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                                                                         Abstract 
 
According to quantum mechanics, the properties of an atom can be calculated easily if we known 
the eigenfunctions and eigenvalues of quantum states in which the atom can be found. The 
eigenfunctions depend, in general, by the coordinates of all the electrons. However, a diagram 
effective and enough in many cases, we can get considering the individual eigenfunctions for 
individual electrons, imagining that each of them is isolated in an appropriate potential field that 
represent the action of the nucleus and of other electrons. From these individual eigenfunctions we 
can to obtain the eigenfunction of the quantum state of the atom, forming the antisymmetrical 
products of eigenfunctions of the individual quantum states involved in the configuration 
considered. The problem, with this diagram, is the calculation of the eigenfunctions and eigenvalues 
of individual electrons of each atomic species. To solve this problem we must find solutions to the 
Schroedinger’s equation where explicitly there is the potential acting on the electron in question, 
due to the action of the nucleus and of all the other electrons of the atom. To research of potential it 
is possible proceed with varying degrees of approximation: a first degree is obtained by the 
statistical method of Thomas-Fermi in which electrons are considered as a degenerate gas in 
balance as a result of nuclear attraction. This method has the advantage of a great simplicity as that, 
through a single function numerically calculated once and for all, it is possible to represent the 
behaviour of all atoms. In this work (Sections 1 and 2) we give the preference to the statistical 
method, because in any case it provides the basis for more approximate numerical calculations. 
Furthermore, we describe the mathematical connections that we have obtained between certain 
solutions concerning the calculation of any eigenfunctions of atoms with this method, the Aurea 
ratio, the Fibonacci’s numbers, the Ramanujan modular equations, the modes corresponding to the 
physical vibrations of strings, the p-adic and Adelic free relativistic particle and p-adic and adelic 
strings (Sections 3 and 4). 
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                                                  1. Calculation of potential. [1] 
 
The considerations that we can do in this paragraph refer to more general case of an atomic number 
Z , ionized z  times. To establish the differential equation that determines the potential with the 
distance from the nucleus, it shall by the relation that connects the density of electronic gas with a 
potential if the electrons can be treated as a completely degenerate gas. This relation is 
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α  is an additive constant that can be determined with the condition that the total number of 
electrons is that given and that is  

                                                                  ∫ −= zZndτ  

 
where the integral should be extended to the whole region of the space where 0≠n . It must be 
borne in mind that the potential on a electron does not coincide exactly with the potential that we 
have in a geometric point that is at an equal distance from the nucleus. In fact, the first potential 
represents the action of the nucleus and of 1−− zZ  electrons, while the second is the action of the 
nucleus and of all the zZ −  electrons. We will denote with V  and 'V  the two potentials now 
defined. We will have: 
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where U  and  'U  represents respectively the actions of the 1−− zZ   and  zZ −  electrons. We 
consider therefore, in first approximation, U  and  'U  respectively proportional to 1−− zZ  and  

zZ − , thence we will write 
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'V  is the potential due to the nucleus and all the electrons: therefore for it  we have the Poisson’s 

equation 
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Taking account of the (1) and the fact that α  is constant and by placing 
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Because v  for reasons of symmetry depends only from r , the previous equation becomes 



 3 

 

         2/3
3

2/52/322/13

2

2

3
21

1
2

v
h

em

zZdr

dv

rdr

vd π









−
−=+    for  0>v ;      0

2
2

2

=+
dr

dv

rdr

vd
   for 0<v . 

 
The constants of integration can be determined with the conditions 

                                                     Zevr
r

=
=0

lim        ∫ −=
0

0

24
r

zZndrrπ  

 
where 0r  is the distance for which v  is null, the distance to which is to end the electronic cloud 

surrounding the nucleus. To simplify the previous equations, we put 
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being a  the radius of the first orbit of the hydrogen, 
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We have also that: 
 

                 ( ) 013156,00131556175,07/63 ≅=Φ − ;  ( ) 034442,00344418537,07/49 ≅=Φ − ;       

                 ( ) 618034,06180339887,07/7 ≅=Φ − . 

                 0,013156 + 0,034442 + 0,618034 = 0,665632;    ( ) =665632,0
3
4

0,887509. 

 

          ( ) 090170,00901699437,07/35 ≅=Φ − ;  ( ) 236068,02360679775,07/21 ≅=Φ − ;  ( ) 10 =Φ . 

           0,090170 + 0,236068 + 1 = 1,326238;    ( ) =326238,1
3
2

0,884159. 

It’s interesting the observation that these values coincide almost to those given, i.e. 0,885341, and 
that the index 63, 49, 35 and 21 are all multiples of 7.  

We note that, with regard the formula ( ) 7/nΦ , Φ  represent the Aurea Ratio, n  a real number 
(positive or negative) and 7  are the compactified dimensions of M-theory.  
 
Thence, we obtain for the function ( )xϕ  the differential equation 
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with the boundary conditions 
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found that it is equivalent to 
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One finds that in widely sufficient approximation for the practical cases we can set 
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Here k  is a constant the value of which depends on ( ) Zz /1+  in order to meet the (6). An empirical 
expression that represents k  with sufficient accuracy within the interval of values that interested, is 
the following 
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obtain 

                                                             ( )
3

7/36 1







 +Φ= −

Z

z
k . 

