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Abstract

According to quantum mechanics, the propertiesnoatam can be calculated easily if we known
the eigenfunctions and eigenvalues of quantum sstatewhich the atom can be found. The
eigenfunctions depend, in general, by the coordmaif all the electrons. However, a diagram
effective and enough in many cases, we can getidensy the individual eigenfunctions for
individual electrons, imagining that each of thesnisolated in an appropriate potential field that
represent the action of the nucleus and of otlemt@ns. From these individual eigenfunctions we
can to obtain the eigenfunction of the quantumestdtthe atom, forming the antisymmetrical
products of eigenfunctions of the individual quantwstates involved in the configuration
considered. The problem, with this diagram, isdhlkeulation of the eigenfunctions and eigenvalues
of individual electrons of each atomic species.sbtve this problem we must find solutions to the
Schroedinger’'s equation where explicitly therehes potential acting on the electron in question,
due to the action of the nucleus and of all theo#lectrons of the atom. To research of poteittial
is possible proceed with varying degrees of appnation: a first degree is obtained by the
statistical method of Thomas-Fermi in which elestrcare considered as a degenerate gas in
balance as a result of nuclear attraction. Thisotehas the advantage of a great simplicity as that
through a single function numerically calculatecc®rand for all, it is possible to represent the
behaviour of all atoms. In this worlSdctions 1 and2) we give the preference to the statistical
method, because in any case it provides the basismmbre approximate numerical calculations.
Furthermore, we describe the mathematical connecttbat we have obtained between certain
solutions concerning the calculation of any eiganfions of atoms with this method, the Aurea
ratio, the Fibonacci’'s numbers, the Ramanujan nmavdeduations, the modes corresponding to the
physical vibrations of strings, the p-adic and Addélee relativistic particle and p-adic and adelic
strings Sections 3 and4).



1. Calculation of potential. [1]

The considerations that we can do in this paragrafar to more general case of an atomic number
Z, ionized z times. To establish the differential equation ttatermines the potential with the
distance from the nucleus, it shall by the relatioat connects the density of electronic gas with a
potential if the electrons can be treated as a tetelp degenerate gas. This relation is

9/2 3/2,.3/2
292 %

V+a)’* for V+a>0; n=0 for V+a<0 (1)
3n’®

a is an additive constant that can be determinedh wie condition that the total number of
electrons is that given and that is

Indr=Z—z

where the integral should be extended to the whedgon of the space whenez . @ must be
borne in mind that the potential on a electron doascoincide exactly with the potential that we
have in a geometric point that is at an equal degarom the nucleus. In fact, the first potential
represents the action of the nucleus and@ efz -1 electrons, while the second is the action of the
nucleus and of all theZ —z electrons. We will denote wit¥ and V ' the two potentials now
defined. We will have:

=ZTe+u, V'=ZTe+U'

whereU and U 'represents respectively the actions of hez-1 and Z -2z electrons. We
consider therefore, in first approximatiod, and U 'respectively proportional t& -z-1 and
Z -z, thence we will write

Z-2
Z-z2-1

V' is the potential due to the nucleus and all tleetedns: therefore for it we have the Poisson’s
equation
AV'=AU'=4me

and we obtain
1

-2

AV =AU :EAUE@—
-2

j4me.

Taking account of the (1) and the fact tlmais constant and by placing
v=V +a

we obtain

v¥% for v>0; Av=0 for v<O.

3/2 3/2,.5/2
Av=[1— 1 jZl nzrr; e
Z-12 3h

Becausev for reasons of symmetry depends only frogrthe previous equation becomes
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2 3/2 3/2,5/2 2
d_‘2’+3ﬂ:(1_ 1 jzl ﬂznl € V¥ for v> 0; d—\2/+gﬂ=0 for v< 0.
dr2 rdr Z-z2 3h dr® rdr

The constants of integration can be determined thighconditions

Ii[rgvr=Ze j4ﬂ2ndr=Z—z
- 0

where r, is the distance for whiclv is null, the distance to which is to end the etsut cloud
surrounding the nucleus. To simplify the previogaations, we put

r= X
where

(2)

y= 3?°h? (z-2" _(9 Tz
D13/3 A3 a2 Z1/3(Z —7- 1)2/3 128 Z1/3(Z -7 _1)2/3

being a the radius of the first orbit of the hydrogen,

v=€Z #x)
M

— - 3

X

We note that 31/2—72728 = 0885341377 and for(®)"’, we have that

,\/E + 1J—1,67/7

088500,8917= (®) "7 :( a

We have also that:
()™ =0,013155617510,013156 (d)**'" = 0,034441853710,034442;
(®)"'" = 0,618033988710,618034
0,013156 + 0,034442 + 0,618034668632; 2(0,665632) =0,887509.

()" =0,090169943710,090170; (®)?"'" =0,236067977510,236068 (®)° =1.
0,090170 + 0,236068 + 1 = 1,32623%(1326238:0,884159.

