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Abstract

In this paper we have showed the various applications of the Boltzmann equation in string
theory and related topics. In the Section 1, we have described some equations concerning
the time dependent multi-term solution of Boltzmann’s equation for charged particles in
gases under the influence of electric and magnetic fields, the Planck’s blackbody radiation
law, the Boltzmann’s thermodynamic derivation and the connections with the superstring
theory. In the Section 2, we have described some equations concerning the modifications to
the Boltzmann equation governing the cosmic evolution of relic abundances induced by
dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium
string cosmologies. In the Section 3, we have described some equations concerning the
entropy of an eternal Schwarzschild black hole in the limit of infinite black hole mass, from
the point of view of both canonical quantum gravity and superstring theory. We have
described some equations regarding the quantum corrections to black hole entropy in string
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theory. Furthermore, in this section, we have described some equations concerning the
thesis “Can the Universe create itself?”” and the adapted Rindler vacuum in Misner space. In
the Section 4, we have described some equations concerning p-Adic models in Hartle-
Hawking proposal and p-Adic and Adelic wave functions of the Universe. Furthermore, we
have described in the various Sections the various possible mathematical connections that
we’ve obtained with some sectors of Number Theory and, in the Section 5, we have showed
some mathematical connections between some equations of arguments above described and
p-adic and adelic cosmology.

1. On some equations concerning the time dependent multi-term solution of Boltzmann’s
equation for charged particlesin gases under theinfluence of electric and magnetic fields.

[1] [2] [3]

The behaviour of a uniform swarm of electrons in gases under the influence of electric and magnetic
fields is described by the Boltzmann equation. This equation represents the time ¢ evolution of the

distribution function f (c,t) in velocity space c¢. The distribution function is defined such that

f (c,t)dc is the probability of finding a particle within dc of ¢ at time ¢. The explicit form of
Boltzmann’s equation for charged particle of charge ¢ and mass m under the influence of spatially
homogeneous orthogonal electric £ and magnetic B fields is

Lollprexsl Laslr.f) (1)
t m oc

Swarm conditions are assumed to apply and J ( 1, fo) denotes the rate of change of f due to binary,

particle conserving collisions with the neutral molecules only. The original Boltzmann collision
operator and its semi-classical generalisation are used for elastic and inelastic process respectively:

I 1) =2 [ e0s, ()= £l fulen ook gz de, . (12)
Thence, the eq. (1.1) can be rewritten also

f q[E+c><B Z”fctfol c0 f(c thk ]gO' ]k g;()dg dc,. (1.2b)

8tm
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Dashed and undashed quantities refer to post- and pre-collision properties respectively. The quantity
0'( Jjk; g;() is the differential cross-section describing the scattering of a swarm particle of velocity ¢,

from a neutral molecule in the j th internal state of velocity ¢,. The post-collision swarm particle and
neutral velocities, and the final internal state of the neutral molecule are denoted by ¢', ¢', and &

respectively. The neutral molecules are assumed to remain in thermal equilibrium, characterized by a
spatially homogeneous Maxwellian velocity distribution function fo(co). The quantity

dg'=sin ydyd{ represents the elements of angles of the post-collision relative velocity where y and
¢ are the scattering angles. In what follows, we employ a coordinate system in which £ in the z -
direction, while B is in the y -direction.

The angular dependence is represented in terms of a spherical harmonic expansion,

o0

flet)=> > fOc,0)rle), (1.3)

=0 m=—1

where Y,,El](é) are spherical harmonics which are orthonormal on the angles of c¢,¢ . The superscripts [ ]
and ( ) represent standard and contra-standard spherical tensor forms respectively. The speed
distribution function is represented by an expansion about a Maxwellian at a temperature 7, in terms of

modified Sonine polynomials:

Fet)=wle. )Y F e t)R, (c),  (1.4)

where

w(mc){%j exp{‘“;cz}, (1.5) Rﬂ(ac)=NV,(%j Sf:bz(“;czj, (1.6)

3/2 |
Ny
T(v+1+3/2)



sv) /2(%0:%2) are Sonine polynomials, and a” =m/(kT,). The modified Sonine polynomials satisfy

the orthonormality relation

J.: wa,c)R,,(ac)R,(ac)c’de =6, . (1.8)

This equation can be rewritten also:

2.2
“; ]czdc=5w. (1.8b)

Making use of the orthogonality properties of the basis functions, the following complex doubly
infinite coupled differential equations are generated under conservative conditions:

ZZ Z KN—&' + N (e ))5 5mm+z—Ea (e Q)i p 1),

v'=00'=0m'=

+ 1= {\/(l —m)l+m+1)5,,,., —Jl+m-m+1)5,, }61,,6V,V}F”(,Y"') =0, (1.9

where N is the neutral number density and (l 'm10|lm) is a Clebsch-Gordan coefficient. For the crossed

field configuration, symmetry requirements dictate that the drift velocity vector can only have
components in the £ and E x B directions. The drift velocity components and the mean energy are
expressed directly in terms of the calculated moment:

Voo =N2SEO}, W, =SR], g=§kn{1-£mw}} (1.9)

where SR{ } and S{ } respectively represent the real and imaginary parts of the moments. For the
crossed field configuration, the following symmetry property exists in the moments,



FY = (=1y"F™);  (1.10)

m

whereas the reality of the distribution function implies

(FU) = (=1f™FM . (1.11)

—-m

On combining these relations we have

(EOY =<1y FY, (1.12)

m

and it follows that the system of complex equations can be recast into a form where the renormalized
moments are real and only non-negative values of m are required.

Now we take the current Boltzmann equation solution and note that are possible the following
mathematical connections between these values and the Aurea ratio:

0.2689; 6.838; 0.1123; 2.318; 0.4154

We note that

[(©)721/7 + (0)735/7 4 (@) 77°/7] x £ = 0.1114 ~ 0.1123,
[(@)76/7 + (@) 7497 + (©)72%/7 + () 77/7] x 7 = 0.2705 ~ 0.2689,
[(@)° + (©)721/7] x = = 0.4120 ~ 0.4154,
[(©)756/7 + (@) 735/7 + (®) 727 + ()?/7] x 5 = 2.2917 ~ 2.318,

[(q))14/7 + (@)35/7] X % = 6.854 =~ 6.838.

V5+1

Thence, mathematical connections with powers of aurea ratio, i.e. ® = =1,6180339.
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1.1 On some equations concerning the Planck’s blackbody radiation law and the
Boltzmann’sther modynamic derivation.

An example of a perfect blackbody radiation describes the radiation in a cavity bounded by any
emitting and absorbing opaque substances of uniform temperature. According to Kirchhoff’s findings,
the state of the thermal radiation in such a cavity is entirely independent of the nature and properties of
these substances and only depends on the absolute temperature, 7 , and the frequency, v (or the radian
frequency @ =27zv or the wavelength A ). The radiation that ranges from v to v +dv contributes to
the field of energy within a volume dV', on average, an amount of energy that is proportional to dv
and dV expressed by

dE =U(v,T)dvdV =U(w,T)dadV . (1.13)

The quantity U (V,T ) (or U (a),T )) is called the monochromatic (or spectral) energy density of
radiation. According to Planck, in the case of thermal equilibrium, it may be related to the average
energy, E , of a harmonic oscillator of the frequency v located inside the cavity walls by

U, T)=A4E, (1.14)

where A is a constant. The quantities 4 and E have to be determined. In the case of the thermal
equilibrium, the probability, P(E j), to detect a stationary state with an energy E, is given by

E.
P(Ej):agj exp(—k—}]. (1.15)

Here, a is a constant, g, is the number of stationary states, and k=1.3806-102JK" is the

Boltzmann constant. It reflects Boltzmann’s connection between entropy and probability. Analogous to
Boltzmann’s formula, we express the probability that a harmonic oscillator occupies the n™ level of

energy, E , by



P =P(E,)= Cexp(— fTJ (1.16)

where C is another constant. Planck postulated that such an oscillator can only have the amount of
energy

E, =nhv=nho (1.17a)

which, in principle, means that the energy is quantized.

Here, n =0,1,2,...,00, is an integer, the so-called quantum number, h = 6.626x10>* Js is the Planck
constant, and A = h/(2m) is the Dirac constant. Planck assumed that the energy of an oscillator in the
ground state (n = 0) equals zero. For n = 0 the zero energy is given by Ey; = 1/2hv so that eq. (1.17a)
becomes

En=(n+)hv=(n+2)ho. (117b)

The quanta of energy are only emitted when an oscillator changes from one to another of its quantized
energy states according to AE =E,,; —E,=hv=hw for n = 0,1,2,.. This value is called a
quantum of energy. Obviously, the constant C occurring in eq. (1.16) can be determined from the
condition that the sum over all probabilities must be equal to unity, i.e.,

En

S0P = Sio Cexp (—2) = C i gexp (- 2) = 1. (L18)

Thus, we have

Now, we consider a lot of oscillators each being a vibrator of frequency v. Some of these oscillators,
namely N, , will be in the ground state (n = 0), N; will be in the next higher one (n = 1), and so forth.
Thus, at the n™ energy level we have an energy amount of &, = E,N,. The number of harmonic
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oscillators that occupies a level of energy is related to the corresponding probability by N,, = NB,(E},)
so that

EnN exp(—%)

En)
r=oexp(~57)

&n = ExNyp, = E;NCexp (—E—”) =

o (1.20)

According to

N = Yo Ny = S NCexp (—22) = N 5o Cexp (—2) = N, (121)

we may state that N is the total number of harmonic oscillators. The total energy is then given by

N¥3-o Enexp(_%)

Srizo exp(~i7)

E=)Yr o0& = (1.22)

From this equation we can infer that the average energy per oscillator in thermal equilibrium as
required in eq. (1.14) is given by

(1.23)

For simplicity we set

Z=Yisexp(-22). (124)

The derivative of Z with respect to T amounts to

az En 1

ar = Zhmoexp (=32) (35) = iz Lo Fnewn (- 37)  (129)
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or

dz w En
kT2 22 = S Epexp (—22). (1.26)

ar
Combining eqs. (1.23) and (1.26) yields

kT? dz
Z dT

e5]]

= kT? j—T(ln 7). (127)

As E,, is quantized (see eq. (1.17a)), we obtain

hv

n
© © h
Z =Y7r_,exp (— 7;—T) =YY% 0 (exp (—#)) . (1.28)
If we define

X = exp (— Z—;), (1.29)
we will easily recognize that
Z=Yn_ox" (1.30)

is a geometric series. As 0 < x < 1, its sum is given by

0 1 1
Z:anoxnzazﬁ (131)

1—exp( ﬁ)



Introducing this expression into eq. (1.27) yields

kT

-
_ _sz;,w)(_exp (~2) (&) = # (1.32)
k

E =k (nz) = k12 2{In (1 —exp (- ﬂ))} _

or

E=—0_ (133)

exp (ﬁ)_ 1

Introducing this equation into eq. (1.14) provides

hv

exp(z—;,)—l '

U, T) = A (1.34)

The expression

R=—a = (1.35)

exp (k—;) -1 exp (Z—(}’) -1

is customarily called the Planck distribution. It may be regarded as a special case of the Bose-Einstein
distribution when the chemical potential of a “gas” of photons is given by u = 0.

Now, we have to determine the constant A. It can be inferred from the classical blackbody radiation
law,

8mv?

UWw,T) =

kT, (1.36)

c3

where ¢ = 2.998x10% ms™ is the velocity of light in vacuum.

The classical radiation law fulfils both (a) Kirchhoff’s findings regarding the state of the thermal
radiation in a cavity, and (b) the requirements of Wien’s displacement law that reads
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U, T) < v3f (;) (1.37)

For v = 0 eq. (1.34) provides U(v,T) = 0/0. Thus, we have to use the de I’Hospital’s rule. For
f(v) =Ahv and g(v) = ex'p(hv/ (kT)) — 1 we obtain

. f'v) 1 Ah _
lim,_,, 70 lim,_,, _rexp(%) AkKT. (1.38)
Comparing eqgs. (1.36) and (1.38) yields
8mv?
A= o (1.39)

as already mentioned by Planck. Inserting this expression in eq. (1.34) leads to

3
U, T) =2

c exp(%)—l'

(1.40)

Consequently, eq. (1.13) may be written as

8mh v3
dE—CdeVdV (141)
or
dE = 1 @ —dwdV. (1.42)

e’ exn(i)

The monochromatic intensity, B(v, T), is generally related to the differential amount of radiant energy,
dE, that crosses an area element dA in directions confined to a differential solid angle dQ being
oriented at an angle 6 to the normal of dA,

dE = B(v,T) cos 6dAdQdvdt, (1.43)
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in the time interval between t and t+ dt and the frequency interval between v and v + dv . Thus, we
obtain

8mh v3

dE = TdvdV = B, T) cos 8dAdQdtdv =

@ exp(z)-

= 47”3(1/, T) cos B dA % cdtdv = 47”15’(1/, T)dvdV (1.44)

and, hence

3
B(v,T) =2

)

(1.45)

The quantity g in eq. (1.44) expresses the probability of radiation propagation in a certain direction.
Using the relationship

B(®,T)dd = B(v(®),T)dv, (1.46)

where 9 stands for any variable like radian frequency, w, wavelength, 4, wave number as defined in

spectroscopy, ng = ;11 = v/c or the wave number as defined in physics n, = 27” = 2% = w/c, that can
be related to the frequency v via the transformation v(¥9), yields then
3
B(w,T) = B(v(w), T)Z—:) = (147

" ()

Equations (1.45) and (1.47) are customarily called the Planck functions for these two frequency
domains. The frequency domain is given by [0, ©]. As

Cc

= (1.48)

B, T) = B(v(/l),T)% = —B(w(d),T)

we obtain for the Planck function in the wavelength domain [oo, 0]
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2hc?