 
We have also that 
 

( ) 021286,00212862363,07/56 ≅=Φ − ;    ( ) 145898,01458980338,07/28 ≅=Φ − . 

0,021286 + 0,145898 = 0,167184;    ( ) =167184,0
2
1

0,083592. 

 

( ) 021286,00212862363,07/56 ≅=Φ − ;    ( ) 090170,00901699437,07/35 ≅=Φ − . 

0,021286 + 0,090170 = 0,111456;    ( ) =111456,0
4
3

0,083592. 

We note that these values coincide almost to those given, i.e. 0,083.       
 
The potential v  given by (3) isn’t null to infinity: it is therefore appropriate to add it a constant so 
as to aim to zero for ∞→x . It is recognised immediately that this constant has the value 
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We will take therefore in the final analysis as an expression of the potential the following 
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                                  2. The relativistic equations of quantum mechanics. [1] 
 
Established the potential of the strength field in which the electron in question moves, we consider 
the relativistic equations of quantum mechanics. Thence, in this section we describe various 
equations concerning the free relativistic electron.  
We consider the terms ( )0=ls  it is possible write these equations in the following form 
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where F  and G  are the eigenfunctions, W  the energy and V  the potential. The eigenfunctions F  
and G  are connected to the four Dirac’s functions from the relations 
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Putting in the eq. (10) the eq. (9) to the place of  V , and 

                                                                   ε
a

e
W

2

2

−=  

 
one obtain 
 

     0'
1

2
2

0

=+















++− GF

Zxx
Z

aa

ϕαεµαµ
α

;  0
2

'
1

2 0

=++















+− F

x
FG

Zxx
Z

a

ϕαεµα
.    (12) 

 

In these equations we have introduced the variable 
µ
r

x =  : α  is the Fine Structure Constant that 

has the numerical value 1/137.3. 

We note that multiplying the frequency 306,342224 for ( ) 410187582,17/5 =Φ  (where 
2

15 +=Φ ), 

we obtain the frequency 432. Dividing this frequency for π  , we obtain 137.5  that is a value very 
near to the inverse of Fine Structure Constant. Furthermore, dividing  432 for Φ  and 2Φ , we 
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obtain the numbers 267 and 165. The sum of these numbers, provide again 432. We note also that 
the numbers 267 and 165 are given by sums of Fibonacci’s numbers. Indeed, we have 
 
                 267 = 233 + 34    and    165 = 144 + 21        (233 = 89 + 144;   144 = 55 + 89), 
 
where 21, 34, 55, 89, 144 and 233  are Fibonacci’s numbers. 
Furthermore, we can to obtain the inverse value of Fine Structure Constant also from the Aura ratio. 
Indeed, we have: 

          ( ) 0901699437,117/35 =Φ ;   ( ) 2360679775,47/21 =Φ ;   ( ) 6180339887,17/7 =Φ ; 
           11,090170 + 4,236068 + 1,618034 = 16,944272; 

          ( ) 416408,25944272,16
2
3 = ;   ( ) 888544,33944272,162 = ;   ( ) 832816,50944272,163 = ; 

           ( ) 416408,27944272,1656180339887,1 = ; 
           25,416408 + 33,888544 + 50,832816 + 27,416408 = 137,554176. 
 
We note also that dividing 432 for this value, we obtain a value very near to π . Indeed, we have: 
 
                                                   π≅= 14058077,3554176,137/432        
 
Given that the function ( )x0ϕ , through which we express the statistical potential, is represented with 

sufficient accuracy to the practical purposes, for 3.0≤x , by the following empirical expression 
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We can try to meet the equations (12) within the interval 0=x  3.0=x  by developments in power 
series of x . For 3.0>x  we will try instead the solutions of equations (12) with the Wentzel-
Brillouin’s method. This method is used for the execution of calculations in series because it 
replaces to a irregular function, two functions of regular development: the amplitude and the phase; 
the interpolations must run on the latter. Now is appropriate to modify a little about the form in 
which have been written the equations (12). Putting 
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from these, remembering the (13), one obtain 
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If we put, for simplicity 
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In these equations G  and R  are equal at infinity in the initial point. To eliminate this singularity we 
put: 
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By introducing these expressions in the eqs. (16) and by accepting that u  and v  are regular for 

0=x , we obtain for β  an equation of second degree : 
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Of the two possible values of β  is easily seen that one only meets to our purpose because it must be 

less than 3/2, so that 2G , that in the initial point is behaving as β2−x , can be integrable for 0=x . 
From this we have that: 
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We obtain in the final analysis the differential equations concerning the two new functions 
unknown u  and v  
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In these equations, we have put for simplicity 
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and introduce these developments in series in the equations (19). We obtain in this way of the 
recurrent formulas that allow the numeric calculation of the coefficients 
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We shall now proceed to the calculation of the solutions of equations (10) for 3.0>x . If we put for 
simplicity 
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the eqs. (14) thence, can be write 
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If we only consider terms up to 2α  included, we will get from the (23b) 
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If we insert this expression in the eq. (23a), we obtain 
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If we only consider terms up to 2α  included, we will get from the precedent equation 
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Now we are seeking the solution of the equation (25) with the method Wentzel-Brillouin. Since for 
the functions s∞   the function U  have a trend oscillating for all the values of x  , we put 
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where Z  is the new unknown function. The part real and imaginary of U  both are solutions of the 
equation. From the eq. (25) we obtain, by the eq. (27) the following equation 
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In this equation the right hand side represent the relativistic correction. It can be solved by 
successive approximations: running the calculations until the fourth approximation, and taking for 
U  the real expression: 
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We observe that K  and ( )3,0Θ  are constants that must be determined so that for 3.0=x , the 

function ( )xU  and its derivative is connect with continuity to the function ( ) β−1xxu   determined 
with the development in series valid for 3.0<x . From the eq. (29), we obtain 
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Through the equations (30) and (31), can be calculated 'Θ , R  and 
dx