It's interesting the observation that these vale@scide almost to those given, i.e. 0,885341, and
that the index 63, 49, 35 and 21 are all multijpie3.

We note thatwith regard the formula (®)"’, @ represent the Aurea Ratio, n areal number
(positive or negative) and 7 arethe compactified dimensions of M-theory.

Thence, we obtain for the functig#(x) the differential equation



S
1

(4)

with the boundary conditions

#(0)=1 f¢3’2 E{&dle—%l (5)

where X, =fo and ¢(xo)= 0. The last integral can be made taking into accotiten(4) and we
U

found that it is equivalent to
z+1

— %' (%) =~ (6)

One finds that in widely sufficient approximatiaor the practical cases we can set

_z+1x—x0

for x<x,. (7
> or x<x,. (7)

$=¢,—kn for x>x; ¢=

Here k is a constant the value of which depends(zml)/Z in order to meet the (6). An empirical
expression that represerkswith sufficient accuracy within the interval ofluas that interested, is

the following
3
k= 0.08’.{27“) . (8

n/7
We note that fo{\@;lj = ()" =(0)**'" =0,0841700,083. Thence, from the eq. (8), we

obtain

= (o)1)

Z
We have also that

(0)°" =0,021286236310,021286 (d)™*'" = 0145898033810,145898

0,021286 + 0,145898 = 0,167184%(0,167181) =0,083592.

(@)™ =0,021286236310,021286 (®)™*'" =0,090169943710,090170.

0,021286 + 0,090170 = 0,111456%(0,111456 =0,083592.

We note that these valuesincide almost to those given, i.e. 0,083.

The potentialv given by (3) isn’t null to infinity: it is therefe appropriate to add it a constant so
as to aim to zero for — oo It is recognised immediately that this constaad the value



EZ+1
U %

We will take therefore in the final analysis asexipression of the potential the following

\Y; :E[Eﬂx) +Z_+1} . (9)
X X

2. Thereativistic equations of quantum mechanics. [1]

Established the potential of the strength field in which the electron in question moves, we consider
the relativistic equations of quantum mechanics. Thence, in this section we describe various
eguations concer ning the free relativistic electron.

We consider the terms(l = O) it is possible write these equations in the folloyvform

+2mch+d—G=o J2WoV o, P L2200
dr h C d r

2_77(W -eV
h C

where F and G are the eigenfunction$y the energy an¥ the potential. The eigenfunctions
and G are connected to the four Dirac’s functions fréma telations

%, = —IF cosg @, =-iF sine™
:_. . ¢ =.
Y, =-iFsin&e W, =iF cosd (11)
(,[/3 =G [//3 =0
41/4 =0 l//4 =G.
Putting in the eq. (10) the eq. (9) to the place/ofand
e2
=-—¢
2a
one obtain
2H_AF gz ?e L Fie=0; |9 e-az| 2+ L |lG+E+2F=0. (12)
aa 2a X ZX, 2a X ZX, X

. : T . .
In these equations we have introduced the varialse— : a is the Fine Structure Constant that
J7,

has the numerical valug137.3.

5/7 J5+1

We note that multiplying the frequency 306,3422a# (tb)*'’ =1,410187582(where ® = T)'

we obtain the frequency 432. Dividing this frequeifar 7 , we obtainl37.5 that is a value very
near to the inverse dfine Structure Constant. Furthermore, dividing 432 fo® and ®?, we



obtain the numbers 267 and 165. The sum of thes®ers, provide again 432. We note also that
the numbers 267 and 165 are given by sums of Fdodeanumbers. Indeed, we have

267 =233+34 and 165= 144 (233 =89 + 144; 144 =55+ 89),

where 21, 34, 55, 89, 144 and 233 are Fibonanaorsbers.
Furthermore, we can to obtain the inverse valuéiné Structure Constant also from the Aura ratio.
Indeed, we have:

(@) =11,0001699437 (0" =4,2360679775 ()" =16180339887

11,090170 + 4,236068 + 1,618034 = 162924

2(16,944273 =25416408 2(16944277=33888544 3(169442723=50832816;

1,6180339885(16,944279 = 27,416408
25,416408 + 33,888544 + 50,832816 + B5408 =137,554176.