B, T) = —W. (1.49)
Since the wave numbers defined in physics is
np, =2 ="=w/c, (1.50)
we obtain the following result
2hc? n3

B(n,,T) = B(v(np),T):Tvp = o o) (1.51)
KT

Integrating eq. (1.47) over all frequencies yields for the total intensity

v3

()1

B(T) = [ B, T)dv = i—h s dv. (1.52)

Defining X = Z—; leads to

0 2k* 0 x3
B(T) = [y B, T)dv = Z=T* [] o dX (153)

where the integral amounts to
0 3 4
[ ———dx =" (154)

exp(X)—-1 15

Thus, eqgs. (1.53) and (1.54) provides for the total intensity
B(T) = BT* (1.55)

with
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B _2mtk*
T 15c2p3 "

(1.56)

Since blackbody radiance may be considered as an example of isotropic radiance, we obtain for the
radiative flux density also called the irradiance

F(T) = nB(T) = nfT* (1.57)
or

F(T) = oT*, (1.58)

where 0 = 8 = 5.67 X 1078Jm~2s71K~* is the Stefan constant.

According to Stefan’s empirical findings and Boltzmann’s thermodynamic derivation, eq. (1.58) is
customarily called the power law of Stefan and Boltzmann. On the other hand, the integration of eq.
(1.49) over all wavelengths yields

2hc? 2hc?
da

AkT AkT

B(T) = [ B(A,T)dA = — dr. (1.59)

. o h . .
By using the definition X = M—CT the total intensity becomes

B(T) =

2k* o0 x3 24
c?h3 4f0 exp(0-1% = Tsczn3 T* = BT*, (1.60)

i.e., eq. (1.55) deduced in the frequency domain and eq. (1.60) deduced in the wavelength domain

k* 150
(c2h3) _ (2m5)
number domains. If we consider the transformation from the frequency domain to any ¥ domain, where
¥ stands for w, A, ng, or n,,, we have to consider that B(d,T)dd = B(v,T)dv. This relationship was
used in eqs. (1.47), (1.48) and (1.51). On the other hand, according to the theorem for the substitution
of variables in an integral, we have

= const. The same is true for the two wave

provide identical results, and, hence,

9 dv(9
B, T)dv = fﬁlzB(v(ﬁ),T)%dﬁ, (1.61)
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where v(¥9) is the transformation from v to 9, v; = v(¥9;), and v, = v(¥9,). If we consider, for
instance, Rayleigh’s radiation formula

8

U, T) = - kTexp (-22) (1.62)

which satisfies , like the Planck function, Ehrenfest’s requirements in the red and violet ranges, the
monochromatic intensity will read

BO,T) =2 kTexp (- 12). (1.63)

Thus, the total intensity reads

2k* 4 (® oo 2k* 4 4
;T [, X?exp(=X)dX = = T'T(3) = BeT*  (1.64)

c2h

B(T) = [ B(v,T)dv =

c2

where X = :—; and Br = %. Here, the subscript R characterizes the value deduced from Rayleigh’s
radiation formula. This value differs from that obtained with the Planck function by a factor, expressed
by Br = 308 /m* = 0.3088. Thus, in the case of Rayleigh’s radiation formula the value of the Stefan
constant would be given by o = 0.3080 = 1.75 X 1078Jm~2s"1K~*. If we consider any finite or
filtered spectrum ranging, for instance, from v; to v, , eq. (1.53) will become

2k* 4fX2 X3

X2 _
B(T)Xl T c2p3 X1 exp(X)-1

dX = BsT*, (1.65)

where the value of the filtered spectrum, g, is defined by

By = 2k* sz X3
F = c2p3Jtx, exp(X)—1

dX. (1.66)

This quantity reflects the real world situations. In such a case the Stefan’s constant would become
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015 X, Xx3
m* X1 exp(X)-1

Op = dX = eF(Xl,Xz)O-, (167)

where the characteristic value of the filtered spectrum, ez (X, X,), is defined by

3
er(X, X)) == [ —X__dx. (1.68)

m* X1 exp(X)-1

This means that in the instance of a filtered spectrum the power law of Stefan and Boltzmann must read

Fp(T) = ep(Xy, X,)oT*.  (1.69)

This formula describes the fractional emission of a blackbody due to a finite or filtered spectrum.
Equation (1.69) has the form commonly used in the case of gray bodies that are characterized by
imperfect absorption and emission.

Even though Wien’s displacement relationship was well-known before Planck published his famous

radiation law, it can simply be derived using eq. (1.45) by determining its maximum, i.e., aB;z'T) =
2
and 2 BS;’T) < 0. The first derivative reads

This derivative is only equal to zero when the numerator of the term on the right-hand side of eq. (1.70)
is equal to zero (the corresponding denominator is larger than zero for 0 < v < ), i.e.,

3{exp(xy) — 1} = xyexp(x,) (1.71)

with x, = hv/(kT). This transcendental function can only be solved numerically. One obtains
x, = 2.8214 , and in a further step
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”;"f =x,~ (1.72)

where v, 1s the frequency at which the extreme (either a minimum or a maximum) of the Planck
function in the frequency domain occurs. We note that the value 2.8214 is related to the Aurea ratio as
follow:

[(@)28/7 + (@)7/7] x 5 = 2.8240 ~ 2.8214,

with @ = Y541

= 1,6180339.

9%B(v,T
(v )<
ov2

It can simply be proofed that for this extreme the second derivative fulfils the condition 0

so that the extreme corresponds to the maximum, v,,4,. If we use that ¢ = Av we will obtain

AT = =2 =5.098 X 107°mK. (1.73)

v

This formula should be called Wien’s displacement relationship, rather than Wien’s displacement law
because the latter is customarily used for eq. (1.37).

For the two different wave number domains, we obtain the same result. Thus, we have

A(np) — /1(”5) — A(V)

max max max:- (1 74)

On the other hand, if we consider the Planck function (1.49) formulated for the wavelength domain, the
first derivative will read

%B(A, T) = %(5 {exp (;(—CT) — 1} - ;TCTexp (%)) (1.75)

Again, this derivative is only equal to zero when the numerator of the term on the right-hand side of eq.
(1.75) equals zero. The corresponding denominator is also larger than zero for 0 < A < . Thus,
defining

h
X = ﬁ (1.76)
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leads to

5{exp(x;) — 1} = xyexp(xy). (1.77)

The numerical solution of this transcendental function reads x; = 4.9651. Using this result yields

AT = =2 = 2.897 X 107°mK. (1.78)

max 1
We note that the value 4.9651 is related with the Aurea ratio as follow:
[((b)28/7 + (q))—14-/7 + (q))—28/7 + (@)—49/7] % % = 4.9442 ~ 49651,

with @ = Y541

= 1,6180339.

1.2 On some equations concer ning the adelic har monic oscillator .

With regard the ordinary quantum oscillator, the evolution operator U, (t) is defined by
U O () = [, Ko y)ps” )dy,  (1.79)

where the kernel Kt(oo) (x,y) for the harmonic oscillator is

2 2
K (x,) = 2n(2 sin 0)lsin ¢] . 2exp2mi (322~ 22

2tant sint

). (1.80)

With regard the p-Adic quantum oscillator, a p-adic evolution operator is given by

18



Up (P () = [, K ey @ )dy. (1.81)

where the kernel for the harmonic oscillator is

_ 24,2
KP (0, y) = 4,201t 2, (22 - 220), te G\(0). (1.82)

sint 2tant

Thence, the eq. (1.81) can be written also as follow

Up(OWP () = [, & @01t 2, (325 - 222 ) pP()dy. (182b)

sint N 2tant
Furthermore, the operator U, (t) and its kernel Kt(p)(x, y) satisfy the group relations

Up(t +t) =U,()U,(t), (1.83)

K2 00y) = Jo K G 2K (2,y)dz. (1.84)
With regard the harmonic oscillator over adeles, let the evolution operator U(t) be defined by
U = [, K.(x,y)p()dy, (1.85)
wheret €G c A, x,y € A, and P(x) € Ly(4). Also U(t) = Un(te) [, Up(tp) and

Ke(6y) = K (oo, o) Tlp K (2, 35), (1.86)

where Kt(;o) (X, Yoo) and Kt(:) (xp,yp) for the harmonic oscillator are given by (1.80) and (1.82).
Denoting A(a) = A (as) [1, 4, (ap) one can write
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K.(x,y) = A(2sint)|sin t|~/? ( x2+y2) (1.87)

sint 2tant/’

which resembles the form of real and p-adic kernels. Thence, the eq. (1.85) can be written also as
follow:

UOPK) = [, A(2sint)|sin |12 ( —x+y)1/;(y)dy (1.87b)

sint 2tant

We define an orthonormal basis for the corresponding adelic evolution operator,

U(t) = U (to) [T, Up(ty), tE€A, (1.88)

as

Yep @) = S ) T, ngz)ﬁp(xp), x €A. (1.89)

According to the definition (1.89), it follows that any eigenstate of the adelic harmonic oscillator is

lpaﬁ (X) (Znn|)1/2 —ﬂszn (X\/%) HPEFaﬁ l/)apﬁp (xp) HPEFaB Q (|x19 |P) (1 90)

2. On some equations concerning the modifications to the Boltzmann equation governing
the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-
critical-string termsin dilaton-driven non-equilibrium string cosmologies. [4]

The main relationship between the Einstein and g-model frames is

_ at _
Guvw = € Z(Dggva ﬁ:e ® (2.1)
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where @ is the dilaton field, and the superscript ¢ denotes quantities evaluated in the o-model frame.
To discuss the non-critical string (off-shell) corrections to Boltzmann equation, it will be necessary to
consider time derivatives in the o-model frame. This is due to the fact that it is in this frame that the
target time X° = t,, is related simply to the Liouville mode ¢ in non-critical string theories,

p+t,=0. (2.2)

The solution of the generalized conformal invariance conditions, after Liouville dressing, in the o-
model frame is:

—B'=g"+Qg" (23)

where the prime denotes differentiation with respect to the Liouville zero mode p, and the overall
minus sign on the left-hand side of the above equation pertains to supercritical strings, with a time like
signature of the Liouville mode, for which the central charge deficit Q2 > 0 by convention.
Furthermore, we have that upon the inclusion of matter backgrounds, including dark matter species, the
associated equations, after compactification to four target-space dimensions, read in the Einstein frame:

eZ(D

3H? = G, — Q0 = Go,

2H + 0y + 00 + D + P = —

. . 197V, 1, _ — G 20 __
&+ 3HD +Zﬁ+5(gm —3p,) = -2 ——Gyg, (2.4)

where 0,,,(p,,) denotes the matter energy density (pressure), including dark matter contributions, and
00 (pe) the corresponding quantities for the dilaton dark-energy fluid. All derivatives in (2.4) are with
respect the Einstein time ¢ which is related to the Robertson-Walker cosmic time. The modified
Boltzmann equation for a four-dimensional effective field theory after string compactification (or
restriction on three-brane worlds), in the presence of non-critical (off-shell) string backgrounds and
dilaton source terms is:

d_n_g 3 Ea_f_ i Op! 3 6_f_ [} 2, '
2= PP = (04 ne®®) [ dPp it —ne® (T + @)

3171 2L 3y CUL _jan  ad 30,0 (2 g
[d p|p|6|ﬁ|+fdp - +3-n=3ne (a+CD)n+

+[L2CIf] - (0 +net0) fa¥p L (25)
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With regard the form of the dependence of f on the dilaton source terms, which would survive a
dilaton-driven critical-string cosmology case, we constrain this form by requiring that in the Einstein
frame these are two types of dependence on @: (i) explicit, of the form e~*?, arising from the fact that
the phase space density is constructed as a quantity in the g-model frame of the string, which is then
expressed in terms of quantities in the Einstein frame. As such, it is by definition (as a density)
inversely proportional to the proper g-model frame volume V9 = [d*x,/—g° « e*® on account of
(2.1); (11) implicit, corresponding to a dependence on @ through the Einstein-frame metric g;; (2.1).
Hence the general structure of f is of the form:

f(@.5,% g5y = e** guvi t) x e **F (Il %,1). (2.6)