Rd log
 for 3.0=x  and the 

values thus obtained shall be introduced in the previous equations. In the case of eigenfunctions 
s∞ , being zero the eigenvalue, we can write the equations (30) and (31) with sufficient accuracy in 

the form 
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In these expressions the constant A  depends on the atomic number and has the following value 
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Note that the number 8, and thence the numbers 2864=  and 8232 2 ×=  contents in the equations 
(30), (31), (33) and (34), are connected with the “modes” that correspond to the physical vibrations 
of a superstring by the following Ramanujan function: 
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Furthermore, we note that is possible connect the eq. (34) also with the Palumbo-Nardelli model. In 
this model, we have the following general relationship that links the supersymmetric string action 
with the bosonic string action: 
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Thence, we obtain the following interesting mathematical connection with ( )xΘ : 
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The eqs. (33) and (34) are apply naturally only until a certain distance from the limit of the atom, 
precisely until η  is small compared with 0ϕ ; approaching the limit of the atom we must calculate 

the eigenfunctions s∞  element by element through the equations (30) and (31). Always in the case 
of eigenfunctions s∞ , because in the proximity of the origin we can certainly neglect the function 
η , it is possible to put for 3.0≤x  

                                                                  
x

Ag 0ϕ= . 

 

Taking account of this simplification, the definitive formulas for the calculation of R , 'Θ  and 

dx

Rd log
 for 3.0=x  are the following: 

 

                             ( )















−−=

−+−=Θ







 ++=

.11.5
519.0

063.1
log

60.273.3
2

588.0
55.1'

20.1
190.0

1
804.0

2

2/12/3
2

2

4

A
Adx

Rd

AA
A

A

A
AA

R

γ

γ

γ

         (35) 

 
In the following tables, we will give the numerical values of some expressions concerning the 
calculation of the functions R  (eq. 33) and Θ  (eq. 34), expressions that are valid only until a 
certain distance from the limit of the atom. We describe the mathematical connections between 

these numerical values and some powers of the Aurea Ratio, i.e. with ( ) 7/nΦ . 
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                                          x                     
x
0ϕ

                            ( ) 7/nΦ  

 

                                         0.3                   2.40                    ( ) 3887.27/67.12 =Φ  

                                         0.4                   1.65                    ( ) 6555.17/33.7 =Φ  

                                         0.5                   1.21                    ( ) 20119.17/67.2 =Φ     

                                         0.6                   0.937                  ( ) 93356.07/1 =Φ −   

                                         0.7                   0.744                  ( ) 74238.07/33.4 =Φ −  

                                         0.8                   0.606                  ( ) 60403.07/33.7 =Φ −  

                                         0.9                   0.503                  ( ) 50285.07/10 =Φ −  

                                         1.0                   0.425                  ( ) 42833.07/33.12 =Φ −  

                                         1.2                   0.312                  ( ) 31078.07/17 =Φ −  

                                         1.4                   0.238                  ( ) 23606.07/21 =Φ −  

                                         1.6                   0.186                  ( ) 1877.07/33.24 =Φ −  

                                         1.8                   0.149                  ( ) 14927.07/67.27 =Φ −  

                                         2.0                   0.122                  ( ) 12146.07/67.30 =Φ −   
 
 
 

                x                     ∫ 







x

dx
x3.0

2/1

0ϕ
                            ( ) 7/nΦ  

 

               0.4                        0.141                       ( ) 14259.07/33.28 =Φ −  

               0.5                        0.260                       ( ) 2587.07/67.19 =Φ −  

               0.6                        0.363                       ( ) 3648.07/67.14 =Φ −  

               0.7                        0.454                       ( ) 4588.07/33.11 =Φ −  

               0.8                        0.563                       ( ) 5639.07/33.8 =Φ −   

               1.0                        0.678                       ( ) 6773.07/67.5 =Φ −  

               1.2                        0.799                       ( ) 7952.07/33.3 =Φ −  

               2.0                        1.150                       ( ) 14738.17/2 =Φ  

               5.0                        1.771                       ( ) 77335.17/33.8 =Φ  

               20                         2.447                       ( ) 4441.27/13 =Φ  

               24                         2.504                       ( ) 500758.27/33.13 =Φ  
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               x                     ( )∫
−⋅x

dx
x3.0

2/1
0

410

ϕ
η

                              ( ) 7/nΦ  

 