We note also that dividing 432 for this value, vikain a value very near to. Indeed, we have:

432/137,554176= 314058077 n

Given that the functior¢o(x), through which we express the statistical potérisaepresented with
sufficient accuracy to the practical purposes,Xar 0.3, by the following empirical expression

¢o(x) =1- px+ qX2 =1-1.304x +1.288%?, (13)

We can try to meet the equations (12) within therwal x= 0 x= 0.3 by developments in power
series of x. For x> 0.3 we will try instead the solutions of equations )(1th the Wentzel-
Brillouin’s method. This method is used for the extoon of calculations in series because it
replaces to a irregular function, two functiongejular development: the amplitude and the phase;
the interpolations must run on the latter. Now pprapriate to modify a little about the form in
which have been written the equations (12). Putting

F=ZaR

where R is the new function unknown, thence we have

{ZLZ_U_Z”_Zg+a222(£+iH$+G':O; {Ls—(£+iﬂG+jz'+gﬁz=0 (14)
a 2 a X X 28z X 2% X

from these, remembering the (13), one obtain

L G e 1—p+i+qx R+G'=0;
20 207 | x ZX,



{ﬁﬁ_(l_ p+i+qxﬂG+fR'+ng:0- (15)
2aZ | x Zx, X

If we put, for simplicity

T e p—i +/J_£
Zx, 2aZ
we obtain
32'+§32 —G -T+ qij =0; G'{Z%Z + azzz(é -T+ qXJ}ﬁi =0. (16)

In these equation& and R are equal at infinity in the initial point. To elinate this singularity we
put:

G=x"u, R= a;BZZ xPv. (17)

By introducing these expressions in the eqs. (@) lay accepting thatt and v are regular for
x =0, we obtain for an equation of second degree :

B(2-pB)=a?z?.
Of the two possible values @ is easily seen that one only meets to our purpesause it must be

less than 3/2, so th&?, that in the initial point is behaving as*, can be integrable fox= .0
From this we have that:

,32_2,3'*'0'222: Q ﬁlzz

—bi\/zbz—4ac _ 21\/4;40222 —1+1-a?72:
a

and we take the following value:  f=1-+1-a°Z?. (18)

We obtain in the final analysis the differentialuatjons concerning the two new functions
unknownu andv

—A—v+u—Txu+qx2u =0; -—fu+xu+pv+Lxv+ Boxv=0. (19)

In these equations, we have put for simplicity

_2u
L= -T43.
a(2-p) p

Now we put

u=1+ux+ux’+...
{ 1 2 (20)

V=1+VX+V,X +...



and introduce these developments in series in guat®ns (19). We obtain in this way of the
recurrent formulas that allow the numeric calcolatof the coefficients

=228 fry _qu ]+ 2TBEN Ly g T
" 2=23+1) [Tu, —au,-] + 25 n)[ LV, , - BV, ]
_@-Bln=B), C2-B .,
Vo = n(2— 28+ n) [Tun_l qun_z] + n(2— 25+ n)[ Lv,_, ,qun_z] . (21)

We shall now proceed to the calculation of the s of equations (10) fox> 0.3f we put for
simplicity

M uZ(¢_ 1
g= a2£+ . (x Zxoj (22)

the egs. (14) thence, can be write

m-+3q—ige=o (23a) G+R £+£azg =0. (23b)
X U7 a 2u

If we only consider terms up t@® included, we will get from the (23b)
2.2
=-_2 g1-29 4.
2UZ 4u
If we insert this expression in the eq. (23a), Wweam

2.2 2,2
9G +(G"+§G'j(l— aa gj -89 gg=o0.

4P 4u
If we put
xG=U
so that
G':U_—H; U"= )((G"+EG'j
X X X

we obtain

2.2 2,2

gu +U "(1— g gj -2a g'(U '—Ej =0.
4 4 X

If we only consider terms up t@® included, we will get from the precedent equation
U'+gU = yz{g'U '—%U - gZU} (25)

where



a’a’
y2 = e @

Now we are seeking the solution of the equatior) @& the method Wentzel-Brillouin. Since for
the functionseos the functionU have a trend oscillating for all the valuesxf we put

eiJ'de

U= (27)
where Z is the new unknown function. The part real andgmary of U both are solutions of the
equation. From the eq. (25) we obtain, by the 2¢) the following equation

iZ'-Z%+9g= yz{igZ —%+ gz}. (28)

In this equation the right hand side represent réflativistic correction. It can be solved by
successive approximations: running the calculatiomd the fourth approximation, and taking for
U the real expression:

U =KI[Rsin® (29)

we obtain

12 y2
s T 59
9 2 (30

g
+ —
16g°

R(x) =

1
64
0]

o(x)=0(03)+ jfdx—32j 95,2dx—1 %,2 [jgdx jg3’2dxﬂ . @)

03

We observe thak and ©(03) are constants that must be determined so thatfo0.3, the

function U(x) and its derivative is connect with continuity teetfunction u(x)x*” determined
with the development in series valid fax  ORom the eq. (29), we obtain

Ksin@=£; Kcos@zi U'—UOIIOgR . (32)
R RO’ dx

dlogR
adx
values thus obtained shall be introduced in theipus equations. In the case of eigenfunctions

oS, being zero the eigenvalue, we can write the égusi(30) and (31) with sufficient accuracy in
the form

