structure
to the whirling dextrorse wavy perturbation, ittdiguishes from this for the operational meaning
of the physical parameters, which conduct to a entignal application of the thermodynamics. It
is easy to show that for this wavy perturbationhage:
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where naturally the undulated pressure and the etegmoment are positive and the concentration
(CAi )is that of the bosonic strings with positive chaofi¢he positive Brane.

The wavy perturbation coming from the negative Brém absolute temperatu(@ <<<0°K ahd
undulated pressuré— p), where persist the vortexes that shape the bosbtnigs with negative
charge, it transits in the zone to temperatfe<<0°K , increasing undulated pressure and
velocity superior to that of the light: here theststrings are born and is created the expanding
space composed of a cold mass of quasi-particles radiations with very high density.
Subsequently, entering in the zone to tempera('lu'rs O°K), the waves proceed with the same

frequency, amplitude and velocity, in opposite gsrsalong the same direction, and we have the
formation of dextrorse vortexes in the creationtted particles and of sinistrorse vortexes in the
annihilation of the particles, with relative mainéace of the fundamental strings.

When the negative Brane allows the formation ofupesstring, at the same time we have the
annihilation of an analogous structure of condeneedmaterial energy, transiting from the
superstring expanding space to the positive Brgiedding a discontinuous cycle of creations and
annihilations that can verify in well precise timbst very outdistanced among them.

The potential energy of a superstring can be défii¢h the following formula:

U, =-a, Lo, [KT./r®, (All)

where (asf) and (a&) are the polarizations of the bosonic string widgative charge and of the

bosonic string with positive chargf,) is their distance in the instafdt) before the fusion(T.) is
the absolute critical temperature to which thednss verified.
Thence, if (/1) is the wavelength that is established among thdulated system of negative

condensed energy, defined bosonic string with megatharge and that undulated of positive
condensed energy, defined bosonic string with pasaharge, it always has to result> A .

These two Branes, although are subject to the [a%natual orbit”, behave as two coil-springs of
opposite helicity, that are in contraction and kpansion. The energy contained in these two
Branes is very superior to that inherent in theessiping expanding space that result from them,
even if to draw energy from one Brane implicateb¢oable to always do it indirectly from the
others two. Thence, if we denote with..) the centripetal moment of inertia of the negaBvane

and with (JCP) the centrifugal moment of inertia of the positBeane, with {T,, << or equal to
O°K ) the mean temperature absolute that is establishezhg the two Branes, wit(P) their
polarization, withv.. and (V) their natural frequency, with the Planck’s constant and wifR)
their distance, we can set the energy among theeBraqual to:

1 |Jce C0¢

Ug = iﬁ T +Jee Wep [P+ h(VCE + VCP)P2 . (A12)

Now we see how much the energy of the fundamefrialgs is more assembled in comparison to
that of the two Branes. The proper energy of a émmehtal string is equal to

E.=- jv pe?dV, (A13)
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where (p) is the density of condensed enerdy) is the volume,(c) is the velocity of the light,
that, in this case, is endogenous-peripherical, ('cec a)DT) for (r :aebg) and this is equal to

(c >>> 3EL05Km/se<3. Such system is represented by a typical whirtiyggamics in which the

waves are convergent. In the passage from the foewkal strings to the particles of matter, real
variations of density of energy and endogenouscitgi@f the light are verified, for which angular
velocities are underlined and variables radii ef diversified vortices.

Thence for any fundamental string, endogenous gneitbbe

_ 2T _
E. = 'LWdV' (A14) forn=1,2,3, ...
HereT is the absolute temperature of the fundamentalgstlf we consider a vectdlaz P,Q, R)
around to the surfacés) and the flow of such vector through any polariaed directed surface
(S,), a relationship establishes between the vectairofilation (a) and the flow of this vector

through a surfacés):

cosa cosf cos
LdeQddep Ld/d( o1y Jl&dS= js (nrot a)dS; (Al5)
P Q R

where the cosines are the directions of the notmahe surface(S) when and only when such
surface is “synchronized”, polarized and directéthithe surfaces,).