              10                        0.095                           ( ) 09439.07/33.34 =Φ −  

              12                        0.211                           ( ) 21051.07/67.22 =Φ −   

              14                        0.434                           ( ) 4382.07/12 =Φ −   

              16                        0.819                           ( ) 8136.07/3 =Φ −     

              18                        1.446                           ( ) 4428.17/33.5 =Φ   

              20                        2.447                           ( ) 4441.27/13 =Φ  

              22                        3.989                           ( ) 9546.37/20 =Φ  

              24                        6.247                           ( ) 2537.67/67.26 =Φ  

              26                        9.516                           ( ) 4466.97/67.32 =Φ   

              28                      14.057                           ( ) 600.147/39 =Φ   

              30                      20.356                           ( ) 589.207/44 =Φ  

              32                      28.867                           ( ) 034.297/49 =Φ   

              34                      40.136                           ( ) 0256.407/67.53 =Φ  
 
 
 

        x                     ∫ 






x

dx
x

3.0

2/1

0ϕ
                           ( ) 7/nΦ  

 

       0.5                         0.156                     ( ) 15628.07/27 =Φ −  

       0.6                         0.253                     ( ) 25286.07/20 =Φ −  

       0.7                         0.362                     ( ) 3648.07/67.14 =Φ −  

       0.8                         0.484                     ( ) 48033.07/67.10 =Φ −  

       0.9                         0.619                     ( ) 618033987.07/7 =Φ −  

       1.2                         1.098                     ( ) 09599.17/33.1 =Φ  

       3.0                         6.551                     ( ) 547069.67/33.27 =Φ  

       3.5                         8.937                     ( ) 819.87/67.31 =Φ  

       4.0                       11.749                     ( ) 879.117/36 =Φ   

       4.5                       15.023                     ( ) 639.157/40 =Φ  

       6.0                       27.728                     ( ) 105.277/48 =Φ  

       7.0                       38.919                     ( ) 22389.387/53 =Φ  
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        x                     ∫ ∫−
x x

dx
x

dx
x3.0 3.0

2/5

2/1
0

2/1
0

2/3
0' ϕ

ϕ
ϕ

                          ( ) 7/nΦ   

 

       0.4                                  1.552                               ( ) 5455.17/33.6 =Φ  

       0.5                                  2.377                               ( ) 388.27/67.12 =Φ  

       0.6                                  2.863                               ( ) 8693.27/33.15 =Φ    

       0.7                                  3.195                               ( ) 2176.37/17 =Φ    

       0.8                                  3.412                               ( ) 4466.37/18 =Φ  

       1.0                                  3.701                               ( ) 6919.37/19 =Φ    

       1.2                                  3.872                               ( ) 8650.37/67.19 =Φ  

       1.6                                  4.056                               ( ) 0463.47/33.20 =Φ  

       2.0                                  4.152                               ( ) 1401.47/67.20 =Φ    

     12-18                                4.331                               ( ) 3342.47/33.21 =Φ     
     20-34                                4.332                                      “              “        
 
 
 

       x                     ∫ 







x

dx
x3.0

2/3

0ϕ
                              ( ) 7/nΦ  

 

      0.4                         0.282                        ( ) 28356.07/33.18 =Φ −  

      0.5                         0.452                        ( ) 4484.07/67.11 =Φ −  

      0.6                         0.562                        ( ) 56390.07/33.8 =Φ −  

      0.8                         0.693                        ( ) 69306.07/33.5 =Φ −  

      1.2                         0.811                        ( ) 8136.07/3 =Φ −   

      1.8                         0.872                        ( ) 87154.07/2 =Φ −   

      3.5                         0.911                        ( ) 9124.07/33.1 =Φ −    
      4.0                         0.913                                “             “ 
      4.5                         0.915                                “             “ 
      5.0                         0.916                                “             “ 
 
In this chapter, we have utilized the following notations: 
 
a = Bohr’s radius = 91028.5 −× cm. 

=µ measure unit of length (see eq.(2)). 
=x radius vector in unit µ . 

=0x radius of the atom. 

=k constant for the calculation of the potential (eqs.(7) and (8)). 
 
The two relativistic eigenfunctions F and G (eqs.(10) and (11)), for 3.0<x , are given by: 
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                         [ ]...2
210 +++= − xuxuuxG β  ;      [ ]...2

210 +++= − xvxvvx
Z

F β

α
β

. 

 
For 3.0>x  we have that: 
                                                           xUG /= ;      Θ= sinKRU . 
 
For 0xx >  we have that: 

                                                             ( )DxCxBU += sin4 . 
 
In the non-relativistic area G coincides with the Schroedinger’s eigenfunction ψ . 
 