= ) {1+1F(1j NN R ]ﬁ\z} )
&, A| 16| ¢, 64 xg, 64 @ 32¢>0 2 x

Through the equations (30) and (31), can be cakdl®', R and for x=03 and the




©(x)=0(03)+ Allz{js( j 6?3(X¢,Z)1/2 dx + 2le0 l’[éj dx}+

_1/2 1 XX1/2 1/2¢0 1 X
- A {32 .[ 5/2 6[ NIE _2_[ 172 3/2 :l ( 3/2 (X¢0)1/2j0’3}+
I S

0 03

In these expressions the const@ntlepends on the atomic number and has the followahge

A=27H
a

Note that the number 8, and thence the numbdrs8® and 32=2°x 8contents in the equations
(30), (31), (33) and (34), are connected with thimdes” that correspond to the physical vibrations
of a superstring by the following Ramanujan funatio

® COSTOW __ vy g
antilog™ coshm 1\;4\/,2
e_T itw
g=1 (i) . (34a)

ol

Furthermore, we note that is possible connect ¢h€3#) also with the Palumbo-Nardelli model. In
this model, we have the following general relatlopsthat links the supersymmetric string action
with the bosonic string action:

Tzkmjd“’ x(-G)"’e ‘ZQ’{R+46 o4 - —‘H - l°Tr 0F| )}

R 1 vo- Vv
=-Id26xx/§[-%-§g””g Tr(G,,VGpg)f(co)—Eg” aﬂwvw] (34b)

Thence, we obtain the following interesting mathtéca&connection with(x):
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172
X X 1 L X
©(x)=(03)+ A2 ( j o+ E_j (i
( ) {oj's '[ X¢o 1/2 ZZXOJ; %o
i 11 X1/2 1/2¢ 1 "
_pU2 -2 :
{32 _[ 5/2 6[ 172,32 _[ 12 g,/z dx:l 8( 03/2 (X¢0)1/2j0’3}+

ol i

G)'’e 2‘{R+46 ®o“ D - —\H\ l°T 0F| )}

=

—-I dzex\/_ [ o6 gg""g“”Tr(G,,vag)f(40)-59””6#@”40] (34c)

The eqgs. (33) and (34) are apply naturally onlyluntertain distance from the limit of the atom,
precisely until7 is small compared witlg,; approaching the limit of the atom we must caltila

the eigenfunctionsos element by element through the equations (30)(ahyl Always in the case
of eigenfunctionsos, because in the proximity of the origin we cantaiaty neglect the function
n, itis possible to put fox< 03

N
=A—.
J X

Taking account of this simplification, the definii formulas for the calculation oR, ©' and
dlogR
X

for x = 0.3 are the following:

R= 0'804{1+ O.JA9O+ 120y2A}

A
0588 )2
O'= 155/A - +2_(373A%2 - 260AY2 35
JA 2 ( ) (35)
dlogR 0.519

=1.063—————-511y°A
dx A 4

In the following tables, we will give the numericahlues of some expressions concerning the
calculation of the function®R (eq. 33) and® (eq. 34), expressions that are valid only until a
certain distance from the limit of the atom. We e the mathematical connections between

these numerical values and some powers of the ARméia, i.e. with(d)"'".

11



0.4
0.5
0.6
0.7
0.8
1.0
1.2
2.0
5.0
20

24

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0

0.141
0.260
0.363
0.454
0.563
0.678
0.799
1.150
1.771
2.447
2.504

2.40

1.65

1.21

0.937
0.744
0.606
0.503
0.425
0.312
0.238
0.186
0.149
0.122

((D)n/7

o )**"'" = 23887
®)**" =1.6555
®)*""" =1.20119
o) =0.93356
7= 0.74238

G

(
(
(
(
(
(
(
(
(
(
(
(
(

)

)

)y

)y
@) " = 0.60403
)" =0.50285
) ¥ =0.42833
)" =0.31078
)" =0.23606
CD) 2433/7 — 0 1877
@) =0.14927
CD) 3067/7

(q))n/7

() ?°**'" = 0.14259
(@) """ = 0.2587
(CD) -146717 — 03648
()™ = 0.4588
()" =0.5639
(@) =0.6773
(®) " =0.7952
(®)?" =1.14738
(0)**" =1.77335
(0)*" = 24441
(0)**" = 2500758



0.5
0.6
0.7
0.8
0.9
1.2
3.0
3.5
4.0
4.5
6.0
7.0

10
12
14
16
18
20
22
24
26
28
30
32
34

0.156
0.253
0.362
0.484
0.619
1.098
6.551
8.937
11.749
15.023
27.728
38.919

(q))n/7

(q))n/7

&) = 015628
®)*" = 0.25286
@) = 03648
®)"**""" = 0.48033
o) =0.618033987

)
)
)
)
)
)=¥'" =1.09599
)
)
)
)
)
)

©

37 = 6,547069
CD 3167/7 - 8819
®)f*" =11.879
)" =15.639
®)*®7 =27.105

» )7 =3822389

Sl

(
(
(
(
(
(
(
(
(
(
(
(
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X dex—j > gy (o)
X X