This implies that:

3 3
af dg: of alpl of
a3 —=—4fd3 +Zfd3 “du :—4n—2fd3 Z LN
J a5 PIY 2] F P50 5, P L9 5g, 1)

5, 0 N
= —4n — fd%lpl#z;l =—4n+3 [d3pfpl,t) = -n, (2.7)

where in the last step we have performed appropriate partial (momentum-space) integrations. The final
form of the Liouville operation (2.5), then, reads:

d i : ' ' a3
L 4+3(%)n—dn=3neZn + 4@+ [ZLCIF]. (2.8)

a

We now notice that non-critical terms can be expressed in terms of the Weyl anomaly coefficients for
the (o-model) graviton and dilaton backgrounds as:

!

a 1 ~ 3.
3778(1)5 — 4776_(1) (gguv[gﬁ;’av _ ZB(Dezc]i))
4ne®d = 4ne®B®. (2.9)

where we used the Einstein frame metric to contract indices, with S°7% denoting the graviton Weyl

anomaly coefficient. We are concentrating in this chapter to the S$I%” = 0. Thus the Boltzmann

equation finally becomes

d j : 1 - 5 5 a3
d—Ttl +3 (g) n—on= En(e CghviTav 4 2e®F%)n + prC[f]. (2.10)
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Now we consider solutions of the modified Boltzmann equation (2.8), or equivalently (2.10), for a
particle species density n in the physically interesting case of supersymmetric dark matter species,
viewed as the lightest supersymmetric particles. It is convenient to write the Boltzmann equation for
the density of species n in a compact form that represents collectively the dilaton-dissipative-source
and non-critical-string contributions as external-source I'(t)n terms:

d 7 d3 . 1 _ ~ ~
d—’: + 3§n =T(t)n+ prC[f], L) = +-n(e g™ BEe +2e°4®) (2.11)

where we work in the physical scheme (2.2) from now on, for which n = —1. Depending on the sign of
I'(t) one has different effects on the relic abundance of the species X with density n, which we now
proceed to analyze. To find an explicit expression for I'(t) in our case we should substitute the solution
of (2.3), more specifically (2.4). Regarding the form of (2.11) it is nice to see that the extra terms can
be cast in a simple-looking form of a source term I'(t)n including both the dilaton dissipation and the
non-critical-string terms. In a more familiar form, the interaction term C[f] of the above modified
Boltzmann equation can be expressed in terms of the thermal average of the cross section o times the
Moeller velocity v of the annihilated particles

. .
d_’t‘ = _3§n — (vo)(n? —nZ,) +I'n. (2.12)

Let us assume that n = ng‘;)

equations at all times t < t; is given by

at a very early epoch t,. Then the solution of the modified Boltzmann

Neqa® = ng;)a3 (to)exp (ftto th). (2.13)

The time t,, characterizes a very early time, which is not unreasonable to assume that it signals the exit
from the inflationary period. Soon after the exit from inflation, all particles are in thermal equilibrium,
for all times t < t;, with the source term modifying the usual Boltzmann distributions in the way
indicated in eq. (2.13) above. It has been tacitly assumed that the entropy is conserved despite the
presence of the source and the non-critical-string contributions. In our approach this is an
approximation, since we know that non-critical strings lead to entropy production. However, the
entropy increase is most significant during the inflationary era, and hence it is not inconsistent to
assume that there is no significant entropy production after the exit from inflation. We assume that
above the freeze-out point the density is the equilibrium density as provided by eq. (2.13), while below
this the interaction terms starts becoming unimportant. It is customary to define x = T /my and restrict
the discussion on a particular species ¥ of mass my, which eventually may play the role of the

dominant Dark Matter candidate. It also proves convenient to trade the number density n for the
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quantity Y = n/s, that is the number per entropy density. The equation for Y is derived from (2.12) and
is given by

ay

= = my(vo) (£ Guders) * (R +32)(r2=v2) - —(1+=2)y. (@214

dx

where Gy = 1/Mp4nck is the four-dimensional gravitational constant, the quantity H is the Hubble
expansion rate, h denote the entropy degrees of freedom, and (vo) is the thermal average of the relative
velocity times the annihilation cross section and g, is simply defined by the relation

2
0+ Ao = %T‘*geff. (2.15)

We next remark that p, as well as Ap, as functions of time are known, once one solves the
cosmological equations. However, only the degrees of freedom involved in p are thermal, the rest, like
the cosmological-constant term if present in a model, are included in Ap. Therefore, the relation
between temperature and time is provided by

A

2
p =T gerr(T) (2.16)

while p + Ap are involved in the evolution through

8GN (p + Ap).  (2.17)

3

H? =

We note that 4—; = 14.323944 and g = 0.328986813 can be connected with the Aurea ratio as
follow:

3
[(@)28/7 + (D)7 + (9)2V/7] x 5 = 145623 ~ 14.3239,
[(©)714/7 + (©)72/7] x = = 0.32827 ~ 0.3289.

with @ = Y5+

= 1,6180339.
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Thus, it is important to bear in mind that Ap contributes to the dynamical expansion, through
eq. (2.17), but not to the thermal evolution of the Universe. The quantity g, defined in (2.15),

is therefore given by
~ 30 .-
8y =8yt T Ap. (2.18)

The meaning of the above expression is that time has been replaced by temperature, through eq.
(2.16), after solving the dynamical equations. In terms of g, the expansion rate H is written

as

_47°G,,
45

H2

7%, . (2.19)

This is used in the Boltzmann equation for ¥ and the conversion from the time variable ¢ to

temperature or, equivalently, the variable x. For x above the freezing point x,, ¥ ~Y, and,

upon omitting the contributions of the derivative terms dh/dx, an approximation which is also
adopted in the standard cosmological treatments, we obtain for the solution of (2.14)

~TH™
qu:g(;)exp(— [ . de. (2.20)

Here, Ye(qo) corresponds to ngj) and in the non-relativistic limit is given by

yo - 2452 %(zm)‘” exp(—1/x) (2.21)
T
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. N . . (0)
where g counts the particle’s spin degrees of freedom. In the regime x<x,, Y>>V, " the eq.

(2.14) can be written as

d 1 45 Y  TH!
——=—m-(vo) —G h+ . (2.22
dx Y "< >( pa Ngeﬂj xY (2:22)

3
We note that % = 2.279726, 2—2 = 3.03963 and 44% = 2.75611 can be connected with the Aurea

ratio as follow:

1
[(@)2/7 4+ (9)° + (P) 727 + (P)735/7] x - = 27811~ 275611,
[(©)28/7] x = = 3.046 ~ 3.03963,

[(©)28/7] x g = 2.2847 ~ 2.279726,

with & = V5+1

= 1,6180339.

Applying (2.22) at the freezing point x, and using (2.20) and (2.21), leads, after a

straightforward calculation, to the determination of x, =7, /m; through

dx. (2.23)

*r

M = Xin B
x;' = Inf 0.03824, L™ 2y |y Lyl 82 ) LA
,/g * ’ ! 2 g*

26



As usual, all quantities are expressed in terms of the dimensionless x=7/m; and x,

corresponds to the time ¢, taken to represent the exit from the inflationary period of the

Universe.

Now, we note that, in order to calculate the relic abundance, we must solve (2.22) from x, to

today’s value x,, corresponding to a temperature 7, = 2.7°K . Then, we arrive at the result:

-1
’ Fh; dx. (2.24)

Xo

1/2
Y™ (xo) =Y (xf)+ (%} mZMPlanck§;1/2h(xO )J __[

We note that \/% = 0.26422 is related to the Aurea ratio as follow:

9
(@)737 4+ (@)75/7 + (@) 7777 + (@) 7 X 7 = 0.2664 = 0.2642 ..

with @ = ¥3*1

= 1,6180339.

In conventional Cosmology g, is replaced by g, and the last term in (2.24) is absent. The
quantity J is J = J. xf<va>dx. By replacing Y (xf) by its equilibrium value (2.20) the ratio of

the first term on the right hand-side of (2.24) to the second is found to be exactly the same as in
the no-dilaton case. Therefore, by the same token as in conventional Cosmology, the first term
can be safely omitted, as long as x, is of order of 1/10 or less. Furthermore, the integral on the

right hand-side of (2.24) can be simplified if one uses the fact that <va>n is small as compared

with the expansion rate a/a after decoupling. For the purposes of the evaluation of this
integral, therefore, this term can be omitted in (2.22), as long as we stay within the decoupling
regime, and one obtains:
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By integration this yields Y (x): Y (xo)exp(— _[ TH ”dx/x). Using this inside the integral in

(2.24) we get

,1 o TH™ B z\"? ~_1/2
(s |1+ | (2] bt % 226

where the function t//(x) is given by y/(x) = xexp(— IXFH “dx/ x). With the exception of the

prefactor on the right hand-side of (2.26), this is identical in form to the result derived in
standard treatments, if g, is replaced by g, and the value of x,, implicitly involved in the
integral J, is replaced by its value found in ordinary treatments in which the dilaton-dynamics

and non-critical-string effects are absent.

The matter density of species y is then given by

3\1/2 T 3 73 =

where the prefactor f is:

thence, the eq. (2.27) can be rewritten also:

1 3\1/2 3 3
Pz = (1 + J‘X/ —FH J(ﬂ} A T7
g o l//(X) 45 Ty MPlanck

28

o7

<. (2.27b)
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We note that the value 1—7;3 = 1.6601546 is related with the Aurea ratio as follow:

1
D + % = 1.648..~ 1.660,

4
(D)7 + (D)0 + ()~35/7 x 5= 1.648 ...

\/§2+1 and ¢ = @

where ® =

It is important to recall that the thermal degrees of freedom are counted by g, , and not g,

the latter being merely a convenient device connecting the total energy, thermal and non-
thermal, to the temperature 7. Hence,

7 2 (2.28)

. g, (T,) 11 1lg,

3

In deriving (2.28) only the thermal content of the Universe is used, while the dilaton and the
non-critical terms do not participate. Therefore the ¥ ’s matter density is given by

(4743 T B,
pr=fl—-——| w———=. (229
45 11 MPlanck g*']

This formula tacitly assumes that the 7 is decoupled before neutrinos. For the relic abundance,

then, we derive the following approximate result

\1/2 .
th§=(9;;h§)m_m{§j exp(jxﬂf = dxj, (2:30)

*
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) -1 . -1
where we used that fact that: 1+ f%dxzexp(j ’ldxj. In (2.30), the quantity
Yo Y\X *o X

referred to as no-source is the well known no-source expression

9 -1
)no?mme _ 1.066x10" GeV 231
) MPlanck g*‘]

@

X

where J = rf <va>dx. Thence, the eq. (2.30) can be rewritten also:

0 4 N\I/2 » 4
Qi - 1.066><10xGeV X[&j epr,rH de. (231b)
MPlunck\/gJ. /<Vo->dx g* " X

We note that the value g = 3.9090 is related to the Aurea ratio as follow

(2 X @) + ¢ = 3.8541 = 3.9090,
(©)28/7 4+ (@)° x % = 3.9270,

V5+1 _ V5-1

and ¢ >

where ® =

However, as already remarked, the end point x, in the integration is the shifted freeze-out point

as determined by eq. (2.23). The merit of casting the relic density in such a form is that it clearly
exhibits the effect of the presence of the source.
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3. On some equations concer ning the entropy of an eternal Schwar zschild black holein the
limit of infinite black hole mass, from the point of view of both canonical quantum gravity
and superstring theory. [5] [6] [7]

The counting of string states near a horizon of a black hole, gives a finite entropy which agrees
with the usual Bekenstein-Hawking result

The partition function for a single mode, labelled by the quantum numbers » and k,is given
by

Z(pin )= el (1) 32

m=0

Since the modes are independent, the total partition function is

2(8)=T]2(Bsn. k)= expl(- BE(B), (33)

n,k

and the Helmholtz free energy is
1 -
F(ﬁ):—Eng(z(ﬁ;n,k)). (3.4)
n,k

Approximating the sums by integrals, equation (3.4) becomes
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_L_2 d_zkw ﬂ _ ,Po
F(p)= ; Rj oy ! da)dwlog(l ). (3.5)

Differentiating the following equation

n_ﬁ{log[”“‘(‘fg/”)z}—z 1—(§g/w)2], (3.5b)

2z 1—\/1—(§€/a))2

which is an implicit equation for the frequencies @, gives the density of levels

dn 1 1+41-(&s/ )
ar_ 1 , (3.6
do 27 og[l\/l(fg/w)zJ GO

and changing the orders of integration, one obtains the expression

© ((u/‘s)z—m2 vl 2 2
A ot 1+\/1—(€/a)) (k +m )
F(ﬁ)_—(zﬁ)zﬁ;';da)log(l ) { dkklog[l\/l(g/a))z(szrmz) , (3.7)

where L’ = A is the area of the horizon. After performing the integral over k, equation (3.7)
becomes

F(ﬂ)zﬁ?dwlog(leﬂ”{(w/g)z 1(an/a))2+m72log{1+\/1EZ;Z;H. (3.8)

Expanding in powers of the field mass m , the leading term is
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F(,B):(Z”g)zﬂ_([da)a)zlog(l eﬁ"’), (3.9)

which is integrated to yield

2
We note that the value % = 18.2378 is related to the Aurea ratio as follow

4
(P)35/7 4+ (D)7 x 3= 18.2776 = 18.2378,

where ® = ¥5+1 .