 
3. On some equations concerning the p-Adic and Adelic Quantum Mechanics and the free  
    relativistic particle. [2] [3] 
 
According to the Weyl quantization, any function ( )xkf , , of classical canonical variables k  and x , 

which has the Fourier transform ( )βα ,
~
f  becomes a self-adjoint operator in ( )DRL2  in the following 

way: 

                                         ( ) ( ) ( )∫ −−= ∞ βαβαβαχ DD ddfkxxkf ,
~ˆˆˆ,ˆ

~
.    (36) 

 
Evolution of the elements ( )tx,Ψ  of ( )DRL2  is usually given by the Schrodinger equation 
 

                                                     ( ) ( ) ( )txxkHtx
t

i ,,ˆ, Ψ=Ψ
∂
∂

h ,    (37) 

 

where H  is a Hamiltonian and  
j

j x
ik

∂
∂−= hˆ .  Besides this differential equation there is also the 

following integral form: 

                                           ( ) ( ) ( )∫ ∞= '','',';'','''','' xdtxtxtxtx Dψψ K ,    (38) 

 
where ( )',';'','' txtx∞K  is the kernel of the unitary representation of the evolution operator ( )','' ttU∞  
and is postulated by Feynman to be a path integral 
 

                                             ( ) [ ]( )
( )

( )
∫ −= ∞∞

'',''

','
',';'',''

tx

tx
qqStxtx DK χ ,    (39) 

 

where functional  [ ] ( )dttqqLqS
t

t∫=
''

'
,,&   is the action for a path ( )tq  in the classical Lagrangian 

( )tqqL ,,& , and  ( )'''' tqx = , ( )'' tqx =   are the end points with the notation  ( )Dxxxx ,...,, 21=  and 

( )Dqqqq ,...,, 21= . 
According to the Weyl approach to quantization, canonical non-commutativity in p-adic case 
should be introduced by operators ( )1=h  
 

                           ( ) ( ) ( ) ( )xxxQ pppp ψαχψα −=ˆ ,    ( ) ( ) ( )βψψβ += xxK ppp
ˆ     (40) 

 
which satisfy 
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                                             ( ) ( ) ( ) ( ) ( )αβαβχβα ppppp QKKQ ˆˆˆˆ = ,    (41) 

 
where ( ) { }( )pp uiu πχ 2exp=   is additive character on the field of p-adic numbers pQ  and { }pu  is the 

fractional part of pQu ∈ . Let x̂  and k̂  be some operators of position x  and momentum k , 

respectively. Let us define operators ( )xv ˆαχ  and ( )kv
ˆβχ  by formulas 

 

                       ( ) ( ) ( ) ( )axxaxx vvvv χαχχαχ =ˆ ,    ( ) ( ) ( ) ( )bkkbkk vvvv χβχχβχ =ˆ ,    (42) 

 
where index v  denotes real ( )∞=v  and any p-adic case, i.e. ,...,...,2, pv ∞=  taking into account all 
non-trivial and inequivalent valuations on Q . It is evident that these operators also act on a function 

( )xvψ , which has the Fourier transform ( )kψ~ , in the following way: 

 

                         ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ −=−−=− xxkdkkxxxx vv
D

vvvv ψαχψχαχψαχ ~ˆˆ ,    (43) 

                         ( ) ( ) ( ) ( ) ( ) ( )∫ +=−−=− βψψχβχψβχ xkdkkxkxk v
D

vvvv
~ˆ ,           (44) 

 

Comparing (40) with (43) and (44) we conclude that ( ) ( )xQ pp ˆˆ αχα −= , ( ) ( )kK pp
ˆˆ βχβ −= . Thus 

we have the following group relations concerning the p-adic cases: 
 

                        ( ) ( ) ( ) ( ) ( )iivjjvijjivjjviiv xkkx ˆˆˆˆ αχβχδβαχβχαχ −−=−− ,    (45) 

                           ( ) ( ) ( ) ( )iivjjvjjviiv xxxx ˆˆˆˆ αχαχαχαχ −−=−− ,                     (46) 

                           ( ) ( ) ( ) ( )iivjjvjjviiv kkkk ˆˆˆˆ βχβχβχβχ −−=−− .                       (47) 

 
One can introduce the unitary operator 
 

                                      ( ) ( ) ( )xkkxW vvvv ˆˆ
2
1ˆ,ˆ αχβχαβχβα −−







= ,    (48) 

 
which satisfies the Weyl relation 
 

                   ( ) ( ) ( ) ( ) ( )( )kxWkxWkxW vvvv
ˆ',ˆ'''

2
1ˆ',ˆ'ˆ,ˆ ββααβααβχβαβα ++







 −=     (49) 

 
and is unitary representation of the Heisenberg-Weyl group. Recall that this group consists of the 
elements ( )η,z  with the group product 
 

                                       ( ) ( ) ( )






 +++=⋅ ',
2
1

','',', zzBzzzz ηηηη ,    (50) 

 
where ( ) vv QQz ×∈= βα ,  and  ( ) ''', βααβ −=zzB  is a skew-symmetric bilinear form on the phase 

space. Using operator ( )kxWv
ˆ,ˆ βα  one can generalize Weyl formula for quantization (36) and it 

reads 

                                         ( ) ( ) ( )∫= βαβαβα DD
vvv ddfkxWxkf ,

~ˆ,ˆˆ,ˆˆ .    (51) 
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It is worth noting that equation (44) suggests to introduce 
 

                                         { } ( ) { } ( ) ( )∫ −= kdkkxkxk D
pp

n
pp

n

p ψχβψβ ~ˆ     (52) 

 
which may be regarded as a new kind of the p-adic pseudodifferential operator. Also equation (45) 
suggests a p-adic analogue of the Heisenberg algebra in the form ( )1=h  
 

                                 { } { } { } { } { }pijpiipjjpjjpii

i
xkkx αβδ

π
αββα

2
ˆˆˆˆ −=− .    (53) 

 
As a basic instrument to treat dynamics of a p-adic quantum model is natural to take the kernel 

( )',';'','' txtxpK  of the evolution operator ( )','' ttU p . This kernel obtains by generalization of its real 

analogue starting from (38) and (39), i.e. 
 