Thence, it is evident that a fundamental stringstitutes a system to itself and acts from “catélyst
in the interactions and in the exchanges of enbagyween the superstring expanding space and the
matter. We can formally express this mechanismcatdlysis” between a fundamental string, the
superstring expanding space and the matter, igergifoefore the energy of activation of any
fundamental string:

E =qJ.cosa/S[t*; (Al6)

where (a) is the angle of orientation of the fundamentaingtin comparison to the superstring
expanding spaceﬁr) is the variable radius of the trajectory ork(irq;) is the value of the electric
charge;(J,) is the angular momen{S) is the polarization. If we denote wiffr..) and (st) the
frequency of the superstring expanding space antheffundamental string and Wit(T) the
absolute temperature, we can set:

v, =v e, (A17)
This formula is explanatory in the phenomena oatom and annihilation of the subject. We now
consider the equation of a wave that is propagetale superstring expanding space and among

his same components (the fermionic strings) ohenfundamental strings:

Oa+ (ZTHJa =0, (Al1l8)
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where (a) is the amplitude and/) is the wavelength. Thence, for a wave that rotaiits an
angular velocity(a)), having a motion of translation, describing a lahanic spiral of variable
radius(r), it is possible to compute the value of the tetargy(E,, ); we also have to consider the
potential energy of the superstring expanding s;ﬁEgsé, thence we obtain:

hakry

81, (Oa)+aE =aE,, (Al9)

where (1) is the constant's Planck(v,) is the frequency of the fermionic string and

2 2 2

(D :iz +i2 +i2j is the Laplace’s operator. We note that this @gnaan be also wide to the
X o

two Branes, adopting the opportune physical pararsgtand it is fundamental in the formal
description of all the physical phenomena of exgeaof the micro and of the macro-universe in
general.
In conclusion, we can consider the fundamentahgsriand the two complementary Branes as
condenser-catalysts of energy.
We note that if to the fermionic strings we asstacahelical motion dextrorse and a helical motion
sinistrorse (with the helix of radius = +ae”, therefore that of a logarithmic spiral) we geittthe
polarization of the superstring expanding spacegisal to the difference among the potential of a
fixed charge (q) of a fermionic string and the @wmaobian potential:

2

_ q _ € h
¢SN_i4]Bnr[1 anlnmfscrj, (A20)

where (e) is the value of the electric charg{enfs) is the rest mass of the fermionic strifg) is the
velocity of the light, (Sn)is the polarization for unity of volume of the fdomic strings that

composes the superstring expanding sp(iijeis the constant’s Planck. This relationship allawss
to understand how much colossal energy can beicedtan the superstring expanding space.

Now, we note that the number 8, and thence the euvi® =8> and 32=2°x § are connected
with the “modes” that correspond to the physicdiraiions of a superstring by the following
Ramanujan function:

© COSTEXW

e™vdx | s
antilog ~COSIVK Dtgj\'/z
1 e * g, itw)

=3 . (A21)
Iog[ \/(102111\/5] . \/[10+47x/iﬂ

Furthermore, with regard the number 24 (12 = 24 A2d 32 = 24 + 8) they are related to the
physical vibrations of the bosonic strings by tbkofving Ramanujan function:
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L t2wW
e ¢ g (itw)

AP

Palumbo (2001) ha proposed a simple model of thé kbind of the evolution of the Universe.
Palumbo and Nardelli (2005) have compared this medt the theory of the strings, and
translated it in terms of the latter obtaining:

antilog

jd%x\/_[ ﬁ—gg”"g”"Tr(GwGpa)f(w)—%g”vay@v‘/’}:

21
_JC:Z/(2

10

[d*x(-G)"*e 2"’{R+46 PP - —‘H‘ l°T 0 2|2)}, (A23)

10

A general relationship that links bosonic and femm strings acting in all natural systems.
It is well-known that the series of Fibonacci’'s ruers exhibits a fractal character, where the forms

repeat their similarity starting from the reductitactor 1/¢ = 0,618033 —\/32_1 (Peitgen et al.
1986). Such a factor appears also in the famogsafrRamanujan identity (Hardy 1927):
06180331/ p=Y2 "1 = Rig) + */g (A24)
2 3+f q f°(-t) dt
\/_ f( t1/5 t4/5
and = 2(13—i R(q) + \/E , (A25)
20 3+4/5 q £5(-t) dt
1+ ex j 15y 4 4/5
2 J5 % f(-t¥5)
where ®= \/g;l.