We note that the eq. (3.3) can be rewritten also as follow:

Z@%{Iﬂﬂmm:m%}ﬁaé%?ﬁmfb@—émﬂ.GJ%)

n,lg
The resulting entropy, evaluated at the Rindler temperature 7, =1/2x, is

s A
? 36078

3.11)
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The result (3.11) agrees with the entropy of a scalar field propagating outside a finite mass
black hole as calculated by ‘t Hooft. In the limit of a large sphere, the entropy per unit area
should agree with that in Rindler space, i.e. in qualitative agreement with the result (3.11).

We will calculate the entropy of an infinitely massive, eternal Schwarzschild black hole by
(formally) evaluating the functional integral of Euclidean canonical quantum gravity. We begin
by formulating the functional integral representation of the partition function. If a spacetime

manifold J is static, there exist coordinates {x” } such that the metric may be written
g =gydx’ ®dx’ + gijdxi ®dx’, (3.12)

where g, is independent of x’, i, je {1,2,3}, and M has the topology R x X . Next, define the

Euclidean manifold J( , with topology S'xX, by defining the Euclidean “time” coordinate
0 =ix" and periodically identifying @ with period £. The metric on M then has signature +4,
and is written

g=-g,d0®d0 + gU.dx" ®dx’. (3.13)

The partition function for fields ¢ propagating on M can be expressed as a functional integral

Z(B)=N[D[pl ¥, (3.14)

where N is a normalization factor and / is the action of the theory on the Euclidean manifold.
For the theory of canonical quantum gravity, in which the metric is one of the fields to be
integrated over, the generalization of equation (3.14) is taken to define the partition function.
The partition function is formally written as

2(p)=¥[2le][Dlglexpl-1[g.0). (3.15)
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where the space ¥ of Euclidean metrics is restricted by boundary conditions, such as the total

energy contained in spacetime and behaviour at infinity. The Euclidean action functional 7
appearing in the integral is

Ig.4]=1,,[gl+1,[p.g]. (3.16)

where /., is the Euclidean Einstein-Hilbert action

I
Ilg]=+ = [— Ajl 8gR+26L5hKJ, (3.17)

and I, is the action of the “matter” (non-gravitational) fields ¢. The bare gravitational coupling

is explicitly denoted by G,. Thence, the eq. (3.15), can be rewritten also as follow:

7(8)= Njg)[g]jﬁ)[¢]exp[— (ﬁ(— [e,R+2] ghKD -1l g]} . (3.17b)

F

The usual method of calculation of the partition function (3.15) is to find a manifold M with
metric ¢ which is a stationary point of the classical action and satisfies the boundary
conditions. Then, writing an arbitrary metric g as g =g + f , one quantizes the fluctuations f

and ¢ in the background metric g. The action (3.17) can be expanded in powers of f as

Heol=tle+ 191= 1ala) 1o &1+ [0,
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and the partition function (3.15) can be written

Z(B)=e"" =exp(-1,[g)Z' (3.19)

where
2'= N [9[1][ Dlplexp(- (12 + /.4]- 14 [2]).  (3.20)
Thence, the eq. (3.19) can be rewritten also as follow:
Z(B)=e"" =expl- 1, () ¥ [ DLf][ Dlplexp(~(1[g + f.4]- L:[2]). (3.20b)

To study the partition function for gravitational and matter fields propagating outside an
infinitely massive, eternal black hole, the stationary point to expand around is a Euclidean

continuation R of Rindler space, with metric
g=5"d0®dO+dsQds+dx’ ®dx’ +dx’ ®dx’. (3.21)

The Euclidean “time” coordinate @ is periodic with period S, and we again restrict

x',x e [— %,%} to regulate divergences due to the horizon area 4.

Consider now the factor exp(— Y- [g]) in equation (3.19), which gives the contribution to the

entropy from the classical geometry. The effect of the curvature singularity is that

[e:R=240272-p). (3.22)

Ry
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Thus the Einstein-Hilbert action is

SEH[A]=—%:W (3.23)

From equation (3.23) one obtains the Bekenstein-Hawking formula for the entropy per unit
area,

Integrating out all the matter fields and tree level gravitons gives a contribution proportional to

1 . : . .
gk Including this term, the entropy per unit area is

where C is a constant which depends on the matter content of the theory. After integrating out
the matter fields and fluctuations of the metric, Z' has the form Z'=exp(~#"), where on
general grounds W' must be a diffeomorphism-invariant functional of the background metric g

. W' will contain all possible covariant terms, and may be expanded in powers of the Riemann
tensor and its derivatives as

wg]= 1 gg[—éamg(]z)] (3.26)
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Here a is a constant and Q contains all other induced covariant terms. We neglect a possible
renormalization of the cosmological constant. The effect of a is to renormalize the value of the

gravitational coupling in the effective action from G, to G,, given by

[a—y

1
—=—+a. (327
o ta. 327

Q
=

The next step is to evaluate equation (3.26) for Euclidean Rindler space R . To regulate the
curvature singularity at the origin, define R :(27r— ﬁ) /', where f is a smooth function
supported only on an ¢ -neighbourhood of the origin. The condition that (3.22) be satisfied

means that f must satisfy

jggf =24. (3.28)

Ry

We also require that the scale of variation of f is independent of the conical angle, so that
derivatives of f do not introduce additional dependence on f. Now consider the possible

types of terms that can appear in Q.

1. Any local or non-local term with n>2 powers of the Riemann tensor R,,, will be

proportional to (272— ﬂ)". This includes terms with arbitrary numbers of derivative

operators acting on R Their contribution to /' may be represented as

afuv *

o0

->'b,27-pB), (329

n=2

where the b, are constants.

2. Now consider terms linear in R with arbitrary derivatives acting on them. For

afuv 2
example, consider

38



1={e,(V?)R. (330)

)

Since R is now a smooth function, by use of Stokes’ theorem equation (3.30) can be

rewritten as an integral over the boundary of R ,

I=[en"V,R, (331)

OR

where 7 is a unit vector normal to &R . But R vanishes outside a small neighbourhood
of

the origin, so the integral / vanishes. It is obvious that all such terms will vanish after

integration by parts.

Due to the rapid falloff of the Green functions in four dimensions, non-local terms proportional

to one power of R will not appear, and the above list covers all possible terms. Thus, using

uvaf

the condition (3.22), the full Helmholtz free energy BF =S, [g]+ w [g] can be written

0

pF=-Yb,027-B), (3.32)

n=1

where b, = comes only from the Einstein-Hilbert term. The entropy is therefore

R

o(p)= Lo+ 2 (b, + pla b, o - Y (33D
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Setting [ =27, equation (3.33) reduces to the Bekenstein-Hawking entropy (3.1), but with the

renormalized gravitational coupling G, given by equation (3.27).

Thus we arrive at the conclusion that for the case of canonical quantum gravity coupled to
matter fields, the expression (3.1) for the Bekenstein-Hawking entropy of the fields propagating
outside a black hole is a general result, but the gravitational coupling appearing in equation
(3.1) is the renormalized gravitational coupling G, given by equation (3.27). Comparing

equations (3.27) and (3.25), we see that the divergences in the entropy are the same divergences
which renormalize the gravitational coupling.

Now we examine how quantum corrections affect the entropy of a two dimensional black hole.
In the two dimensional model proposed by Callan, Giddings, Harvey and Strominger (CGHS),
the divergence in the entropy of scalar fields moving in a black hole background is not the same
as the divergence which renormalizes the gravitational coupling. The CGHS model is defined
by the action functional

Scens = i[ag (e—w [R + 4(V¢)2 + 4,12]_ %(Vf)zJ , (3.34)

where g, ¢, and f are the metric, dilaton, and matter fields, respectively, and A is a
cosmological constant which defines a length scale for the theory. The classical theory defined
by the action (3.34) has eternal black hole solutions. Defining light cone coordinates x* and

choosing the line element to have the form ds® = —e*’dx"dx", these solutions are given by

e =e? =%—12x+x , (3.335)

where M is the black hole mass. The future horizon is the curve x™ =0.

Due to the bad infrared behaviour of scalar fields in two dimensions, in addition to the horizon
cutoff & one must also introduce an infrared cutoff /. The entropy is found to be
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o= llog(ﬁ) (3.36)
6 &£

Note that this entropy is not proportional to the horizon area. Instead, it represents an infinite
additive constant to the entropy. The origin of this entropy can also be understood by examining
the effective action obtained after integrating out the f field. This action is given by the

original action (3.34) plus a Liouville action, which can be written using the above metric as

o log(f/g)
S, =L [ax(p-toalt/ )V (o tog(e2)= - [, p Lon- 2Bl g

(3.37)

Note that the p field only appears in the combination p— log(ﬁ / 8). The first term in equation

(3.37) is the familiar correction to the classical action, and is responsible for the Hawking
radiation from the two dimensional black hole. The second term is proportional to the Euler
class, and is the term which gives rise to the divergent entropy of the scalar field.

The starting point for our discussion is the two-dimensional supersymmetric sigma model
describing the propagation of superstrings in a background spacetime metric g . The generating

functional for the two-dimensional superconformal field theory on a world sheet of genus 7 is
Vol j::) j@[;( j::) j@ exp(—I[X,W;e, 7)), (3.38)

where X* and ¥ are the bosonic and fermionic coordinates of the superstring, respectively, e

is the world sheet zweibein, and y is the gravitino. «, is the bare string coupling, and @

denotes the symmetry group of the two dimensional action 7/ , which includes diffeomorphisms,
superconformal transformations, and an on shell local supersymmetry. The first step is to gauge

fix the world sheet zweibein to e =e"é and the gravitino to y = pA, where é is a fiducial
zweibein, p are the two dimensional Dirac matrices, and A is a Grassmann variable. This

introduces reparametrization ghosts b,c, , and y, and equation (3.38) becomes
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exp(— I[X,b,c,ﬂ,y;eAé, pxl]).

(3.39)

Here SC denotes the group of superconformal transformations, F, is a fundamental region for
the integration over the 2m, supermoduli 7, and Q denotes the additional subgroup of

symmetries which remains after the gauge fixing. Q is generated by the conformal Killing
vectors and spinors. We imagine regulating the two dimensional field theory by replacing the
world sheet by a finite lattice. The volume of the group Q is then also naturally regulated.

Consider first the case of genus zero. After integrating over the world sheet fields and dividing
out the volume of Q, equation (3.39) for Z ©) takes the form

SO _ [2[A, 2]

= Flg;e,A,A 3.40
Ky VOZ(SC) (g,g ) ( )

where F'is a generally covariant functional of the background metric g, and also depends on

the world sheet regulator parameter ¢ and the superconformal parameters A and A . The basic
structure of F' can be determined by quite general arguments. To begin with, for a fixed value
of the regulator, F' may be expanded as a sum of integrals of powers of the Riemann tensor and
its derivatives.

The coefficients of the terms in the expansion of F will depend on &,A, and A, and will in
general diverge as & goes to zero. This is one of the difficulties involved in defining string
theory off shell. The coefficient of the term IggR is independent of ¢,A, and A . For this term

the integral over the superconformal parameters simply cancels Vol(SC), and so Z® can be

written

, [9[A, 2]

20 = k[, R4k, Vol(SC) O(g;e,A4), (3.41)

where Q contains all the other terms in F .
42



Although it is apparent that a unique definition of the off shell amplitude does not exist, it is
obvious that the first term in equation (3.41) governs the low energy scattering of gravitons, and
that its coefficient can be related in the usual way to the bare gravitational coupling. The genus

zero generating functional Z ©) has been written down for a ten dimensional background metric,
but we want to study four dimensional physics, so we must introduce a compactification

scheme. For simplicity, we will consider a target space § which is a product manifold M x K ,
where M is a four dimensional manifold coordinatized by {xi }; (which will eventually be
identified with four dimensional Euclidean Rindler space), and K is a D —4 dimensional

compact manifold coordinatized by {x’ },-:5 and having no intrinsic curvature. The metric on J

(0-4)

is block diagonal, decomposing into a metric g(4) on M and a metric g on K. A simple

(0-4) _ 5

i g

choice for K is the product manifold (S 1)0_4, with x' €[0,L] for i € {5,...,D}, and g

The L. are taken to be on the order of va'. The genus zero generating functional can now be

written

20r.A] [e,00(e:e.A2)|. (342)

o___ 1
70 _ _ Igg(4)R+ Vol(SC) 1 %

167G, | 3

s

where the bare four dimensional gravitational coupling is

2
Ko

=———. (343
0 167[-[1( gg(D%) ( )

All that is left now is to specify the four dimensional manifold 4 and the background metric.