                                       ( ) ( ) ( )∫= '','',';'','''','' xdtxtxtxtx D
vvv ψψ K ,    (54) 

 
and 

                                   ( ) ( )
( )

( )
∫ ∫ 





−=

'',''

','

''

'
,,',';'',''

tx

tx

t

tvv qdttqqLtxtx DK &χ .    (55) 

 
The p-adic quantum mechanics is given by a triple 
 
                                                    ( ) ( ) ( )( )tUzWQL ppp ,,2 ,    (56) 

 

where ( )zWp  corresponds to our ( )kxWp
ˆ,ˆ βα . 

Starting from (54) one can easily derive the following three general properties: 
 

                                ( ) ( ) ( )∫ = ',';'',''',';,,;'','' txtxdxtxtxtxtx vvv KKK ,      (57) 

 

                                ( ) ( ) ( )∫ −= yxdxtxtytxtx vvv '''',';'',',';'','' δKK ,           (58) 

 
                                ( ) ( ) ( )'''',';'',''lim'',';'',''

'''
xxtxtxtxtx vv

tt
v −==

→
δKK .    (59) 

 
Quantum fluctuations lead to deformations of classical trajectory and any quantum history may be 
presented as  ( ) ( ) ( )tytxtq += , where  ( ) 0'' == tyy  and ( ) 0'''' == tyy . For Lagrangians  ( )tqqL ,,&  

which are quadratic polynomials in q&  and q , the corresponding Taylor expansion of [ ]qS  around 

classical path ( )tx  is 
 

                         [ ] [ ] [ ] [ ] ( )∫ 








∂
∂+

∂
∂+=+=

''

'

2

2 ,,
2
1

!2
1 t

t
dttqqL

q
y

q
yxSxSxSqS &

&
&δ ,    (60) 

 
where we have used [ ] 0=xSδ . Hence we get 
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  ( ) ( ) ( )
( )

( )
ydttqqL

q
y

q
y

h
txtxS

h
txtx

ty

ty

t

tvvv DK ∫ ∫
→

→ 



















∂
∂+

∂
∂−×







−=
'',0''

',0'

''

'

2

,,
2
1

',';'',''
1

',';'','' &
&

&χχ ,    (61) 

 
where ( ) [ ]xStxtxS =',';'','' . From (61) follows that ( )',';'','' txtxvK  has the form 

 

                                 ( ) ( ) ( )






−= ',';'',''
1

',''',';'','' txtxS
h

ttNtxtx vvv χK ,    (62) 

 
where ( )','' ttNv  does not depend on end points ''x  and 'x . To calculate ( )','' ttNv  one can use (57) 

and (58). Then one obtains that v -adic kernel ( )',';'','' txtxvK  of the unitary evolution operator for 

one-dimensional systems with quadratic Lagrangians has the form 
 

   ( ) ( ) ( ) ( )






−
∂∂

∂×








∂∂
∂−= ',';'',''

1
',';'',''

'''
1

',';'',''
'''2

1
',';'',''

2/122

txtxS
h

txtxS
xxh

txtxS
xxh

txtx v

v

vv χλK ,     

                                                                                                                                                (63) 
For practical considerations, we define adelic path integral in the form 
 

                             ( ) ( )( )
( )

∏ ∫ ∫ 






−=Α
v

tx

tx v

t

t vvvvv

vv

vv

v

v

qdttqqL
h

txtx
''''

''

''

'

,

,
,,

1
',';'','' DK &χ .    (64) 

 
As an adelic Lagrangian one understands an infinite sequence 
 
                     ( ) ( ) ( ) ( ) ( )( ),...,,,...,,,,,,,,,,, 333222 ppp tqqLtqqLtqqLtqqLtqqL &&&&& ∞∞∞Α = ,    (65) 

 

where ( ) 1,, ≤
pppp tqqL &   for all primes p  but a finite set S of them. 

As an illustration of p-adic quantum-mechanical models, now we describe the following one-
dimensional system where the quadratic Lagrangians is considered:  a free relativistic particle  

( ) µ
µqqmcqqL &&& 2, −= .  

 
 
                             3.1 Free relativistic electron in p-adic quantum mechanics. [3] 
 
In the Vladimirov-Volovich formulation one-dimensional p-adic quantum mechanics is a triple 
 
                                                        ( ) ( ) ( )( )tUzWQL ppp ,,2 ,    (66) 

 
where ( )pQL2  is the Hilbert space of complex-valued functions of p-adic variables, ( )zWp  is a 

unitary representation of the Heisenberg-Weyl group on ( )pQL2 , and ( )tU p  is an evolution operator 

on ( )pQL2 .  