Furthermore, we remember thatarises also from the following identity:

(2+5)3+13) 24 104112 ) [[10+742
= \/130| g[ /2 } (A25a) and n—ﬁl g [ 4 J+ ( 2 J .
(A25b)

The introduction of (A24) and (A25) in (A23) prowisk
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-Jd*xg| o< L —%g”"g””Tr(G G, )f(9)+

uv > po

_3 V5
20- . R(q)+1+3+\/§ if S(-t) dt
2 \/— mtws
_3 J5
20 R(q)+1+3+£ex i ey )|
2 \/g o f(_t1/5) t4/5

jleX(—G)llze_ZQ [R+40ﬂq36”¢—%‘|:|3‘2 B K121

1, =R
_Egﬂ aﬂwvw]_jok_ﬁmq)

Tr

_3 ﬁ )
2000 RO 3+J— Iq f5(-t) dt 2R
\/_ f( t1/5) t4/5

(F1) 1, (A26)

which is the translation of (A23) in the terms bktTheory of the Numbers, specifically the

possible connection between the Ramanujan ideaitithe relationship concerning the Palumbo-
Nardelli model.

Now we take the eqgs. (A3) and (A5). We note tha possible the following fundamental
mathematical connections:

L1 1 o
E=42 Py [ ®0,0dV + > Ples) chgds =

R 1 1 (4%
-[d*x/g BTk 59”9 Tr(G,.G,0 ) () +

_3 V5
20 20 R(q)+1+3+£ex ir fo5(-t) dt
2 J5 % f(-t75) 4
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1, -~ R 3 J5
--g*0 =| —R2P-—| R(q)+ 0
29 p@./(ﬂ] jo K2 20 (a) 1+ 3+4/5 a f2(-t) dt
2 ex \/—.[0 f(- t1/5 t4/5

2
Kll

Tr

oo el v

20— | R(q) + V5 R

2
20 1+3+J§ 1 (a f5(-t) dt o
2 ex \/—_L f(= t1/5) t4/5

(Ff)]. @2n)

1 1 XD
E= izp(e‘ p).[v CDAZCDdV + Ep(e' p)ISCDE dS=

© COSTEXW oW iy
o coshrx /142
—Iﬁw' W
e ¢ g(itw)

|Og{ J(lo+ilﬁJ+ \/[10+47 fzﬂ . (A28)

1 1 1 1 o
B =5 [ 00V +2 [ 08,08 = £, [, @8,00V £ g, [ 0 dS=

.[d%x\/_{

j jdm G)" ’ZQ’[R+46 POHP - —‘H "~ 1°Tr (F" )} (A29)

0

4 antilog

L9%9"7t(6,,G,, )t (¢)-=

2

wy =
167G 8 J ”wvw}

With regard the de Sitter minisuperspace model-adic quantum cosmology (eq. 6.91), we have
the following mathematical connections with the @®):

== p¢deV+ J¢deS =+= pe CDAdDdV_— Ple, <D dS=
p) p)

/‘p(‘gT) _/12T3_T quT 5 Of (/]T_%
- jat|* "( 24 2 4 &) J Xolgr "\ 4 "t

j%}d%- (A30)

\ql\psl

Thence, mathematical connections with the Palumaélli model, the Ramanujan modular
equations, the Fibonacci’'s numbers, the Aurea ,rdtie p-adic quantum cosmology and the
Marciano’s Model.
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