The manifold M is taken to be Euclidean Rindler space &R,, which has an angle deficit

ﬂ 9
(27z -p ), and metric g(4) given by equation (3.21). From here the argument proceeds exactly as
before, when we found that the entropy per unit area at =2z depend only on the coefficient

of the integral of R, and we obtain the result that the entropy per unit area obtained from genus
zero string graphs is given by the Bekenstein-Hawking formula,
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It should by now be apparent that this result does not depend on the exact definition of off shell
superstring generating functionals, because changes in the prescription for off shell functionals
can only influence the result through the terms which depend on the regulator or the
superconformal parameters. These terms all give contributions to the entropy which vanish
when one sets f=2rx.

Now we define the quantity Z using equation (3.39) by

Z(‘”:;(ZJ 2laa] 70 (3.45)
" Vol(SC) Vol(Q)™

so that Z" is the regulated generating functional for the two dimensional field theory,
computed in a particular conformal gauge, and without the volume of QQ removed from it. We

have that Vol(Q) o log(s) and there exists a field redefinition such that

~

(0)
oz _7

Siogle) (3.46)

where [, is the spacetime action which generates equations of motion equivalent to the

superconformal invariance conditions. /,; has an expansion of the form

I, = c'[ £, (— R+ (Di 2)(V®)2 + %exp(%j[—lz + a'Q(g;a',g,A,/l)J , (3.47)

where ¢ is a constant and Q contains terms which are higher order in R with coefficients

ofuv >

that depend on &',¢,A,and 4. We can now integrate equation (3.47) with respect to log(g) to
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obtain Z (O), and insert this quantity in equation (3.45). Dividing out the volume Vol
(Q) oc log(s), we see that the coefficient of the integral of R is independent of &,A,and A. For

this term, the integral over the superconformal parameters cancels Vol(SC), and we arrive at
equation (3.41).

A major puzzle in the physics of black holes concerns the interpretation of the entropy
associated with a black hole. In the semi-classical approximation, the entropy is given by the
Bekenstein-Hawking formula:

where A is the area of the event horizon of the black hole and G is Newton’s constant. Using
Planck’s formula for a single massless boson we get the entropy density:

s(z)=2 i (Lj . (3.49)

B 5% 2z
We note that the value % = 0.438649 is related with the Aurea ratio as follow

(D)0 + (D) 27 + (P)~42/7 4 (d)75¢/7 x % = 0.437694 = 0.438649,

where ® = ¥5+1 .

Note that we have been able to define the entropy density because entropy is an extensive
quantity as it should be. However, the dominant contribution comes from the region near the
horizon z =0 and is not extensive but proportional to the area. If we put a cutoff on the proper
distance at z = ¢ the total entropy is:
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- A
S= Adz =———
J- S(Z) Z 360

) ~. (350)

where A is the area in the transverse dimensions.

Now, we derive the expression for the entropy in the bosonic string theory at one loop. This
derivation is essentially an application of equations (3.49) and (3.50). These considerations are
also relevant to Rindler strings. As our starting point we take the expression for the entropy in
field theory in the proper time formalism. The reasoning leading to the corresponding
expression in string theory is similar to the one employed in the derivation of the cosmological
constant. Let us consider the free-energy density for a single boson of mass m at finite

temperature S~ :

1(p.m*)= %j#dd-‘klog(l —e ). (3.51)

. o, . . . . © oo 1 A C()2 —(1)2
To write it in the proper time formalism we first introduce 1= J.O 20| Tdse‘( i) , expand
in D i

the logarithm and then perform the gaussian momentum integrals to obtain

o 1 d 2 2 2.2
f(ﬁ:m2)=_jo W%Z:‘em SIS (3.52)

The entropy density is as usual s(ﬂ,m2)= ﬂzaal.

For Rindler observers we simply put

f =2mz to obtain the local entropy density and then integrate as in (3.50) to get the total
entropy:

®© ®© 1 d < 7mzs - 72'2}"222 s
S(mz):AL dz(2) [ Ws—f;rze 1Rl (3 53
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There is an ultraviolet divergence as in (3.50) because the s integral diverges near s =0 for
small z . Notice that we have to be careful while interchanging the order of integration because
the integral over s is not uniformly convergent as a function of z. We can interchange the
order by putting appropriate cutoffs for both the integrals.

It is straightforward to generalize these formulae to the spectrum of the bosonic string in d =26
by summing the expression (3.52) over m”. In the light cone gauge the spectrum is given in
terms of the occupation numbers of the right-moving and the left-moving oscillators N,, and

N .-

ni *

o0

m? = 5{— 243 3 nlv, + ﬁ)} . (3.54)

i=1 n=1

subject to the constraint

24

Zi"(Nn,- ~N,)=0. (355

i=1 n=1

The constraint can be enforced by introducing

1 A -
[2 a6 ) (356

2

into the sum. It is convenient to introduce a complex variable 7=60+i The sum can then

2
be easily performed to obtain
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f(ﬁ)=—l[ : ) [, L #r(ime) \(ZMT}MZe p—4ﬂ_ B s

2\ 47%a Imz 'Im~z

Here 7 is the Dedekind eta function,

——<Rer<—, 0<Imz<o. (3.59)

Thence, the equation (3.57) can be written also as follow:

() Tl tmer Tt S 22
- 472 s Im 72 q - 1 p 47ra Imz

(3.59b)

The total entropy computed from this formula has a divergence for each mode coming from the

region near Imz = 0. This would be the end of the story if we were dealing with a field theory

of the string modes. But string theory is not merely a sum of field theories because of duality.

The sum of field theories overcounts the correct string answer. The correct generalization of the

above formulae to string theory is more subtle and requires a proper treatment of this

overcounting. We do this by noting that using a modular transformation of 7, every point in §

can be mapped onto the fundamental domain & of a torus:

[o|>1, —%<Rer<%, Imz>0. (3.60)

48



Recall that the modular group I' at one-loop is the group of disconnected diffeomorphisms of a
torus up to conformal equivalences. It is isomorphic to the group SL(2,Z)/ Z, under which 7

transforms as

ar+b
ct+d’

a b
[ jeSL(2,Z). (3.61)
c d

We have to divide the SL(2,Z) by Z, because the elements {I.—I} leave 7z unchanged. The

o

strip § consists of an infinite number of domains & each of which can be obtained from ¥ by

a b

the action of an element of I", 7/(,01 ,02) = [ J where p, and p, are relatively prime. The

P
integers @ and b can be chosen in such a way that Imz'=Imz/E (T, PO ,02) where we have
defined

E(t.p.p)=lpr+pf . (3.62)

Note that in expression (3.57), if we replace the summation by 1 then what we have is the
cosmological constant at one loop for the bosonic string at zero temperature which is invariant
under modular transformations. Using these facts we see that

2

f(ﬂ)=—%(4 12 ,j L ! 3 dzz"(lmr 12‘ (2””1 48Zex — B

Imz 47ra Imr

1 1" 1 -48 ,B E 7,7, r)
- d2 I 12 27t 1072 ) 3.63
2 [47r2a'j L Imz’ (Imz ‘ ( 1 rlzrzexp Ara'Imr (3.63)

It follows now that the total entropy in the bosonic string at one loop is given by
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~d’r(Im7) 13‘ ( 2””1 4826xp——7ZZ E(e.ri,r)

-13
S = (LJ ij.owdz(27zz)3E(T,7’1,7”2)X L a'Imz

Ar*a Imz

nr

(3.64)
We note that the eq. (3.64) can be written also as follow:

1

q24ﬁ( qXZmr* ZeXp— ZE(T}‘I,FZ)

il s a'lmrt

—13
Imr

() 2l ey

T a 1’1’12'

(3.64b)

It is easy to check that this expression is modular invariant using the Poisson resummation
formula. This means that the restriction of the modular integration to the fundamental domain
& 1s a consistent procedure.

Thence, we conclude that in string theory the modular integration is over the fundamental
domain ¥ and not over the strip §. The entropy is ultraviolet finite because the region of short
proper time near Imz = 0 is excluded by modular invariance. Infrared divergences coming from
very large Im7z may still be present.

3.10n some equations concerning the thesis “Can the Universe create itsef?”. The
adapted Rindler vacuum in Misner space.

We find that the Universe does not seem to be created from nothing. If the Universe is created
from something, that something could have been itself. Thus it is possible that the Universe is
its own mother. In such a case, if we trace the history of the Universe backward, inevitably we
will enter in a region of closed timelike curves (CTCs). Therefore CTCs may play an important
role in the creation of the Universe.
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A simple spacetime with CTCs is obtained from Minkowski spacetime by indentifying points
that are related by time translation. Minkowski spacetime is (R4,77ab). In Cartesian coordinates

(t,x, y,z) the Lorentzian metric 77, 1s given by
ds’ =—dt* +dx*> +dy* +dz>. (3.65)

Now we identify points (t,x, y,z) with points (t + nt,y, X, y,z) where 7, is a positive constant and
n is any integer. Then we obtain a spacetime with topology S' x R’ and the Lorentzian metric.
Such a spacetime is closed in the time direction and has no Cauchy horizon. All events in this
spacetime are threaded by CTCs. Minkowski spacetime (R“,r]ab) is the covering space of this

spacetime.

Now let us consider a particle detector moving in this spacetime. The particle detector is
coupled to the field ¢ by the interaction Lagrangian cm(r)¢[X (Z')], where ¢ is a small coupling
constant, m 1is the detector’s monopole moment, 7 is the proper time of the detector’s
worldline, and X (2') is the trajectory of the particle detector. Suppose initially the detector is in

its ground state with energy E, and the field ¢ is in some quantum state ‘ > . Then the transition

probability for the detector to all possible excited states with energy £ > E,, and the field ¢ to

all possible quantum states is given by

P=c Y [(EmO)E,) #(AE). (3.66)

E>E,

where AE = E - E, >0 and $(AE ) is the response function

FAE)= " de[ dre™ G (x(z) X(7'), (3.67)
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which is independent of the details of the particle detector and is determined by the positive
frequency Wightman function G*(X X ') = <|¢(X )¢(X 'X> Thence, the eq. (3.66) can be written

also as follow:

<E\m(0)|EO> ’

[ dr[” dare™ 6 (x(c) X(z)). (3.67b)

2
P=c’y
E>E,

The response function represents the bath of particles that the detector effectively experiences.
The remaining factor in eq. (3.66) represents the selectivity of the detector to the field and
depends on the internal structure of the detector. The Wightman function for the Minkowski
vacuum is

1 1

G, (X, X')=
M( ) 47[2—(t—t'—i8)2+(x—x')2+(y—y')2+(z—z')2

., (3.68)

where & is an infinitesimal positive real number which is introduced to indicate that G* is the
boundary value of a function which is analytic in the lower-half of the complex Ar=7-1¢'

plane. For the adapted Minkowski vacuum in the spacetime (S 'x R’ ,nab), the Wightman

function is

| 1
G (X, X")= . (3.69
A e e PRI Y e ey o ey S

Assume that the detector moves along the geodesic x = ¢ (ﬂ < 1), y=1z=0, then the proper time is
t=1t/{ with ¢ =1/4/1- % . On the geodesic, the Wightman function is reduced to

1

1 1 1
G+(TIT!) = FZ?i:—OO = - 47_[2{2 Z?i:—oo(

T—T'+%—i£/i)z—ﬁz(r—r’)2 ‘

(3.70)

—(t—t'+nt0—is)2+ﬁz(t—t’)2
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Inserting eq. (3.70) into eq. (3.67), we obtain

1
4_7-[2(2

1
(A‘L’+n—§0—i£/{)2—BZ(AT)2’

F(AE) = — Yoo—dT [ dATe iAEAT (3.71)

where AT =t —t'and T = (r + t')/2. The integration over At is taken along a contour closed in the
lower-half plane of complex Az. Inspecting the poles of the integrand, we find that all poles are in the
upper-half plane of complex At (we note that f < 1). Therefore according to the residue theorem we
have

F(AE)=0. (3.72)

Such a particle detector perceives no particles, though the renormalized energy-momentum tensor of
the field has the form of radiation. Let us consider a particle detector moving in Misner space with the
adapted Rindler vacuum. Suppose the detector moves along a geodesic with x =a, y = ft,andz =0
(a and [ are constants and a is positive), which goes through the P, R, and F regions. The proper time

of the detector is T = t/{ with { = 1/,/1 — B?. We note that the Hadamard function for the adapted
Rindler vacuum in Misner space is

1) N =Ly 14
GHEX) ZﬂzZ"Z_w56'sinhy[—(n—n’+nb)2+y2]’ (3.73)

thence, on this geodesic, the Hadamard function in (3.73) is reduced to

1

1 14 Y . r
212 sin hy+/(a?2—t2)(a2—t2) =" —(n—n'+nb)2+y?’