3/2 41/2 5/2
03 0 03
0.4 1.552 (0)**'" =1.5455
0.5 2.377 (0)**"'" = 2.388
0.6 2.863 (®)**'" = 2.8693
0.7 3.195 (0)"" =3.2176
0.8 3.412 (o) =3.4466
1.0 3.701 (0)*'" =36919
1.2 3.872 (®)**"'" = 3.8650
1.6 4.056 (©)**'" = 40463
2.0 4.152 (@) = 41401
12-18 4.331 (q>)2133’7 = 4.3342
20-34 4.332 “
X 3/2
X %) o ()"
X
03
0.4 0.282 (®)***" =0.28356
0.5 0.452 (0™ = 0.4484
0.6 0.562 ()" =0.56390
0.8 0.693 () °*'" =0.69306
1.2 0.811 (0)*" =0.8136
1.8 0.872 (®)?" = 087154
3.5 0.911 (cb) BT =0.9124
4.0 0.913 “
4.5 0.915 “ “
5.0 0.916 “ “

In this chapter, we have utilized the following atddns:

a= Bohr’s radius =528x107°cm.

M =measure unit of length (see eq.(2)).

x =radius vector in unif .

X, =radius of the atom.

k = constant for the calculation of the potential (Esand (8)).

The two relativistic eigenfunctions F and G (eg3)@nd (11)), forx< 0.3are given by:
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G=x"’|u+ux+uy+..|; F =£Zx"”’[v0 + VX + VX +]
a.

For x> 0.3 we have that:
G=U/x; U =KRsinO.

For x> x, we have that:

U = BY/xsin[Cv/x + D).
In the non-relativistic area G coincides with tleh®edinger’'s eigenfunctiog .
3. On some equations concer ning the p-Adic and Adelic Quantum Mechanics and thefree
relativistic particle. [2] [3]

According to the Weyl quantization, any functicﬁlﬁk,x), of classical canonical variablésand x,

which has the Fourier transforrﬁ(a,ﬂ) becomes a self-adjoint operatorLlp(RD) in the following
way:

flk.%)= [ x.(-ax- &|f (@, B)d°ad®B.  (36)

Evolution of the element®(x,t) of L,(R°) is usually given by the Schrodinger equation

ih%w(x,t)=H(|2,x)w(x,t), 37)
where H is a Hamiltonian and 121 = —iha%. Besides this differential equation there is dls®
j

following integral form:
wlx )= [ 30 (et (e t)dox, (38)

where %, (x",t";x',t') is the kernel of the unitary representation ofekelution operatot ,(t",t')
and is postulated by Feynman to be a path integral

e =[x (- Sla)oa, 39)

where functional S[q]:J';"L(q,q,t)dt is the action for a path(t) in the classical Lagrangian
L(g.q.t), and x"=q(t"), x=q(t') are the end points with the notation = (x,,X,,...,x,) and

A= (0 G- )-
According to the Weyl approach to quantization, azacal non-commutativity in p-adic case

should be introduced by operatdis=1)

Q. (¥)=x,(-axh, (%), K, (Bh,(x)=w,(x+B) (40)
which satisfy

15



Q,(@)K,(8)=x,(@B)K,(B)Q,(@). (41)

where x,(u) =expl27i{u},) is additive character on the field of p-adic nemsQ, and{u}, is the
fractional part ofulQ,. Let X and k be some operators of position and momentumk,
respectively. Let us define operatq'§(a§<) and )(V(,Blz) by formulas

xR, (8%) = x, (@xr, (@), x, (8K x (oK) = x, (B)x, (oK), (42)

where indexv denotes rea(v= oo) and any p-adic case, i.e=»2,...,p taking into account all
non-trivial and inequivalent valuations @. It is evident that these operators also act fametion
&, (x), which has the Fourier transforgi{k), in the following way:

x.(=axh,(x) = x,(- j)(v lo)p(k)d %k = x, (- axly, (x),  (43)
Xl B9 = [ (- An (@) k =g, (x+ 5),  (44)

Comparing (40) with (43) and (44) we conclude t@(a):)(p(— a§<) Rp(ﬁ)=)(p(— ,Glz) Thus
we have the following group relations concerning phadic cases:

( a)Aﬂ) v( ,lezj):)(v(aiﬂjo_ij))(v(_ﬂjlzj) v(_ai)zi)’ (45)
Xagx-a%)=xl-a % x(-aR), (46)
x(- 8k e[ ﬁ,k,) xl- Bk Bk). (47)

One can introduce the unitary operator
wifok 5)= x| 35 - Af-a). e
which satisfies the Weyl relation
wifok, . )= x5 0 )il + a5+ £K) - (a9)

and is unitary representation of the Heisenberg{\Wegup. Recall that this group consists of the
elements(z,;7) with the group product