( )tU p  is an integral operator 

                                               ( ) ( ) ( ) ( )∫=
pQ pppp dyyytxKxtU ψψ 0,;,     (67) 

 
whose kernel is given by the Feynman path integral 
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                        ( ) [ ] ( ) ( )∫ ∫ ∏∫ 






−=






−=
t

t

ppp tdqdtqqL
h

qqS
h

ytxK
0

,
11

0,;, &χχ D ,    (68) 

 
where h  is the Planck constant. For quadratic classical actions ( )0;;, ytxS  the solution (68) 
becomes 

                       ( ) ( )






−
∂∂

∂









∂∂
∂−= 0,;,

11
2
1

0,;,
2/122

ytxS
hyx

S

hyx

S

h
ytxK p

p

pp χλ .    (69) 

 
Expression (69) has the same form as that one in ordinary quantum mechanics. 
Thence, we can rewrite the eq. (68) also: 
 

( )






−
∂∂

∂









∂∂
∂− 0,;,

11
2
1

2/122

ytxS
hyx

S

hyx

S

h p

p

p χλ [ ] ( ) ( )∫ ∫ ∏∫ 






−=






−=
t

t

pp tdqdtqqL
h

qqS
h 0

,
11

&χχ D .        

                                                                                                                                   (69b) 
 
 For a particular physical system, p-adic eigenfunctions are subject of the spectral problem 
 
                                                  ( ) ( )( ) ( ) ( )( )xtxtU pppp

αα ψαχψ = .    (70) 

 
The usual action for a free relativistic electron 
 

                                                     ∫−= 2

1

2 τ

τ
νµ

µνητ xxdmcS &&     (71) 

 
is nonlinear and so unsuitable for quantum-mechanical investigations. However, a free relativistic 
electron can be treated as a system with the constraint   022222 =+=+ cmkcmkk vµ

µνη ,  which 

leads to the canonical Hamiltonian (with the Lagrange multiplier N ) 
 
                                                          ( )222 cmkNHc += ,    (72) 

 
and to the Lagrangian 

                                                  Ncm
N

x
HkxL c

22
2

4
−=−=

&
& µ

µ ,    (73) 

 
where  µ

µ
µ kkHx c 2/ =∂∂=&   and  µ

µ xxx &&& =2 .  Instead of (71), the corresponding action for quantum 

treatment of a free relativistic electron is 
 

                                                      ∫ 







−= 2

1

22
2

4

τ

τ
τ Ncm

N

x
dS

&
.    (74) 

 
From (74) it follows the classical trajectory 
 

                                                    
12

1221

12

12

ττ
τττ

ττ

µµ
µ

−
−+

−
−= xxxx

x     (75) 
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and the classical action 

                                               ( ) ( )
Tcm

T

xx
xTxS 22

2
12

12 4
0,;, −−= ,    (76) 

 
where ( )12 ττ −= NT . 
All the above expressions from (72) to (76) are valid in the real case and according to p-adic 
analysis they have place in the p-adic one. Note that the classical action (76) can be presented in the 
form  

                  
( ) ( ) ( ) +












−−+












−−+












−−−=

444444

2222
1

2
2

2221
1

1
2

2220
1

0
2 Tcm

T

xxTcm

T

xxTcm

T

xx
S  

                      
( ) 3210

2223
1

3
2

44
SSSS

Tcm

T

xx +++=











−−+     (77) 

 
which is quadratic in µ

2x  and µ
1x  ( )3,2,1,0=µ . Due to (69) and (77), the corresponding quantum-

mechanical propagator may be written as product 
 

                                          ( ) ( )( )∏
=

=
3

0
1212 0,;,0,;,

µ

µµµ xTxKxTxK pp ,    (78) 

          ( )( ) ( )( ) ( ) ( )











+−−−×−= −

4
1

4
1

1
2410,;,

222

122/1

12
00

Tcm

hT

xx

h
hThTxTxK pppp

µµ
δδµµµ µµ

χλ ,    (79) 

 
where 10 =µδ  if 0=µ  and 0 otherwise. We note that the eq. (78) can be rewritten also: 

 

        ( ) =0,;, 12 xTxK p ( )( ) ( ) ( )











+−−−×− −

=
∏ 4

1
4

1
1

241
222

122/1
3

0

00
Tcm

hT

xx

h
hThT ppp

µµ
δδ

µ

µµ

χλ .    (80) 

 
Among all possible eigenstates which satisfy eq. (70), function ( )

p
xΩ  defined by the following 

expression 
                                     ( ) 1=Ω

p
u ,  1≤

p
u ;        ( ) 0=Ω

p
u ,  1>

p
u ,    (81) 

 
plays a central role in p-adic and adelic quantum mechanics. Therefore, let us first show existence 
of Ω -eigenfunction for the above relativistic electron. In fact, we have now 1+3 dimensional 
problem and the corresponding integral equation is 
 

                                      ( ) ( ) ( )∫ Ω=Ω
4

40,;,
pQ ppp xydyyTxK ,   ( )0=α ,    (82) 

 

where  { }
pp

uu µ
µ 30max ≤≤=   is p-adic norm of  4

pQu ∈ , and 

 

                                   ( ) ( ) ( )










+−−=

h

Tcm

hT

yx

hT

hT
yTxK p

p

p
p

222

2

2

42

4
0,;, χ

λ
.    (83) 
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Thence, we have that 
 

                           
( ) ( ) ( ) ( )

ppp

p

p

Q
xydy

h

Tcm

hT

yx

hT

hT

p

Ω=Ω








+−−∫

4
222

2

2

42

4
4

χ
λ

.    (83b) 