GO, t) = (3.73b)

where y is given by

2a%—t2—tr2+B2(t—tr)?
2y/(a2-t2)(a?-tr2) ’
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and n —n' is given by

a(t—tr)

sinh (77 -1 ) = (a?-t2)(a2-tr?)

(3.75)

Though this Hadamard function is originally defined only in R, it can be analytically extended to F, P,
and L. The Wightman function is equal to 1/2 of the Hadamard function with t replaced by t — ie/2
and t’ replaced by t' + ie/2, where ¢ is an infinitesimal positive real number. Then the response
function is

+e—iEA‘L'

Yoo [ AT [ di 4 ,
sinhy+\/[az—52(T+%—;—£{)2][az—ZZ(T—%+2i—§)2]{—[(77—77’)+nb]2+]/+2}

1
412

F(E) =

(3.76)

where T=(t+1)/2, At=t—1; y* and (n —n’)* are given by (3.74) and (3.75) with t
replaced by t — ie/2 and t' replaced by t" + ie/2. The integral over At can be worked out by the
residue theorem where we choose the integration contour to close in the lower-half complex-At
plane. The result is zero since there are no poles in the lower-half plane. Therefore such a
detector cannot be excited and so it detects nothing. We have also calculated the response
functions for detectors on worldlines with constants &,y and z and worldlines with constants &, y,
and z - both are zero. Now we consider a particle detector moving along a geodesic with
X, 0, p=constants. The response function is given by eq. (3.67) but with the integration over t
and 7’ ranging from 0 to co. The Wightman function is obtained from the corresponding
Hadamard function by the relation

GH (X, 0,0:7, 1, 0,¢) =56V (=2, 2,0,8:7 +.1.0.¢'). (.77
where ¢ is an infinitesimal positive real number. Along the worldline of the detector, we have

Z(1,7") = —sinh—sinh— + cosh—cos h— = cosh—, (3.78)
To Trio To Trio To
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Z(-1,7) = +sinh—sinh— + cos h=cos h— = cosh =2, (3.79)
To Trig To T/ To

0

and

GT(X, X)) = — ( 1H’_i£ + 1—cos1hﬂ>' (3.80)
To To

2.2
87T \ 1—cos h

Then the response function is

F(AE) = — [ dT [, dAze=2Frodt | +——| s

1-cosh(At—ie)  1—cosh2T

where AT = (t —1')/ry and T = (t + 7')/2r,. It is easy to calculate the contour integral over At. We
find that the integration of the second term is zero and therefore, the result is the same as that for an
inertial particle detector in an eternal de Sitter space. Thus we have

daF 1, AE
dT ~ 2m e2™roAE_¢’

(3.82)

which is just the response function for a detector in a thermal radiation with the Gibbons-Hawking
temperature

1
TG—H = ;T'O (383)

For a conformally coupled scalar field in a conformally flat spacetime, the Green function G (X, X") of
the conformal vacuum is related to the corresponding Green function G (X, X") in the flat spacetime by

GX,X)=01X)GX, XHQ1(X). (3.84)
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It is well known that in the simply connected de Sitter space, an inertial particle detector perceives
thermal radiation with the Gibbons-Hawking temperature if the conformally coupled scalar field is in
the conformal Minkowski vacuum. Now we want to find what a particle detector perceives in the
adapted conformal Rindler vacuum in our multiply connected de Sitter space. The response function of
the particle detector is still given by eq. (3.67). The Wightman function is obtained from the
corresponding Hadamard function by eq. (3.77). The Hadamard function for the conformally coupled
scalar field in multiply connected de Sitter space is related to that in Misner space via eq. (3.84). The
Hadamard function for the adapted Rindler vacuum in Misner space is given by eq. (3.73). Now we
consider particle detectors moving along two kinds of worldlines in our multiply connected de Sitter
space.

1. A particle detector moving along a geodesic with 1, 0, ¢ =constant in region F.

In this region the Hadamard function is

1 i 1 oo y
GR (X X) = ==, v , (3.85)
sin hy <t—2—1><t—2—1>[—(l—l’+nB)2+r§)’72]
To To

where ¥ is given by

coshy = ;2{—1 + tr—? [cos 6 cos 6’ + sin O sin 6’ cos(¢p — (].’)’)]}. (3.86)

On the worldline of the particle detector, the Hadamard function is reduced to

Wz 71 _ 1
Geg (1) = — 5 Ximo —
sin hy (t—2—1>(t—2 1)(—n232+rg]72)
7o 7o

L . (3.87)

and coshy isreduced to
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Using the proper time 7 defined by the following equation

f=rycosh—, (3.89)
To

on the worldline of the particle detector cos h ¥ and GC(,? can be written as

~ cos h2T+cos hAt—2
coshy = , (3.89b)
cos h2T—cos hAt

and

D __ ! yo 4
Ger (T, A7) = n2r¢ “"="% sin h¥(cos h2T—cos hAt) (n2b2-¥2)’ (3.90)

where 7 > 0,7" > 0,At = =) ,T = (HTT) d b = B/ry. The Wightman function is equal to one
To 0
half of the Hadamard function with At replaced by At — ie. Thus the response function is

F(AE) = Y o-_ o F(AE), (3.91)

where

y
:Fn(AE) 212, Zf de dAte” AETOAT X [sinh]’?(cos h2T—cos hAT)(nzbz—yz)]

(3.92)

At—-AT—-ie

Thence, the eq. (3.91) can be written also as follow
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F(AE) = S5 oy [y dT [, dBze 257007 x | y . (3.92b)

2n2rg sin h¥(cos h2T—cos hAT)(n2b%2—y2) AToAT—ie

2. A particle detector moving along a co-moving worldline in the steady-state coordinate system.
Suppose the detector moves along the geodesic p,0,¢ = constants (such a worldline is a

timelike geodesic passing through R and into &) where p = (x2 +y° + 2 )”2 and the proper

time 7 are related to the static radius » by
r=-rplig=pe’". (3.93)

The Cauchy horizon is at »=7,, or p=-77 =re ~'. On the worldline of the detector the
Hadamard function is

1 y & 1

2.2 2
277 2LsinhA2T"——°° 2 (f—f'

GUO(r,A7)= (3.94)

}/_

where Az =(r—7')/r,, T=(c+7')/2r,, L=pe’ /r,=r(T)/r,, y is given by

1-r
coshy = , (3.95)
V1+ I 2% coshAz
and ¢t —¢' isrelated to 7 and Az by
' _ 72
cosht t coshAr-L (3.96)

rp N1+ —2coshAr

By analytical continuation, egs. (3.94-3.96) hold in the whole region covered by the steady-state
coordinates in de Sitter space. The Wightman function G* is equal to one half of G with A7

replaced by A7 —ie . The response function is F(AE)= Z:O %(AE) where

=—0 N
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1 ® ® —IAEr AT Y
7 (AE)= = [ ar| dase™m x . ' : . (3.97)
2LsinhT[7/2 —(“’ +nb] }
2 A
At—>ATr—is
The contribution of all n # 0 terms is
d g 1 Z“’: sin(AErOATf+ ) 8 Q (1 +L'-20 coshAr;) ’

dT = " 47r2(62’"'°AE—1) Az,

"=l Lsinh A;” atlL(L2 — l)cosh 5

—(a, + nb)(L2 coshAz, — 1)

(3.98)

which represents a “grey-body” Hawking radiation. As 7 — o (or L —>x), %Zwofin

exponentially drops to zero; therefore, at events far from the Cauchy horizon in &, the particle
detector only perceives pure Hawking radiation. As L — 1 (approaching the Cauchy horizon),

we also have ajiTz”iOf}"’ — 0. Thus as the Cauchy horizon is approached from the side of

region ¥, the particle detector co-moving in the steady-state coordinate system perceives pure
Hawking radiation with Gibbons-Hawking temperature. We find that in our multiply connected
de Sitter space with the adapted Rindler vacuum, region R is cold (where the temperature is
zero) but region # is hot (where the temperature is 7 ,, ). Similarly, region £ is cold but & is

hot, the above results can be easily extended to these regions. This gives rise to an arrow of
increasing entropy, from a cold region to a hot region.

4. p-Adic Modelsin Hartle-Hawking proposal and p-Adic and Adelic wave function of the
Universe. [8] [9]

Ordinary and p-adic quantum mechanics can be unified in the form of adelic quantum mechanics

(L (A),W(2),U(1)). (4.1)
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L, (A) is the Hilbert space on A, W (z) is a unitary representation of the Heisenberg-Weyl group on
L,(A) and U(t) is a unitary representation of the evolution operator on L,(A). The evolution
operator U(t) is defined by

UOPE) = [, KCopdy =TT, [, K @30 Gu)dy,.  (4.2)
The eigenvalue problem for U(t) reads
U(t)lpaﬁ (X) = X(Eat)lpaﬁ (x)a (43)

where Y, are adelic eigenfunctions, E, = (Eoo, Eyy e  Ep, ) is the corresponding adelic energy,

indices a and f denote energy levels and their degeneration. Any adelic eigenfunction has the form
Ws(x) = Woo (o) Tpes ¥ (%) Thpes @ ([,] ). x €4, (44)

where W, € L,(R), ¥, € L, (Qp) are ordinary and p-adic eigenfunctions, respectively. The Q-

function defined from the following formula
Qlxlp) =1, Ixl, <1, Q(lxl,) =0, x|, >1 (4.5),

is an element of the Hilbert space L, (Qp), and provides convergence of the infinite product (4.4). A
suitable way to calculate p-adic propagator K,(x",t";x',t") is to use Feynman’s path integral

method, i.e.

K,(x",t";x',t) = f",,t'f” Xy (—% ftt,”L(q', q, t)dt)Dq. (4.6)

X
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For quadratic Lagrangians it has been evaluated in the same way for real and p-adic cases, and the
following exact general expression is obtained:

1/2

GENY GERY
Kv(x”, t”; xl’ t/) — /11; ( 1 ) |1

N E axrdxr E dxroxr

Xy (— %f(x”, t'" x', t’)). 4.7)

(4

With regard the Hartle-Hawking proposal for the wave function of the Universe, the p-adic wave
function is given by the integral

¥y (@) = [, dNK,(q, N;0,0), (4.8)

where, according to the adelic structure of N, G, = Z, (i.e. |[N|, < 1) for every or almost every p.

Models of the de Sitter type are models with cosmological constant A and without matter fields. We
consider two minisuperspace models of this type, with D =4 and D =3 space-time dimensions.
The corresponding real Einstein-Hilbert action is

§=——[, d®x/=g(R = 28) + — [, d°"1xVRK, (4.9)

~ 1enG

where R is the scalar curvature of D-dimensional manifold M, A is the cosmological constant, and
K is the trace of the extrinsic curvature K;; on the boundary OM. The metric for this model is of the

Robertson-Walker type
ds? = P 2[-N2dt? + a?(t)dQ%_,]. (4.10)

In this expression dQ%_, denotes the metric on the unit (D — 1)-sphere, 0?72 = 8nG/
[VP~1(D — 1)(D — 2)], where VP~ is the volume of the unit (D — 1)-sphere. In the real D =3
case, the model is related to the multiple-sphere configuration and wormhole solutions. v-adic
classical action for this model is
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c "o ot _ 1 2arar ar+ar?
Sy(a”,N;a’,0) = 2v2 [N\/I +4 (sin r(NVZ) tan h(N\/I))] (@.11)

Let us note that A, (1 = AG?), denotes the rescaled cosmological constant A. Using (4.7) for the
propagator of this model we have

Vi 1/2

sin h(NV2) v

xo(=5,(a",N;a',0)). (4.12)

K,(a",N;a',0) = 4, (— 2v2 )

sin h(NV2)

The p-adic Hartle-Hawking wave function is

_ Ap(~2N) N |, VAcoth(NVA) ,
qu(a) - f|1v|psldN |N|1/2 Xp( 2 +—2 a ), (4.13)

which after p-adic integration becomes

_ 1 _
Y,(@) =Q(laly), 1A, <p 2 p#2, Wy(a)= SQ(lalp), 1Al <27% p=2, (4.14)
The de Sitter model in D = 4 space-time dimensions may be described by the metric

ds? = ¢ [—Edtz + q(t)dgg], 02 =2 (4.15)

trr

and the corresponding action S,[q] = dtN (—— —Aq + 1) where A =2AG/(97) ,

thence the action can be written also as follow

Solql = 215" den (= - 294 +1).
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For N = 1, the equation of motion § = 21 has solution q(t) = At? + (qT_q' — AT) t +q', where

q" =q(t"),q =q(t") and T =t" —t'. Note that this classical solution resembles motion of a
particle in a constant field and defines an algebraic manifold. The choice of metric in the form
(4.15) yields quadratic v-adic classical action

c 12 ’ A2T3 ! " T (q”_q')z
S,(¢".T;q',0) === [Aq" +q") = 2] ; ———F— (4.16)

According to (4.7), the corresponding propagator is

Ay(=8T) N " ’
s 7 (=5, Tl 0). (4.17)

v

K‘U (q”: qu" 0) =

We obtain the p-adic Hartle-Hawking wave function by the integral

Ap(—8T) A?T3 T g2
WXP (—7 + (/1q — Z)Z + 5), (4.18)

p

lpp(q) = f|T|ps1 dT

and as result we get also Q(Iqlp) function with the condition A =4-3 -1, | € Z,. The above (-
functions allow adelic wave functions of the form (4.4) for both D =3 and D =4 cases. Since
|Al, < p~? in (4.14) for all p # 2, it means that A cannot be a rational number and consequently
the above de Sitter minisuperspace model in D = 3 space-time dimensions is not adelic one.
However D =4 case is adelic, because A =4 -3 -1 is arational number when [ € Z C Z,,.