(zn)dz.n)= [z +Z+ /7'+% B(z, Z')j . (50)

where z= (a',,B)DQv xQ, and B(z, z') =af'-fa’ is a skew-symmetric bilinear form on the phase

space. Using operathv(af(,ﬁlz) one can generalize Weyl formula for quantizati@6)(and it
reads

f, k. x)= [w,lax, &7, (@, B)d°ad®.  (51)
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It is worth noting that equation (44) suggestsitooduce

(880,09 = [{8dnx, (- 1047, () (52)

which may be regarded as a new kind of the p-askugodifferential operator. Also equation (45)
suggests a p-adic analogue of the Heisenberg algelte form(h =1)

- ~ ~ N [
s} ok}, -{ok ] fas), = -alan),. ©9)
As a basic instrument to treat dynamics of a p-agiantum model is natural to take the kernel

¥, (x",t";x't') of the evolution operatdd ,(t",t'). This kernel obtains by generalization of its real
analogue starting from (38) and (39), i.e.

= jﬂg(x",t"; Xt (x,t)d°x,  (54)

and

(xt") "l
g, )= [ xv[— [ L(q,q,t)dt]ﬂq. (55)
The p-adic quantum mechanics is given by a triple
(LQ, )W, (20U, ). (5e)

WhereWp(z) corresponds to o, (a§< ,Glz)
Starting from (54) one can easily derive the follogvthree general properties:

IJ{V(X",t";x,t)J{V(x,t;x',t')dx:J{V(x",t";x',t'), (57)
JR(e O = afcy),  (68)
J{V(x",t”;x',t")=tlli[nr‘5{v(x",t";x',t')= Jv(x"—x'). (59)
Quantum fluctuations lead to deformations of cleasirajectory and any quantum history may be
presented asq(t) = x(t)+ y(t), where y'=y(t)=0 and y"= y(t")=0. For LagrangiansL(g,q,t)

which are quadratic polynomials i and q, the corresponding Taylor expansion $[fq] around
classical pathx(t) is

Sal= s+ sl =+ 3 v2.+ yiji(q,q,odt, (60)

aq

where we have useds[x] =0. Hence we get
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Dy, ©61

:T||—\

o x.6)= - é(x'-,t-';x-,t'>jxj(‘%“°f°x{ 2520y Laana

y-or) 2h og ~dq

where S(x",t"; x',t') = §[x] . From (61) follows thafk, (x",t"; x',t') has the form
5{V(x",t";x',t'):Nv(t",t'))(v(—%§(x",t";x',t')j, (62)

where N, (t",t') does not depend on end points ard x *. To calculateN,(t",t') one can use (57)
and (58). Then one obtains thatadic kernel%, (x",t";x',t') of the unitary evolution operator for
one-dimensional systems with quadratic Lagrangmassthe form

1/2

1 0% (oo T
h Ox O S(x t ,x,t)(v )(V( hS(x t ,x,t)j,

by [ 10
F,(x"t ,x,t)—)lv( h 3% ox S(x",t;x t)j

(63)
For practical considerations, we define adelic patiagral in the form

K, (x" 1 x,t) nj ( j qqu,tv)dtjfz)qv 64

As an adelic Lagrangian one understands an infagitpience
La(a.0:t) = (L(0, 0t ) LG, Grt) LG Gasto ) L{Gp1 Gt ), (65)

Where‘L(c']p,qp,thp <1 for all primesp but a finite sef of them.

As an illustration of p-adic quantum-mechanical gied now we describe the following one-
dimensional system where the quadratic Lagrangiansonsidered: a free relativistic particle

L(g.q)=-mc*/q,9" .

3.1 Freerdativistic electron in p-adic quantum mechanics. [3]

In the Vladimirov-Volovich formulation one-dimensial p-adic quantum mechanics is a triple
(L, )W, (2)u,,t)).  (66)

where LZ(QP) is the Hilbert space of complex-valued functiorispeadic variables,\Np(z) is a
unitary representation of the Heisenberg-Weyl groun_z(Qp), andUp(t) is an evolution operator

on LZ(Qp).

U,(t) is an integral operator

=[, Koty ol (V) (67)

whose kernel is given by the Feynman path integral
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Kp(x,t;y,0)=j)(p[ S[q]ji')q I)(p[ L qthjﬂdq (68)

where h is the Planck constant. For quadratic classictioms S(x,t;y;0) the solution (68)

becomes
1 0251 9758 ["° 1
K. (xty0)=A|—-—— — -=Sixt;y0)|. (69
p( ¥0) p( 2h6x6y]‘h6x6yp)(p( h (xtiy )j (69)

Expression (69) has the same form as that onedinany quantum mechanics.
Thence, we can rewrite the eq. (68) also:

1 025 \1 05" [ 1.
Al -—— — =S x,t, 0 ) dt |[]d
p( 2haxayJ‘haxayp X"( hovon Y j IXP( S[Q]j a= IXD( = Ha.a) jﬂ q(t)
60b)
For a particular physical system, p-adic eigentions are subject of the spectral problem
ULt (x) = x, (athyi(x).  (70)

The usual action for a free relativistic electron

S= —mcﬂjz drn,x"x’  (71)

is nonlinear and so unsuitable for quantum-meclahmvestigations. However, a free relativistic
electron can be treated as a system with the @inistr 77, k“k" + m°c® =k* + m’c®> =0, which

leads to the canonical Hamiltonian (with the Lageamultiplier N )

H, = N(k2 +mZc?), (72)

and to the Lagrangian
.2

X
L=x k/-H =——-m’c®N, (73
9 © = IN (73)

where x, =dH_/ok* =2k, and X° = x“x, . Instead of (71), the corresponding action faargum
treatment of a free relativistic electron is

— [ X 2.2
S-Ldr(m\l m’c N]. (74)

From (74) it follows the classical trajectory

H _ M -
xi =X X XX (g



and the classical action

S(x,,T;x,0)= % -m%c?T, (76)

whereT =N(7, -17).

All the above expressions from (72) to (76) areidvah the real case and according to p-adic
analysis they have place in the p-adic one. Nagettie classical action (76) can be presenteden th
form

S=|- (Xg 'X10)2 - mZCZT}{(Xi _Xll)z _ mzczT}{(Xf —Xf)z _ mzch}

4T 4 1T 4 4T 4
3 _ 3 2 2
+ (X24TX1) _mZT}:§°+§l+§2+§3 (77)

which is quadratic inx and x“ (z= 0123). Due to (69) and (77), the corresponding quantum-
mechanical propagator may be written as product

Kp(xz,T:><1,0)=ﬁKEf‘)(xé.Tm”,O). (78)
I

-1/2

KU T 0)= A, (= 1) abT|auir 2 x| ~ 2 (-2 b —xf , amber

h 41 h 4

} , (79)

whered)’ = 1if =0 and O otherwise. We note that the eq. (78) camletten also:

-1/2

3
K, (%, T;% 0)= l_l )1‘)((—1)"()“4hT)2hT|p XX,
1

h a1 h 4

-(-1% be-xf 1 mZCZT] (80)

Among all possible eigenstates which satisfy e@),(function QQx|p) defined by the following

expression
Q(}u|p):l, |u|ps1; Q(ju|p)=0, |u|p>1, (81)

plays a central role in p-adic and adelic quantuetimanics. Therefore, let us first show existence
of Q-eigenfunction for the above relativistic electrdn. fact, we have now 1+3 dimensional
problem and the corresponding integral equation is

J <o (cTiyolely, bty =alx,). @=0). ©

where |u| = ma&sﬂgﬂu”‘p} is p-adic norm ofuJQ3, and

2 )2 2 2
Kp(X,T; y,o)_ AP(4hT) (_ (X y) + m°cT

" entf Y\ " e T ] (83)
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Thence, we have that

.[Q /]2 (4h2'))({ (x—y)2 + mZEZTjQWp)dA,y:QGXh)_ (83b)

b |2hT| 4hT

Eq. (82), rewritten in a more explicit form, reads

T

|2hT| . h 4hT  2hT 4hT  2hT

Using lower part of the Gauss integral
J, o ol + pox=pralprls,). o, < p

Ju oy Xl + kb= () [%jﬂ(p_”g

], 40| > p™, (84b)
p

to calculate integrals in (84) for each coordinaté (/,1 = O,...,3), we obtain

(m c’T

]HQGX” ): Q ) hT| <1. (85)

Since ﬂizOQQX”‘p)= Q([xip) is an identity, an equivalent assertion to (85) i

m°c’T

<1, |hT| <1. (86)

p

Applying also the upper part of (84b) to (84), vavé

A (4nT) (mzczT X° J :
- Q
[2nT|? Yo\ h T anT H

what is satisfied only fop # 2Namely, (87) becomes an equality if conditions

X/‘l
2hT
p

J:QQx]p), [4nT| 21, (87)

m’c’T

<1, |hT|p:1, pz 2, (88)

p

take place. Thus, we obtained eigenstates

m°c’T

w,(xT)=0lX, )

<1, |hT|ps1, pz2, (89)

p
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m°c?T
h

w,(xT)=0(x,) <1, ||, <1, (90)

2

which are invariant undes ,(t) transformation.
We have alsd2 -function in eigenstates

m?c?
h

wp(x,T):)(p( TJQ(pV|x|p), vOZ, |hT| <p™. (91)

This can be shown in the way similar to the presioase with z//p(x,T) = Q(}x|p). The eigenstates
without Q -functions are as follows:

wp(x.T)=x{%zjp(—%j, ©2

wherek? = —k°k° +k'k', and kx = -k°x’ +K'x' . Note that (m?c? + k?)T = H,r .