 
Eq. (82), rewritten in a more explicit form, reads 
 

( ) ( ) ( ) ( )∫ ∏ ∫
=

Ω=













+−×














−








−

p pZ
i

Z p

i
iii

ppp

p

p xdy
hT

yx

hT

y
dy

hT

yx

hT

y

hT

x

h

Tcm

hT

hT 3

1

2

0
0020222

2

2

242442

4
χχχ

λ
.    (84) 

 
Using lower part of the Gauss integral 
 

                                   ( ) ( )∫ ≤
Ω=+ν ββαχ νν

px pp
p

ppdxxx2 ,   να 2−≤ p
p

;  

             ( ) ( )∫ ≤

−−
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to calculate integrals in (84) for each coordinate  µy  ( )3,...,0=µ , we obtain 
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Since  ( ) ( )
pp

xx Ω=ΩΠ =
µ

µ
3

0   is an identity, an equivalent assertion to (85) is  

 

                                                  1
22

≤
p

h

Tcm
,   1<

p
hT .    (86) 

 
Applying also the upper part of (84b) to (84), we have 
 

                       
( ) ( )

p
p

p

p

p x
hT

x

hT

x

h

Tcm

hT

hT
Ω=














Ω








− ∏

=

3

0

222

2

2

242

4

µ

µ

χ
λ

,   14 ≥
p

hT ,    (87) 

 
what is satisfied only for 2≠p . Namely, (87) becomes an equality if conditions 
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≤
p
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p
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take place. Thus, we obtained eigenstates 
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≤
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                                  ( ) ( ),,
2
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2

22

≤
h
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,   1

2
<hT ,                 (90) 

 
which are invariant under ( )tU p  transformation. 

We have also Ω -function in eigenstates 
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.    (91) 

 
This can be shown in the way similar to the previous case with  ( ) ( )

pp xTx Ω=,ψ . The eigenstates 

without Ω -functions are as follows: 
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, ,    (92) 

 
where iikkkkk +−= 002 , and  iixkxkkx +−= 00 . Note that  ( ) τcHTkcm =+ 222 . 

 
 
                                                   3.2 p-Adic and Adelic strings. [4] 
 
Recall that quantum amplitudes defined by means of path integral may be symbolically presented as 
 

                                             ( ) ( ) [ ]∫ 






−= XXS
h

XAKA D
1χ ,    (93) 

 
where K  and X  denote classical momenta and configuration space, respectively. Here, ( )aχ  is an 

additive character, [ ]XS  is a classical action and h  is the Planck constant. 
Now we consider simple p-adic and adelic bosonic string amplitudes based on the functional 
integral (93). The scattering of two real bosonic strings in 26-dimensional space-time at the tree 
level can be described in terms of the path integral in 2-dimensional quantum field theory 
formalism as follows: 
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where  ( ) ( ) ( )τστστσ ,...,, 2510 XXXX DDDD = ,  jjj ddd τσσ =2   and   
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ασ XXd
T

XS 2
0 2

    (95) 

 
with 1,0=α  and 25,...,1,0=µ . Using the usual procedure one can obtain the crossing symmetric 
Veneziano amplitude 

                                          ( ) ∫ ∞∞∞∞ −=
R

kkkk
dxxxgkkA 3221 1,..., 2

41     (96) 
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and similarly the Virasoro-Shapiro one for closed bosonic strings. As p-adic Veneziano amplitude, 
it was postulated p-adic analogue of (96), i.e. 
 

                                             ( ) ∫ −=
pQ

kk

p

kk

ppp dxxxgkkA 3221 1,..., 2
41 ,    (97) 

 
where only the string world sheet (parameterized by x ) is p-adic. Expressions (96) and (97) are 
Gel’fand-Graev beta functions on R  and pQ , respectively. We take p-adic analogue of (94), i.e. 
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to be p-adic string amplitude, where ( ) { }( )pp uiu πχ 2exp=   is p-adic additive character and { }pu  is 

the fractional part of pQu ∈ . In (98), all space-time coordinates µX , momenta ik  and world sheet 

( )τσ ,  are p-adic.  
Adelic string amplitude is product of real and all p-adic amplitudes, i.e. 
 
                                       ( ) ( ) ( )∏∞=

p
pA kkAkkAkkA 414141 ,...,,...,,..., .    (99) 

         
In the case of the Veneziano amplitude and ( ) ( ) ( )SSji Α×Α∈τσ , ,  where ( )SΑ  is defined in the 

following equation (i.e. the set of all adeles A , where A  has the structure of a topological ring) 
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we have 
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                                                      4. Mathematical connections. 
 
Now we show some interesting mathematical connections that we have obtained between various 
equations described above. 
We note that the eqs. (31), (34) and (34b) of Section 2, and the eqs. (61), (64), (69b), (84), (93) and 
(98) of Section 3 can be related. Thence, we have the possible mathematical connection between 
the relativistic equations of quantum mechanics, thence some equations concerning the free 
relativistic electron, the free relativistic electron in p-adic quantum mechanics and p-adic bosonic 
string amplitudes. Indeed, we have the following  principal connections between the eqs. (31), 
(69b), (84), (98) and (34b); and between eqs. (34), (69b), (84), (98) and (34b): 
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