In the Vladimirov-Volovich formulation, p-adic quantum mechanics is a triple
(LZ(Qp)' VVp(Z)I Up(t))9 (419)

where W, (z) corresponds to Wp(w’d B E) defined in the following equation
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W, (e, Bk) = 1y (S aB) 1, (—BR)x, (—aR).  (4.20)

Adelic quantum mechanics is a natural generalization of the above formulation of ordinary and p-
adic quantum mechanics: (Lz (A), W,(2), UA(t)). In complex-valued adelic analysis it is worth
mentioning an additive character

Xa(X) = Yoo (Xc5) Hp)(p (xp)a (4.21)

a multiplicative character
115 = XS, np|xp|;, SEC, (422)
and elementary functions of the form
#p() = ¢oo(xo) Tlpep @p (%) Tpe @ (|| ) 423)

where ¢ (x,) is an infinitely differentiable function on R and |X|% @ (Xe) = 0 as [Xe|e =
o forany n € {0,1,2,...}, ¢, (xp) are some locally constant functions with compact support, and

alwl ) =1 x| <1, |zl ) =0, x| >1. @24)

All finite linear combinations of elementary functions (4.23) make the set L(A) of the Schwartz-
Bruhat adelic functions. The Fourier transform of ¢ (x) € L(A), which maps L(A4) onto L(A), is
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P = [, exatxy)dx, (4.25)

where y,(xy) is defined by (4.21) and dx = dx,dx,dx; ... is the Haar measure on A. A basis of
L, (A (go)) may be given by the corresponding orthonormal eigenfunctions in a spectral problem of
the evolution operator U, (t), where t € A. Such eigenfunctions have the form

W (6, 8) = Yoo (X ten) Tlpep Wp (s ) Tl @ ([ ). (4.26)

where Wo, € L,(R) and ¥, € LZ(Qp) are eigenfunctions in ordinary and p-adic cases, respectively.
Q (|xp |p) is an element of L, (Qp), defined by (4.24), which is invariant under transformation of an

evolution operator U, (tp) and provides convergence of the infinite product (4.26).

p-Adic and adelic minisuperspace quantum cosmology is an application of p-adic and adelic
quantum mechanics to the cosmological models, respectively. In the path integral approach to
standard quantum cosmology, the starting point is Feynman’s path integral method. The amplitude
to go from one state with intrinsic metric h';; and matter configuration ¢’ on an initial hypersurface

%' to another state with metric h"’;; and matter configuration ¢"' on a final hypersurface X" is given
by the path integral

Keo(R"ij, ¢ 2" 11,0, 2') = [ Xoo(—So| gvr P]) Do gy Do ®  (4.27)

over all four-geometries g,, and matter configurations @, which interpolate between the initial and
final configurations. In (4.27) S, [gw, CD] is an Einstein-Hilbert action for the gravitational and

matter fields. To perform p-adic and adelic generalization we make first p-adic counterpart of the
action using form-invariance under change of real to the p-adic number fields. Then we generalize
(4.27) and introduce p-adic complex-valued cosmological amplitude

Kp(h'ij, 0", 2" 11, 0", ) = [ 2p(=Spl G @) Dp g Dp®.  (4.28)
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The standard minisuperspace ground-state wave function in the Hartle-Hawking (no-boundary)
proposal is defined by functional integration in the Euclidean version of

L|"oo [hlj] = ono(_Soo [guw q)])DooguvDooq)’ (429)

over all compact four-geometries g,,, which induce h;; at the compact three-manifold. This three-

manifold is the only boundary of the all four-manifolds. Extending Hartle-Hawking proposal to the
p-adic minisuperspace, an adelic Hartle-Hawking wave function is the infinite product

l/JA(Q) = va)(v(_sv [guv: CDDDvguvacD: (4-30)

where path integration must be performed over both, Archimedean and non-Archimedean
geometries. If an evaluation of the corresponding functional integrals for a minisuperspace model
yields ¥ (q,) in the form (4.26), then such cosmological model is a Hartle-Hawking adelic one.
Now we consider the approach consists in the following p-adic proposal for the Hartle-Hawking
type of the wave function:

l:boo(Q) = Za.m. Hp f)(p(_sp [guv: d)])nguvaCD, (4.31)

where summation is over algebraic manifolds. The de Sitter minisuperspace model in D =4 space-
time dimensions is the Hartle-Hawking adelic one. Namely, according to the Hartle-Hawking
proposal one has

U, (q) = [K,(q,T;0,0)dT, v =,23,..,p,.., (4.32)

where

' , _ AZ 3 2
K,(q".T;q',0) = A,(—8T) 4TI, "y, |- S+ (g —2) T+ L] (4.33)
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is the kernel of the v-adic evolution operator. The functions A, (a) have the properties
@Iy =1, 4,(b*a) = 4,(a), 4,(a)A,(b) = A,(a + b)A,(ab(a +b)). (4.34)
Employing the p-adic Gauss integral
pr Xp(ax?® + Bx)dx = Ap(a)IZalgl/z)(p (— %), a+0, (4.35)
one can rewrite p-adic version of (4.32) in the form
273 1

(@) = f, dxxp(ax) [ DT, |-E-+ (B-2-22)7|. @36

Taking the region of integration to be |T|, < 1 one obtains

2

[ d (-3 - 222 |ﬁ| <1. (437
Y@ = Jo, dxxp(@0Q{ |77 | )l <1 @437
An evaluation of the integral (4.37) yields
. 22
(@) = exp(insl,. 62)0(Iql,), |Z|p <1, (43%)

where 62 is the Kronecker symbol. With regard 1., (qo) the result depends on the contour of
integration and has an exact solution
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0 = e (5) a1 (5222). (53

where Ai(x) is the Airy function. Thence, we obtain an adelic wave function for the de Sitter
cosmological model in the form

Ya(@) = oo (@) Ty exp(imdfy,62)2 (|| ). |§—4|p <1. (4.40)

The necessary condition that a system can be regarded as the adelic one is the existence of p-adic
ground state Q(Iqalp) (@ =1,2,...,n) in the way

flq’a|p51 Kp(@"aT;q'¢,0)dq’ = Q(lq”alp) (4.41)

for all p but a finite set . For the case of de Sitter model one obtains

vo(@ =0(lal,). 1T, <1 [F] <1 p=2.

12
Yp@ =l ITh<1/2. 5] <1 p=2. @42

what is in a good agreement with the result (4.40) obtained by the Hartle-Hawking proposal.
5. Mathematical connections.

Now we describe some possible mathematical connections between some equations of arguments
above described, some sectors of string theory and p-adic and adelic cosmology.

With regard the Section 1, we have the following connection between the eq. (1.2) and the
fundamental equation concerning the Palumbo-Nardelli model:
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J(fafo):Zk“f(cat)foj(co)_f(c tf()k ]gO' Jk g;{)dg dc, =

~—[d*x\g {—i—lg"”g”T G,.G, )f (¢)—%g”5ﬂ¢5v¢} =

:T L [a"x(-6)" -2{R+4a 8“@——‘H‘ K“)T (~f )} (5.1)

10

Furthermore, we have the following mathematical connection between the egs. (1.20), (1.22) and
the eq. (1.87b):

EnNexp(—%) 5

— En) _
&y = E,N, =E NCexp( ) Zii:oexp(—i—?)

1

- jd26x\/_|:_%_§g gVUTr(Gqupo)f(¢)_5gwa#¢av¢:|:

]O‘ J’dlo 1/2 ‘2®|:R+48 8”‘1)——‘1-[‘ _ 10T QF| )} (5.2)

0 KlO 10

o0 _En
R
1
-- jd%x\/_{—@—gg gV“Tr(G#VGP(,)f(¢)—5g’”6/,¢ﬁv¢}=

T J’dlo 1/2 2®{R+4a DO D ——‘H‘ _&T QF| )} (5.3)
0 243 0

With regard the Section 3, we have the following mathematical connections. We have the
following mathematical connection between eq. (3.9) and eq. (3.3), i.e.
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Z(ﬁ):HZ(ﬂ;naE):eXp(_IBF(ﬁ)) 2 F(:B): (2;;:;1)2,3wa602 log(l_eiﬂw)

n,k

This relationship can be connected with the egs. (3.92b) and (4.18) of Section 4 as follow:

wd *logll —e ™
Z;zg),b"([ [010)] og( e )9

n,k

Z)=T12ps k)= exole pr(9) > F(5)=

- F(AE) = Zfz—wﬁfow dT [* dAte AFT0AT x [ 4 -

sin h¥(cos h2T—cos hAT)(n2b2~y2) . ar_ic

Ap(_BT) A%13 T q2
- fmpﬂ ar 4Ty Ap (—7 +(Aq—-2)+ E)- (5.4)

Also equation (3.20b) can be related with the eq. (3.92b) as follow:

Z(p)=e " =expl-1,,[g]) N[ D] Dlplexp(-(11g + 1.9]- 1ul2])

I —iAEToAT 4
- T(AE) - an_oo 27T2 f de dAte X [sin h¥y(cos h2T—cos hAT)(n2b2—-y2) AToAT—is
(5.5)
The eq. (3.37) can be related with the egs. (2.10) and (4.18) as follow:
1 1 log(¢/&)
:—— a?2 p—lo €/5 V) (p-log(t/¢))=——|e,R—R-—="Z|& R

- —+ 3( )n on = —n(e Cghvpirav 4 2¢®4%)n + fd;—pC[f] -

Ap(—8T) A%T3
= Sirtyer 4T B Ko (-EE+@g-2i+L) 56
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The eq. (3.42), can be connected with the eq. (3.92b) as follow:

DIA A
zo -1 '[8 (4)R+MI5 (4)Q(g(4);8,/\,/1)
167G, | 5 ¢ Vol(SC) 5 ¢
>
R ~iAET,A ¥
- T(AE) = an—ooz 2, 2f de dAte™ HT0RE X [sinh)7(coshZT—COShAT)(TleZ—YZ) AT—>AT—is
(5.7)

The eq. (3.47) can be related with the fundamental equation concerning the Palumbo-Nardelli

model and the Ramanujan’s modular equation as follow:

4 1 8D
I, = cjgg[—R + G _2)(VCD)2 +§eXP£EJH2 + a'Q(g;a',g,A,/i)j >

© COS /IxXW' o
0 coshmx V142
t? T
t'w

4| antilog
1 677“} ¢W' (ltW')

ol )

_ IdZGX\/_ [————g v¢"Tr(G,,G,, )f (¢)—%g’”6y¢5v¢}=

162G 8

o0

szmjd“’ G)e ‘”{R+46 qbé”d)——‘H‘ K, (~f )} (5.8)

0 10
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With regard the eq. (3.53), we have the following mathematical connections with the egs. (2.10) and

(3.92b):

0
1 §2r2e—m2s/2—27r2r222/s
d/2
r=1 9

S(m?)= A[ a2z} I:W 72

da 1 . 1 a
—>d—rtl+3(§)n—(l)nzzn(e g’”ﬁGm”+Ze‘D,8¢’)n+prC[f] -
= y» —iAEToAT Y
- F(AE) = Zn=_°°2 27, Zf de dAze X [sin h¥(cos h2T—cos hA‘L')(anZ—)/2)]A_[_)Ar_i‘g
(5.9)

The eq. (3.59b) can be connected with the fundamental equation concerning the Palumbo-Nardelli

model and the Ramanujan’s modular equation as follow

e 0| (0 o D e
- 2\4x? S Imz’ - 1 — P 4ra'lmt
© COS /TxXW' o iy e
4| antilog™ CO:?’“ o
1 e+, (itw) "

;-1 1og[ J(W}\/[W]]

(0)-50,0,0)-

J.d%x\/_[—@—gg gVUTr(GWGpJ

9
)} (5.10)

r 10 1/2 20 _ _K
~[a"x(-G) e {R+48 DO D ‘H‘ g‘OT (7

j 10

0 2K10

While, the eq. (3.64b) can be connected with the fundamental equation concerning the Palumbo-

Nardelli model, the Ramanujan’s modular equation and the Boltzmann equation as follow
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dr(imr) "

Ar’a #Imz’

q;“ﬁ (1 -q" Xezm *48 Z exp— M
n=l '

prs a'Imt

( 1 'j_BZmélJ.:dz(bzzf (z, rl,rz)j

dn a . 1 5 1 &
_)E-I_ 3(a>n_(pn = En(e—(DguvBﬁJav + 2e¢l[)>d>)n+ prC[f] -
#COSTDW' _atw o |
4| antilog ’ CO”S}]?DC : ;4.2
——w' w
_l e 4 ¢w'(itw')
3 1041152 | [(10+742
B R e T e
_J’d26 ___lg g""Tr(G G )f(¢) : g"0,¢40,¢ =
167G 8 e
1/2 2cD|:R+4a q)aﬂq)__‘H‘ _KIOT QF| ):| (511)
0 10
Appendix A

Notions of thermodynamics

The laws of thermodynamics, in principle, describe the specifics for the transport of heat and work in
thermodynamic processes. Since their inception, however, these laws have become some of the most
important in all of physics and other types of science associated with thermodynamics. In this paper we
consider principally the first and the second law of thermodynamics:

1. The first law mandates conservation of energy, and states in particular that heat is a form of

energy.
2. The second law which states that the entropy of the Universe always increases, or (equivalently)

that perpetual motion machines are impossible.
First Law

Energy can neither be created nor destroyed. It can only change forms.