3.2 p-Adic and Adelic strings. [4]

Recall that quantum amplitudes defined by meammtf integral may be symbolically presented as
AK)=| A(x))((—%s[x]jg)x , 93

where K and X denote classical momenta and configuration spasegctively. Here)((a) is an
additive characterS[X] is a classical action arful is the Planck constant.

Now we consider simpl@-adic and adelic bosonic string amplitudes based on the functional
integral (93). The scattering of two real bosortitngs in 26-dimensional space-time at the tree
level can be described in terms of the path integra2-dimensional quantum field theory
formalism as follows:

— 2 2_” - 2 2_77 (i)ye

A, (K, k,) gwji)Xex;{ ™ SO[X]jx Djd o, ex;{ - kX (J]-,Tj)j, (94)

where DX = DX°(0,7)DX(0,7).DX*(0,1), d’c, =do,dr, and
s)[x]=—%jdzoaax%”x# (95)

with @ =01 and 1 =0J},...,25 Using the usual procedure one can obtain thesitr@symmetric
Veneziano amplitude

AL (k) = g2 EP = dx  (96)
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and similarly the Virasoro-Shapiro one for closes$dnic strings. As p-adic Veneziano amplitude,
it was postulated p-adic analogue of (96), i.e.

Ayll-ke) = g5, 4 -

where only the string world sheet (parameterizedxbyis p-adic. Expressions (96) and (97) are
Gel'fand-Graev beta functions dr andQ,, respectively. We take p-adic analogue of (94), i.

k3

dx, (97)

A (ky..s k4):g§j3)x)(p(—%so[x]jxE'jdzaj)(p(—hkyxu(aj,rj)j, ©9)

to be p-adic string amplitude, whepq, exp(2n ) is p-adic additive character al{ld}p S
the fractional part oiJQ,. In (98), all space-time coordinates,, momentak, and world sheet

(o,7) are p-adic.
Adelic string amplitude is product of real andm@kdic amplitudes, i.e.

Aullreenky) = A (ke )] Ak ). - (99)

In the case of the Veneziano amplitude a(npjrj)D A(S)xA(S), whereA(S) is defined in the
following equation (i.e. the set of all adel@&s where A has the structure of a topological ring)

A= UA( erlQ xrlz (100)

we have
A, (k... =g’ I Xl -

4
k2k3dx>< !;Lgﬁuj.dzaj X !;Lgf) . (101)

4. Mathematical connections.

Now we show some interesting mathematical connesttbat we have obtained between various
equations described above.

We note that the egs. (31), (34) and (34b%ation 2, and the egs. (61), (64), (69b), (84), (93) and
(98) of Section 3 can be related. Thence, we have the possible matiwl connection between
the relativistic equations of quantum mechanicgntie someequations concerninghe free
relativistic electron, the free relativistic elemtrin p-adic quantum mechanics gnédic bosonic
string amplitudesindeed,we have the following principal connections betwdbe eqgs. (31),
(69b), (84), (98) and (34b); and between eqgs. (&9h), (84), (98) and (34b):

3\/%( + J' g¥ zdxﬂ;3 =
Sty =

893/2

1 025 \1 0% ["" [

N A LIl Y
°\ 2hoxay h oxdy| P
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- [~ Lol oo p(p(-l J;L(acet 7 cal) =

Al (et T UL £ ol

|2hT|i L h 4hT  2hT 4hT  2hT
1 1,
= A (k. k) = gf)ji)X)(p[——So[X]jx |J jdzajxp(—ﬁ kf,’)X”(Jj g )j =
Vo~ 1 Vv —_
.[d26x\/_|: ﬁ g g'upg Tr (G,qupa)f (qo)__gﬂ ay@v(o:| -

:T%jdmx(— )'%e 2‘{R+46 PP - —‘H‘ 10Tr QF|)} (102)
0 10

I[gj dx}+
i x1/2 2 X 2 0 1 X
- A {Szl: 5/{ dx + I 1/2 3/2_2_[ 1/2 3/2 :l ( g (¢0)1/2j0’?}+
il

)({-%g(x,t; y,O)j =

@(0,3)+ Aﬂz{é&%j j X¢o 1/2 dx + 2;)(0

1
3
0
=

1 028 \1 958 [""
=>A - —
Pl 2h axady | h oxdy )

= [ - 2sld)joa= 1 -] Lacat | ] eal)=

Al Ll 2o

20T | h 4hT  2hT 4hT  2hT
1 2 1
= Ap(k1 ..... k,)= gf).[.‘DX)(p(——SO[X]jx H J'dzaj)(p(—ﬁ k/(j)X“(Jj T, )j =

J‘dzs \/—{ ﬁ _g gﬂpgvaTr (Gﬂvaa)f (w)_1 gwa/t@'/¢} =

00

—jz - [d°x(-G)"*e 2"’{R+40 PO P — —\H\ 10Tr QFI )} (103)
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