In any process, the total energy of the Universe remains the same.

For a thermodynamic cycle the net heat supplied to the system equals the net work done by the system.
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The First Law states that energy cannot be created or destroyed; rather, the amount of energy lost in a
steady state process cannot be greater than the amount of energy gained. This is the statement of
conservation of energy for a thermodynamic system. It refers to the two ways that a closed system
transfers energy to and from its surroundings — by the process of heating (or cooling) and the process of
mechanical work. The rate of gain or loss in the stored energy of a system is determined by the rates of
these two processes. In open systems, the flow of matter is another energy transfer mechanism, and
extra terms must be included in the expression of the first law.

The first law can be expressed as the Fundamental Thermodynamic Relation:
dE =TdS —pdV.

Here, E is internal energy, T is temperature, S is entropy, p is pressure and V is volume. This is a
statement of conservation of energy: the net change in internal energy (dE) equals the heat energy that
flows in (TdS), minus the energy that flows out via the system performing work (pdV).

Second Law

The entropy of an isolated system not in equilibrium will tend to increase over time, approaching a

maximum value at equilibrium.

In a simple manner, the second law states “energy systems have a tendency to increase their entropy
rather than decrease it”. A way of thinking about the second law is also to consider entropy as a
measure of disorder.

The Clausius Theorem

The Clausius Theorem (1854) states that in a cyclic process
$2<0 (a

The equality holds in the reversible case and the “<” is in the irreversible case. The reversible case is
used to introduce the function state entropy. This is because in cyclic process the variation of a state
function is zero.

Now we consider a reversible process a-b. A series of isothermal and adiabatic processes can replace
this process if the heat and work interaction in those processes is the same as that in the process a-b.
Let this process be replaced by the process a-c-d-b, where a-c and d-b are reversible adiabatic
processes, while c-d is a reversible isothermal process. The isothermal line is chosen such that the area
a-e-c is the same as the area b-e-d. Now, since the area under the p-J diagram is the work done for a
reversible process, we have that the total work done in the cycle a-c-d-b-a is zero. Applying the first
law (dU = dQ + dW), we have that the total heat transferred is also zero as the process is a cycle (and
hence dU = 0). Since a-c and d-b are adiabatic processes, the heat transferred in process c-d is the same
as that in the process a-b. Now applying first law between the states a and b along a-b and a-c-d-b, we
have, the work done is the same. Thus the heat and work in the process a-b and a-c-d-b are the same
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and any reversible process a-b can be replaced with a combination of isothermal and adiabatic
processes, which is the Clausius Theorem.

A corollary of this theorem is that any reversible cycle can be replaced by a series of Carnot cycles
Suppose each of these Carnot cycles absorbs heat dQ,' at temperature T;' and rejects heat dQ, at T,'.
Then, for each of these engines, we have

oy _ _Tf

do} T}

or, equivalently

d0i | 405 _

Tl T2
The negative sign is included as the heat lost from the body has a negative value. Summing over a large
number of these cycles, we have, in the limit,

dQ _

$, 2=o.
This means that the quantity dQ..,/T is a property. It is given the name entropy. Further, using Carnot’s
principle, for an irreversible cycle, the efficiency is less than that for the Carnot cycle, so that

dQ; dQ;

nlrr_l_w<77€arnot T_1_€<0'

As the heat is transferred out of the system in the second process, we have, assuming the normal
conventions for heat transfer,

d d
a0, , o,
T T;

<0.

So that, in the limit we have,

§ T<0 §$T<0.

The above inequality is called inequality of Clausius. Here the equality holds in the reversible case.

Now we consider a whatever real transformation I of a thermodynamic system that lead the system
from the state A to the state B. We imagine then to again bring the system to the initial state through a
reversing transformation II. Applying the eq. (a) to the whole cycle so built:

aQ B 0Q A 0Q
026L=22+132 o
$ f(fll) - fUBI) N C)

A D . . .
But B —Q , being effected on a reversing transformation, it is equal

an T
to AS =S(A) - S(B), thence the eq. (b) becomes:
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SB) - S = [ 2 (.

. aQ . . . o . oy .
The quantity f: ?Q is defined the Clausius’s integral: it coincides with the variation of entropy only if

the transformation along which is calculated is reversing. Particularly, if the transformation I
completed by the system is an adiabatic transformation, the right hand side of (c) becomes zero, thence
S(B) —S(A) = 0.

If any system completes an adiabatic transformation that lead it from the state A to the state B, the
entropy of the final state B is great or equal to the entropy of the initial state A (the sign equal is valid if
the transformation is reversing). Particularly, this is valid for the transformations of the isolated
systems: in whatever spontaneous transformation of whatever thermodynamic system the entropy
cannot decrease. Whatever system, together with his sources (if are sources only of this system),
constitutes an isolated system. Therefore: in whatever transformation, the sum of the entropy of the
system and its sources cannot decrease. This is a further way to enunciate the second law of
thermodynamics.

Thence, the entropy is an indicator of the state of disorder of a determinate set of bodies. Great is the
disorder, great is the entropy.

The transformations toward increasing entropy “produce” positive entropy (the difference of entropy
between the final state and that initial > 0), while those to decreasing entropy produce negative
entropy. The entropy results a non conservative entity: in the realizable transformations, in which there
exists an interaction among the system under observation and the environment, we have an increase of
entropy after the transformation. We take as example a “cold” body with temperature T, that is put in
contact with a “heat” body with temperature T,: the variables are the quantity of heat exchanged Q and
the temperatures T. We know that the quantity of heat Q will go from the body with the great
temperature to that with smaller temperature up to the attainment of an intermediary temperature T, of
equilibrium among the two.

Clausius says that the relationship among the quantity of heat “transformed” Q and the temperatures,
initial and final, is:

e_250,
T, T,
from the moment that
T, <T,.

Clausius defined “Entropy” the relationship S = Q/T. We can say that the exchanged heat has realized
a transformation in which

AS > 0.
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Zeuner proposed an interesting analogy among the gravitational potential energy of a body P and the
entropy of a mass with a heat Q having temperature T. We know that the potential energy (that is the
mechanical work) of the mass of water of the basin is

L=PXxAH.

Zeuner consider the obtainable work from a thermal motor able to turn the heat into work with a
Carnot’s Cycle from the moment that it allows to express only the output of transformation heat/work
only in terms of temperatures (rather than quantity of heat). In fact, can be possible to show that the
output of the Carnot’s Cycle is equal to:

T-T, To
T] = = —_—— 5
T T

where T — T, is the difference of temperature among the “source” and the “refrigerant”. Thence,
introducing in the motor the quantity of heat Q, the obtainable mechanical work L is:

L=2ArT,
T

where the entropy Q/T is a factor of proportionality analogous to the weight P, being the jump of
level AH corresponding to the jump of temperature AT that the motor realize. We observe that between
Q and T exists a functional link such that increasing Q increases in direct proportion T and, therefore,
gives a certain initial entropy, the obtainable work depends exclusively on the realizable AT. The motor
that expels heat to smaller temperature produces more mechanic work to parity of “consumption”: this
is the meaning of the compare between the two thermal motors, working with “jumps” of different
temperature and same initial temperature. Thence, is necessary compare two cases at identical initial
temperature and keep in mind that is the factor AT to determine the result of transformation.

Entropy and Life

An organism is alive when, to his own inside, produces some transformations at negative entropy (or
with AS < 0) that contradict the second principle (law). We observe a vegetable seed: if is alive, under
the anticipated conditions from the Nature, it spontaneously germinates and grows capturing the
Carbon from the atmosphere, giving origin to the plant, freeing the Oxygen through the photosynthesis.
The general equation for photosynthesis is:

nC0, + nH,A + photons —» (CH,0)n + n0, + nA

carbon dioxide + electron donor + light energy — carbohydrate + oxygen + oxidized electron
donor

Since water is used as the electron donor in oxygenic photosynthesis, the equation for this process is:
2nC0, + 2nH,0 + photons - 2(CH,0)n + 2n0,

carbon dioxide + water + light energy — carbohydrate + oxygen
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With regard the equation for the type of photosynthesis that occurs in plants, we have that

light
6C0, + 6H,0 2 CoHyp0g + 60, (where — , while «——)

cellulose

carbon dioxide + water 2 sugar + oxygen

Naturally, if we consider also the interaction of the plant with the quanta of the solar energy and the
minerals, we have that all the transformations gives positive entropy (thence, is correct the affirmation
for which the entropy of Universe always increases).

The only certainty is that with the death begins an irreversible trial, with production of positive entropy
as affirms the second principle. In conclusion, can be said that the property of the entropy is that to
increase in every practically realizable transformation (i.e., in every irreversible transformation) |ocally
excluded in the case of living organisms.

The messy velocity of the molecules of a gas (but also those of the liquids and the solids), to a date
temperature, assumes values continually and casually variables following a particular distribution.
Through this distribution, discovered by Boltzmann, the living nature, vegetable and animal can
effect local transformations to decreasing entropy.

The irreversibility seems to be a “defect” of Cosmos having the function to force it to a progressive
entropic enrichment (and, therefore, to an energetic decadence) so that the final form of all the
available energy is the thermal and unusable from the point of view entropic. Thence, all of a sudden of
the evolution of the Universe, in an ended time, it won’t be more possible to realize in practice some
thermodynamic cycle.

Thermodynamicsand Life

Boltzmann got the graph of the probability in function of the temperature postulating that, gives a
certain number m of indistinguishable particles among them, (A,B,C,...,.M) and existing a number n of
possible states (a,b,c,...,n) in which one or more particles (also everybody m) can be found, the
presence of the particles in every state can happen with different possibilities. If the identical particles
are free to occupy the various states (as in the case of a gas), they can also exchange continually the
state among them also maintaining “approximately” a certain distribution. According to the boundary
conditions (for example the temperature) a certain distribution of the possible configurations will be
typical of such conditions. If for state of the particle we intend the possession of a certain quantity of
kinetic energy E associated to every molecule of a gas, in a certain interval of values of energy AE,
there will be some molecules in constant quantity even if between them continuous exchanges of
energy happen and, therefore, within the same interval, some particles enter and others go out.
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Conclusion

1. The correct application of the Boltzmann’s statistic, to phenomena for which are asked the
probability, show that combinations of numerous particles, such to produce complex organisms,
asks very long times to the comparison of which the age of Universe is less than a pulsation of
eyelashes.

2. Probabilities assume the greatest values in correspondence to the messiest configurations.

3. The most orderly combinations are those that characterize the organic structures and is
necessary the action of an intelligent entity to select, order and preserve in the time the
favourable combinations.

4. The Gaussian point of view implicates that the “casual phenomena” are necessarily associated
to a program which implicates the existence of an objective around of which we have a great
concentration of events.

5. It is necessary to postulate the existence of an intelligent project (Intelligent Design) without
which the configurations and the favourable events constitute episodes without a functional
connection between them.

6. The existence of the life what phenomenon producing positive entropy in continuous way (and
not cyclical) is a real fact.

The everything induces to affirm the existence of an Supreme Being Coordinator that possesses the life
“previously” and that is able to transmit to the animals and vegetables. We note that the two living
systems, animal and vegetable, are complementary among them in the sense that the project foresees
that the issues of the first ones (CO,) are the food for the seconds, and that the discard of the seconds
(O,) is essential for the first ones. The cycle of the Carbon and the Oxygen is really a great idea! There
is only one explanation: we are in presence of the greatest Physicist Planner of every time: Creative
God! In other terms: The Creation isa thermodynamic necessity!
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